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Abstract

In this paper, we present a framework and two linear time algorithms for obtaining circular draw-
ings of graphs. The first technique produces circular drawings of biconnected graphs and finds a
zero crossing circular drawing if one exists. The second technique finds multiple embedding circle
drawings. Techniques for the reduction of edge crossings are also discussed. Results of experimental
studies are included.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Graphs are used to represent many kinds of information structures: computer, telecom-
munication, social networks, entity-relationship diagrams, data flow charts, resource allo-
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Fig. 1. A graph with arbitrary coordinates for the nodes and a circular drawing of the same graph as produced by
an implementation of our algorithm.

cation maps, and much more. Graph Visualization is the study of techniques which produce
drawings of graphs. These visualizations provide a snapshot of each graph and allow ex-
perts to be free from the work of organizing the nodes and edges and thereby allowing
more time to interpret the composition of these structures. Much research has been done in
the area of graph visualization: see [3,4] for discussion.

A circular graph drawing (see Fig. 1 for an example) is a visualization of a graph with
the following characteristics:

• the graph is partitioned into clusters,
• the nodes of each cluster are placed onto the circumference of an embedding circle,

and
• each edge is drawn as a straight line.

There are many applications which would be strengthened by an accompanying circu-
lar graph drawing. For example, our drawing techniques could be added to tools which
manipulate telecommunication, computer, and social networks to show clustered views of
those information structures. The partitioning of the graph into clusters can show structural
information such as biconnectivity, or the clusters can highlight semantic qualities of the
network such as sub-nets. Emphasizing natural group structures within the topology of the
network is vital to pin-point strengths and weaknesses within that design. It is essential
that the number of edge crossings within each cluster remain low in order to reduce the
visual complexity of the resulting drawings. Researchers have produced several circular
drawing techniques [2,6,9,10,18], some of which have been integrated into commercial
tools. However, the resulting drawings are visually complex with respect to the number of
crossings. In this paper, we introduce circular drawing techniques for simple graphs which
are efficient and also produce drawings with a low number of edge crossings.

The remainder of this paper is organized as follows: Section 2 discusses previous work
in this area. In Section 3, we present an O(m) time algorithm for the circular layout of bi-
connected graphs. Our algorithm guarantees that if a zero crossing circular drawing exists
for a biconnected graph, then it will find it. In Section 3.1, we discuss properties of circular
drawings created by the technique in Section 3. In Section 4, we discuss an approach for
reducing the number of edge crossings in circular drawings. In Section 5, we present an
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O(m) time algorithm for drawing nonbiconnected graphs on multiple embedding circles.
In Section 6, we discuss implementation details and give results of an extensive experi-
mental study over a set of 10,328 biconnected graphs. These results show our techniques
to perform significantly better than the current technology. In Section 7, we present con-
clusions.

2. Previous work

2.1. Previous circular drawing techniques

Kar, Madden, and Gilbert present a circular drawing technique and tool in [9] for net-
work management. Recognizing that a clustered view of a network can be quite helpful to
its design and maintenance, the authors build a system which first partitions the network
into clusters, places the clusters onto the main embedding circle, and then sets the coor-
dinates of individual nodes. Finally a heuristic approach is used to minimize the number
of crossings. As discussed in [6], an advanced version of this O(n2) technique has been
implemented as part of Tom Sawyer Software’s successful Graph Layout Toolkit (GLT).

Tollis and Xia introduced several linear time algorithms for the visualization of sur-
vivable telecommunication networks in [18]. Given the ring covers of a network, these
algorithms create circular drawings such that the survivability of the network is very visi-
ble. Techniques were presented for outside (inside) drawings such that the rings are placed
outside (inside) a root circle. An additional linear time algorithm produces drawings which
are a combination of outside and inside drawings. This type of flexibility in a tool allows
each network designer to choose the best technique given the exact application.

Citing a need for graph abstraction and reduction of today’s large information structures,
Brandenburg describes an approach to draw a path (or cycle) of cliques in [2]. This O(n3)

algorithm creates a two-level abstraction of the given graph giving the ability to project a
clique on each node of the abstracted graph.

Circular drawing techniques are not limited to telecommunication and computer net-
work applications by any means. InFlow [10] is a tool to visualize human networks and
produces diagrams and statistical summaries to pinpoint the strengths and weaknesses
within an organization. The usually unvisualized characteristics of self-organization, emer-
gent structures, knowledge exchange, and network dynamics can be seen in the drawings
of InFlow. Resource bottlenecks, unexpected work flows, and gaps within the organization
are clearly shown in these circular drawings.

In [14–17], we presented preliminary work on the algorithms in this paper.

2.2. Complexity of the circular graph drawing problem

Intuitively, the problem of creating circular graph drawings while minimizing the num-
ber of edge crossings seems very hard. The general problem of placing nodes such that the
number of edge crossings is minimum is the well known NP-complete crossing number
problem. However, the more restricted problem of finding a minimum crossing embed-
ding such that all the nodes are placed onto the circumference of a circle and all edges are
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represented with straight lines is also NP-complete as proven in [11]. The authors show
the NP-completeness by giving a polynomial time transformation from the NP-complete
Modified Optimal Linear Arrangement problem.

3. A technique for producing circular drawings of biconnected graphs

In order to produce circular drawings with fewer crossings than previous techniques,
we have developed an algorithm which tends to place edges toward the outside of the
embedding circle. Also, nodes are placed near their neighbors. In fact, this algorithm tries
to maximize the number of edges appearing toward the periphery of the embedding circle.
The algorithm achieves this improvement by selectively removing some edges and then
building a depth first search (DFS) based node ordering of the resulting graph.

In order to selectively remove some edges, this technique visits the nodes in a wave-like
fashion. Define a wave front node to be adjacent to the last node processed, see Fig. 2.
A wave center node is adjacent to some other node which has already been processed.
The algorithm starts at a lowest degree node and continues to visit wave front and wave
center nodes if they are of lowest degree. If none of the current wave front or wave center
nodes are of lowest degree, then some lowest degree node is chosen. The wave-like node
traversal begins again from this newly chosen node and will continue from this node and
the previous wave front and wave center nodes.

A pair edge is incident to two nodes which share at least one neighbor, see Fig. 3.
Nodes v and w are said to be paired by u, and u is said to establish the pair edge (v,w). In
other words, u, v, and w form a triangle. Pair edges will be removed before the DFS step
of the technique. A triangulation edge is a new pair edge which is placed into the graph
by our technique. The triangulation edges are also removed from the graph before the DFS
portion of the algorithm. Each time a node u is visited, a list of pair edges is built. If there
is an insufficient number of pair edges in the graph, our algorithm automatically inserts
triangulation edges into the graph. With the ensuing removal of u, that node is inherently
represented by the newly found pair edges, see Fig. 4. The illustrations marked (a) show a

Fig. 2. Examples of wave front and wave center nodes. The shaded region includes those nodes which have
already been processed. The node labeled 2 is the most recently processed.
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Fig. 3. Example of a pair edge.

(a)

(b)

Fig. 4. The node and edge absorption qualities of Algorithm 1.

degree two node u and its neighbors v and w at three different points in the algorithm. The
pair edge established by u, (v,w), is shown with a bold line in the first illustration. The
illustration immediately to the right shows the same graph fragment when the next node
is processed. Although node u and edges (u, v) and (u,w) are not in the graph anymore,
they are inherently represented by the edge (v,w). The next illustration to the right shows
the same graph fragment after the pair edge (v,w) has been removed. At this point, the
pair edge (v,w) is inherently represented by the node u and the edges (u, v) and (u,w).
A similar example is shown in the illustrations labeled (b), where the current node being
processed has degree three. It is this selective absorption that causes the behavior of edge
placement towards the periphery of the embedding circle.

It is important to note that we do not find all pair edges. For each node u we visit its
neighbors v1, v2, . . . , vk in some order, say the order in which they appear in the adjacency
list. For example, we check to see if (v1, v2) exists: if so, we add that edge to the removal
list. If not, we add the triangulation edge (v1, v2) to the graph and to the removal list.
This part of the algorithm takes deg(u) time, which is a significant improvement over the
algorithm described in [15]. Notice that a new edge is added only between two nodes that
are consecutive in the adjacency list of the current node (and of course if such an edge does
not already exist). Also note that the first and the last neighbors visited can not experience
an increase in degree. For each of those nodes, the edge incident to u is removed while at
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most one triangulation edge is added. Next, we show that the total number of triangulation
edges added is O(m).

The number of triangulation edges added to G over the course of the algorithm is at
most

∑n−3
i=1 minDegi − 1, where minDegi is the minimum degree found in G at the ith

iteration of the While loop. We postulate that minDegi ! avgDeg before the ith iteration,
∀i " 1 and where avgDeg is the average degree of the nodes in the original graph G.

Lemma 3.1. minDegi ! avgDeg before the ith iteration, ∀i " 1.

Proof. (By induction.) Base (for i = 1): Clearly true.
Inductive hypothesis: Assume that minDegi ! avgDeg before the ith iteration, ∀i ! k.
Inductive step: Prove minDegk+1 ! avgDeg before the (k + 1)st iteration.
Let vk+1 be the vertex that has minDegi+1 (and will be chosen at the (k +1)st iteration).

Let vertex vk be the vertex chosen during the kth iteration (i.e., had minDegi ). There are
two cases:

(1) vk+1 is not a neighbor of vk . In this case its degree has not increased during the kth
iteration. Hence the Inductive hypothesis guarantees that the degree of vk+1 ! avgDeg.

(2) vk+1 is a neighbor of vk . In this case its degree may have increased during the kth
iteration. However, there are two nodes (the first and last nodes in the chosen order)
whose degree has not increased since we removed one edge and added to it at most
one edge during the removal of vk . We can choose vk+1 to be one of those two nodes
or another neighbor if it has lower degree. Hence the Inductive hypothesis guarantees
that the degree of vk+1 ! avgDeg. !

It is important to note that the visit of the neighbors starts from the lowest degree neigh-
bor and proceeds cyclically around the adjacency list. Since we know that minDegi !
avgDeg before the ith iteration, ∀i " 1, we also know that

n−3∑

i=1

minDegi − 1 <

n∑

i=1

minDegi !
n∑

i=1

avgDeg = 2m.

Therefore, the number of triangulation edges added is O(m).
Subsequent to the edge removal, our algorithm proceeds to build an ordering of the

nodes for the reduced graph. A traditional DFS is performed and then the nodes in a longest
path of the DFS tree are placed around the embedding circle. Alternatively, a heuristic
algorithm for finding a longest path in a graph can be used. Finally, the remaining nodes
are nicely merged into the ordering. This can be accomplished by visiting each neighbor
of u and asking it if it is next to another neighbor of u on the embedding circle. If two
neighbors of u are next to each other on the embedding circle, then we place u between
those two neighbors. (If there are multiple pairs of such neighbors, we arbitrarily pick one
of those pairs). If there are not two neighbors of u next to each other on the embedding
circle, then we place u next to some neighbor or u or, if there are no neighbors of u on the
embedding circle yet, we pick an arbitrary position for u.
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Algorithm 1. CIRCULAR.
Input: A biconnected graph, G = (V ,E).
Output: A circular drawing Γ of G such that each node in V lies on the periphery of a
single embedding circle.

(1) Bucket sort the nodes by ascending degree into a table T .
(2) Set counter to 1.
(3) While counter ! n − 3
(4) If a wave front node u has lowest degree then currentNode = u.
(5) Else If a wave center node v has lowest degree then

currentNode = v.
(6) Else set currentNode to be some node with lowest degree.
(7) Visit the adjacent nodes consecutively. For each two nodes,
(8) If a pair edge exists place the edge into removalList.
(9) Else place a triangulation edge between the current pair of

neighbors and also into removalList.
(10) Update the location of currentNode’s neighbors in T .
(11) Remove currentNode and incident edges from G.
(12) Increment counter by 1.
(13) Restore G to its original topology.
(14) Remove the edges in removalList from G.
(15) Perform a DFS (or a longest path heuristic) on G.
(16) Place the resulting longest path onto the embedding circle.
(17) If there are any nodes which have not been placed then place the remaining nodes

into the embedding order with the following priority:
(i) between two neighbors, (ii) next to one neighbor, (iii) next to
zero neighbors.

The time complexity of Algorithm 1 is O(m), where m is the number of edges in G.
Step 1 takes O(m) time. Step 3 takes O(m) time over all iterations since the use of efficient
data structures (as explained in Section 6.2) allows each iteration to take only O(deg(vi))

time, where vi is the vertex chosen during the ith iteration. Notice that the number of
triangulation edges added by step 9 is O(m), as shown in Lemma 3.1. As discussed earlier,
this is a significant improvement over our previous algorithm described in [15]. Clearly,
steps 13–16 require O(m) time. Finally, step 17 also requires O(m) time since at most∑n

i=1 deg(vi) = O(m) possible placements are reviewed.

3.1. Properties of Algorithm 1

A graph, G, is outerplanar if and only if G can be drawn on the plane such that all nodes
lie on the boundary of a single face and no two edges cross. If the biconnected graph given
to Algorithm 1 is outerplanar then the result will be a circular visualization such that no
two edges cross. In fact, our technique has been inspired by the algorithm for recognizing
outerplanar graphs presented in [12].
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Fig. 5. A non-planar drawing of a simple cycle.

By the definition of outerplanar graphs, we know that there exists a plane circular draw-
ing for any outerplanar graph. Also, by that same definition we know that a graph which
is not outerplanar does not admit a plane circular drawing. In fact, the set of biconnected
graphs which may be drawn in a circular fashion without any crossings is exactly the set
of biconnected outerplanar graphs. The requirement of placing all nodes on the periphery
of some embedding circle is equivalent to placing all nodes on a single face (say the ex-
ternal face) of some embedding. Furthermore, if a zero-crossing visualization exists for a
biconnected graph, G, then that drawing can be found by Algorithm 1.

Theorem 3.1. There exists only one clockwise ordering of the nodes in a biconnected
outerplanar graph G such that the drawing of G with the nodes in that order around the
embedding circle is plane.

Proof. (⇒) By the definition of an outerplanar graph, any outerplanar graph must admit a
circular drawing such that no two edges cross.

(⇐) Given the simplest outerplanar biconnected graph, a simple cycle, we can not
change the relative order of any two nodes without creating crossings. See Fig. 5. The
edges of the simple cycle are also known as outerface edges. We know that for any bicon-
nected outerplanar graph, all the outerface edges must exist since without them the graph
would not be biconnected. By this fact, we can immediately extend the above observation
to all outerplanar graphs. !

Theorem 3.2. [12] A graph G with n nodes is outerplanar if and only if either G is a
triangle or

(1) G has at most 2n − 3 edges,
(2) G has at least two degree two nodes,
(3) no edge of G lies on more than two triangles, and
(4) for any degree two node u which is adjacent to nodes v and w, the graph G minus

node u plus the edge (v,w) (if not already in G) is also outerplanar.

Lemma 3.2. Let G be a biconnected outerplanar graph with at least four nodes. Algo-
rithm 1 places an edge (v,w) into the removal list if and only if it is an edge between two
internal faces.
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Fig. 6. Illustration for the proof of Lemma 3.2.

Proof. (⇒) We know the following facts at any execution of step 4 in Algorithm 1:

(1) G is biconnected,
(2) currentNode has degree two, and
(3) the two nodes adjacent to currentNode, v and w, must have degree at least three.

The first two attributes are included in Theorem 3.2. Proof by contradiction will prove
the third. See Fig. 6. Without loss of generality, assume that node v has degree one. The
lone neighbor, currentNode, of v must be an articulation point and this is a contradiction
of attribute 1. Again, without loss of generality, assume that node v has degree two. In
this case w must be an articulation point and we have another contradiction of attribute 1.
Therefore the edge to be placed into removalList must be an edge between two internal
faces.

(⇐) We have two categories of edges: External/Internal and Internal/Internal. Exter-
nal/Internal edges are those which appear between the external and some internal face.
These are also known as outerface edges. Internal/Internal edges are those which appear
between two internal faces. From Theorem 3.1, we know that there is only one clockwise
circular ordering of the nodes such that the resulting layout is plane. And with this unique
ordering, each edge can belong to only one of the two edge categories described above.
Since there is only one clockwise circular ordering of the nodes such that the drawing is
plane and that order is found by DFS on the reduced graph, we know that the reduced graph
must consist of edges which exactly form a Hamiltonian cycle for G.

We prove by contradiction that all Internal/Internal edges are placed into the removal
list. Assume that edge (v,w) is an Internal/Internal edge that is not placed into the removal
list. From the first part of this proof, we know that no External/Internal edges have been
placed into the removal list, so when we remove the removal list edges from G, the reduced
graph will contain all the External/Internal edges plus (v,w), which is an Internal/Internal
edge. When DFS is applied to this reduced graph, there will be one of two possible node or-
derings found: one will contain (v,w) and one will not. Since more than one node ordering
exists, we have a contradiction to Theorem 3.1. !

Theorem 3.3. Algorithm 1 produces a plane circular drawing of any outerplanar graph in
O(n) time.
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Proof. By Lemma 3.2 we know that Algorithm 1 places all the Internal/Internal edges into
removalList. This means that at the completion of step 14, the edges remaining in G form
a Hamiltonian cycle. Therefore the longest path of the DFS tree found in step 14 must
contain all the nodes of the graph. Furthermore, the order formed by this longest path must
be the unique order which produces a plane embedding. Therefore, the layout found by
Algorithm 1, given an outerplanar graph, must contain zero crossings. By Theorem 3.2,
we know that the number of edges in an outerplanar graph is at most (2n − 3) so the time
required for Algorithm 1 given an outerplanar graph is O(n). !

Therefore we have:

Theorem 3.4. Given a biconnected graph G, if G admits a circular layout with zero cross-
ings, then Algorithm 1 produces a circular drawing with zero crossings in O(n) time.

4. Further reducing the number of edge crossings

As will be shown in the experimental results of Section 6.1, Algorithm 1 produces draw-
ings with a low number of edge crossings and significantly outperforms the current leading
technology. We can further reduce the number of edge crossings with the technique pre-
sented in this section. As discussed in Section 2.2, the problem of minimizing the number
of edge crossings in a circular graph drawing is NP-complete. The configuration of the
nodes as determined by Algorithm 1 produces drawings with a low number of crossings,
which can then be further reduced to some local minima with a monotonic crossing reduc-
tion technique. The postprocessing step visits each node and queries whether crossings can
be reduced by the movement of that node next to one of its neighbors.

Algorithm 2. CIRCULAR—Postprocessing.
Input: A drawing Γ of biconnected graph G = (V ,E) produced by Algorithm 1.
Output: A drawing Γ ′ of G with fewer or equal number of crossings.

(1) currentCrossings = current number of crossings in the drawing.
(2) For a fixed number of times
(3) For each node, u, in G

(4) Initialize List1 to contain the embedding circle positions
which lie between two nodes adjacent to u.

(5) If List1 is empty
(a) Initialize List2 to contain the embedding circle

positions which lie next to one neighbor
of u.

(b) PositionList = List2.
(6) Else PositionList = List1.
(7) For each location in PositionList
(8) Place u at this location
(9) newCrossings = the new number of crossings.
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(10) If newCrossings < currentCrossings then
currentCrossings = newCrossings.

(11) Else Place u back into its previous position.
(12) If no improvement was made during this iteration, stop.

The time complexity of Algorithm 2 is O(m2). This order is dominated by the required
time for counting the number of crossings (steps 1 and 9). It is vitally important to the time
efficiency of Algorithm 2 that the number of crossings be counted in an efficient fashion. As
will be shown in Lemma 4.1, step 1 of Algorithm 2 requires O(m+χ) time to find the total
number of crossings, where m is the number of edges and χ is the number of crossings.
The experimental study presented in Section 6 has shown that the loop of step 2 needs to
be iterated at most 9 times. In fact, the vast majority of drawings converged within the first
two iterations. In the worst case, step 2 requires a constant amount of time. Steps 3 and 6
require O(n) time. Steps 4 and 5 require O(m) time since we explore

∑n
i=1 degree(i) =

O(m) positions. Steps 7 and 8 require O(m) time since we know there will be at most∑n
i=1 degree(i) = O(m) positions. In Section 4.2, we will prove that it takes O(m) to find

the new number of crossings in step 9. And since over the course of the algorithm, step 9
is repeated O(m) times step 9 requires O(m2) time. Steps 10 and 11 require O(m) time. So
the time complexity of the entire algorithm is O(m2 + χ). Since, each edge can cross any
other edge in the drawing at most once in a circular visualization, χ is O(#m

i=1i) which is
O(m2). Therefore, Algorithm 2 has time complexity O(m2).

4.1. Counting all the crossings in a circular drawing

Consider the straight edges ei and ej of Fig. 7. The edge ei can cross ej if and only if
one endpoint v of ej appears between the two endpoints u and w of ei . In this case, ej is
called an open edge with respect to the arc uvw. If both endpoints of ej appear between u

and w on the perimeter of the embedding circle, then ei and ej do not cross. So, if we order
the edges as they are encountered around the embedding circle and visit their endpoints in
that order, we can determine the total number of edge crossings by counting the number of
open edges. Although our problem is one dimensional, this technique has some similarities
to the line segment intersection algorithm presented in [13].

Fig. 7. An open edge with respect to the arc uvw.
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Algorithm 3. CountAllCrossings.
Input: A single circle drawing Γ of a biconnected graph G = (V ,E).
Output: The number of edge crossings in Γ .

(1) Order the edges as they are encountered around the circle in a clockwise order.
(2) numberOfCrossings = 0.
(3) For each edge endpoint, pi , of edge ei , do
(4) If pi is the first endpoint of edge ei append ei to openEdgeList.
(5) Else

(a) Increase numberOfCrossings by the number of open
edges with respect to the arc pgphpi , where pg and pi

are the endpoints of ei and ph is some endpoint which
was visited after pg and before pi .

(b) Remove ei from openEdgeList.

Algorithm 3 requires O(m + χ) time. Step 1 takes O(m) time. This step can be ac-
complished in O(m) time by visiting the incident edges of each node as they appear
around the embedding circle. Steps 3, 4, and 5(b) require O(m) time. Step 5(a) requires∑2m

i=1 χi = O(χ) time, where χi is the number of edge crossings caused by the edge ei

and χ is the total number of edge crossings in the embedding. We accomplish this time
requirement by traversing openEdgeList backwards from the end of the list to the element
which contains ei . Therefore, we have the following:

Lemma 4.1. Algorithm CountAllCrossings counts the total number of edge crossings in a
single circle embedding, where m is the number of edges and χ is the number of crossings
in O(m + χ) time.

4.2. Determining the new number of crossings after moving a node

Since we can determine the overall number of crossings at the beginning of the al-
gorithm and then move one node at a time, it is necessary to count only the number of
crossings caused by the incident edges of the current node, v, to update the number of
crossings in the drawing. During each iteration of the crossing reduction, the number of
crossings in the entire drawing is equal to the following formula:

New Number of Crossings = Old Number of Crossings − χv + χ ′
v

where, χv = Number of crossings caused by v in the old location, and χ ′
v = Number of

crossings caused by v in the new location.
Because we already know the old number of crossings, finding the new number of cross-

ings is dominated by the time to find χv and χ ′
v . Any change in the edge crossings will

occur between edges incident to v and edges that have exactly one endpoint in the arc be-
tween the old and new positions of v. These pertinent edges are visited in order from the
old towards the new position of v. A counter, ctr, holds the number of open edges in the
arc (not including the open edges incident to v). Each time that an endpoint of an edge
incident to v is encountered, the number of crossings is increased by the value in ctr. At
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(a) (b)

Fig. 8. The arc created by moving node v to the position denoted with the arrow. The pertinent edges of the arc
are shown.

the conclusion of this process, the number of crossings caused by v in the old position is
known. The number of crossings caused by v in its new position is found by repeating this
process from the new towards the old position of v after moving v to its new position.

See Fig. 8.
Therefore we have:

Lemma 4.2. An O(m) time algorithm exists to count the number of edge crossings gained
or lost by moving a node v within a single circle embedding.

Algorithm 4. CountSingleNodeCrossings.
Input: A single circle drawing of a graph G = (V ,E),

a node v ∈ V , and
a new position α for v.

Output: The change in the number of edge crossings caused by moving v

to α.

(1) ctr = 0.
(2) numberOfCrossings = 0.
(3) Order the pertinent edge endpoints as they are encountered around the embedding

circle.
(4) Mark the pertinent edges as not seen.
(5) For each pertinent edge endpoint pi of edge ei do
(6) If ei is incident to v increment the numberOfCrossings by ctr.
(7) Else If ei has been seen decrement ctr by 1.
(8) Else increment ctr by 1 and mark ei as seen.
(9) OldNumberSingleNodeCrossings = numberOfCrossings.

(10) ctr = 0.
(11) numberOfCrossings = 0.
(12) Move v to its new position, α.
(13) Mark the pertinent edges as not seen.
(14) Repeat steps 5–8 in the opposite direction.
(15) NewNumberSingleNodeCrossings = numberOfCrossings.
(16) changeInCrossings = NewNumberSingleNodeCrossings −

OldNumberSingleNodeCrossings.
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Fig. 9. The pertinent edges for Algorithm 4 if the two adjacent nodes u and v are being swapped.

Algorithm 4 requires O(m) time. Steps 3–8 require O(m) time since the number of
pertinent edges is O(m) as described above. Step 13 requires O(m) time. Finally, step 14
requires O(m) time since it is a repetition of steps 5–8.

If Algorithm 4 is swapping the placement of two nodes which are next to each other, u

and v, on the embedding circle, then Algorithm 4 only takes O(maxDegree) time, where
maxDegree is the maximum degree of all nodes in V . This is because the number of perti-
nent edges is the smaller degree of u and v. See Fig. 9. Since a swap of these two nodes can
be accomplished by moving u between v and β or moving v between α and u, we choose
the movement such that the number of pertinent edges (i.e., the degree of the node which
is not moved) is smaller. Both of the movements produce the same node ordering, so we
perform the movement which requires less time. In the specific case of Fig. 9, we choose
to move node u.

Given the time analysis of Algorithm 4, Lemmas 4.1 and 4.2, Algorithm 2 produces a
visualization with a reduced number of edge crossings in O(m2) time.

5. Circular drawings of nonbiconnected graphs on multiple embedding circles

Most networks are not biconnected. Therefore it is important for a circular drawing
tool to provide a component which visualizes nonbiconnected graphs. In [16], we present
O(m) time algorithms which produce circular drawings of trees and other nonbiconnected
networks on a single embedding circle. In this section, we will present a technique for pro-
ducing circular drawings of graphs on multiple embedding circles. Given a nonbiconnected
graph G we can decompose the structure into biconnected components in O(m) time. Tak-
ing advantage of this inherent structure, we first layout the biconnected components of the
block-cutpoint tree with a radial layout technique similar to [1,7,8], then we layout each
biconnected component of the network with a variant of Algorithm 1. See Fig. 10.

Our algorithm addresses several issues in order to produce good quality circular draw-
ings: (1) which biconnected component is considered to be the root of the block-cutpoint
tree, (2) articulation points can appear in multiple biconnected components of the block-
cutpoint tree and need to be assigned to a unique biconnected component, (3) the nodes
of the block-cutpoint tree can represent biconnected components of differing size, and (4)
the nodes of each biconnected component should be visualized such that the articulation
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Fig. 10. The illustration on the left shows the block-cutpoint tree of a non-biconnected graph. The small black
tree nodes represent articulation points and the small white tree nodes represent bridges. The right illustration is
a drawing of the same graph where the block-cutpoint tree is laid out with a radial tree layout technique.

(a) (b) (c)

Fig. 11. Examples of three approaches for the assignment of strict articulation points to biconnected components.
The black nodes are strict articulation points.

points appear in good positions and also there is a low number of edge crossings. We will
address each of these issues in turn.

In order to address the first issue, we can choose the root with a recursive leaf-pruning
algorithm to find the “center” of the tree [4]. Alternatively, we can pick the root dependent
on some important metric: e.g., size of the biconnected component. Next we address the
second issue. Define a strict articulation point as an articulation point which is not ad-
jacent to a bridge. Strict articulation points are duplicated in more than one biconnected
component of the block-cutpoint tree, but of course each node should appear only once in
a drawing of that graph. Therefore, we offer three approaches in which each articulation
point will appear only once in the drawing. The first approach assigns each strict articu-
lation point, u, to the biconnected component which contains u and is also closest to the
root in the block-cutpoint tree. This biconnected component is the parent of the other bi-
connected components which contain u. See Fig. 11(a). The second approach assigns the
articulation point to the biconnected component which contains the most neighbors of that
articulation point, see Fig. 11(b). The third approach assigns the articulation point to a po-
sition between its biconnected components, see Fig. 11(c). Placing a node in this manner
will highlight the fact that this node is an important articulation point. Following the as-
signment step, the duplicates of a strict articulation point are removed from the blocks in
the block-cutpoint tree. We refer to the nodes adjacent to a removed strict articulation point
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in a biconnected component as inter-block nodes. In order to maintain biconnectivity for
the method which will layout this component, a thread of edges is run through the inter-
block nodes. These edges will be removed from the graph after the layout of the cluster is
determined.

The third issue to be addressed is that while performing the layout of the block-cutpoint
tree we must consider that the biconnected components may be of differing sizes. The
node sizes are proportional to the number of nodes contained in the current block. The
radial layout algorithms presented in [1,7,8] place the root at (0,0) and the subtrees on
concentric circles around the origin. These algorithms require linear time and produce
plane drawings. However, unlike our block-cutpoint trees, the nodes of the trees laid out
with [1,7,8] are all the same size. The technique in [19] handles graphs with different node
sizes, however node overlap is allowed. In order to produce radial drawings of trees with
differing node sizes, we present a modification of the classical radial layout technique [1,
7,8].

RADIAL—with different node sizes: For each node, we must assign a ρ coordinate,
which is the distance from point (0,0) to the placement of that node and a θ coor-
dinate which is the angle between the line from (0,0) to (∞,0) and the line from
(0,0) to the placement of that node. The ρ coordinate of node v, ρ(v), is defined to
be ρ(u) + δ + du

2 + max(d1,d2,...,dk)
2 , where ρ(u) is the ρ coordinate of the parent u of

v, δ is the minimum distance allowed between two nodes, du is the diameter of u, and
max(d1, d2, . . . , dk) is the maximum of the diameters of all the children of u. It is impor-
tant to note that while all descendants of a node i are placed on the same concentric circle,
not all nodes in the same level of the block-cutpoint tree are placed on the same concentric
circle.

In order to prevent edge crossings, each subtree must be placed inside an annulus wedge,
and the width of each wedge must be restricted such that it does not overlap a wedge of
any other subtree. The θ coordinate of node v depends on the widths of the descendants
of v, not just the number of leaves as in [1,7,8]. This assignment of coordinates leads to a
layout of the form shown in Fig. 12.

Fig. 12. A radial layout of a tree with differing size nodes.
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Fig. 13. The relation between the layout of the block-cutpoint tree and the layout of an individual biconnected
component.

The fourth issue to be addressed by our circular drawing technique is the visualiza-
tion of each component. After performing RADIAL—with Different Node Sizes we have a
layout of the block-cutpoint tree, and need to visualize the nodes and edges of each bicon-
nected component. The radial layout of the block-cutpoint tree should be considered while
drawing each biconnected component. See Fig. 13. Define ancestor nodes to be adjacent
to nodes in the parent biconnected component in the block-cutpoint tree. Likewise, define
descendant nodes to be adjacent to nodes in child biconnected components. In order to re-
duce the number of crossings caused by inter-biconnected component edges, our technique
tries to place ancestor nodes in the arc between the points α and β . The size of the arc from
α to β is dependent on the distance between the placement of a biconnected component to
the placement of its parent in the radial layout of the block-cutpoint tree. Descendant nodes
are placed uniformly in the bottom half of the biconnected component layout. For example,
if there are three descendant nodes, they would be placed at points γ , δ, and ε in Fig. 13.
These special positions for the ancestor and descendant nodes are called ideal positions.
Due to a high number of ancestor and descendant nodes, it may not be possible to place all
ancestor and descendant nodes in an ideal position, however the algorithm places as many
as possible in ideal positions.

Placing the ancestor and descendant nodes in this manner reduces the number of cross-
ings caused by inter-biconnected component edges going through a biconnected compo-
nent. In fact, the only times that these edges do cause crossings are when the number of
ancestor (descendant) nodes in the biconnected component Bi is more than about ni/2,
where ni is the number of nodes in Bi . In those cases, the set of ideal positions includes
all the positions in the upper (respectively lower) half of the embedding circle and also
positions in the lower (upper) half which are as close as possible to the upper (lower) half.

We present two algorithms for the layout of each biconnected component such that an-
cestor and descendant nodes are placed near their ideal positions. The first step of each
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(a) (b) (c)

Fig. 14. This figure demonstrates Algorithms LayoutCluster1 and LayoutCluster2. The black nodes are descen-
dant nodes and the white nodes are ancestor nodes. (a) Drawing produced by Algorithm CIRCULAR; (b) the
rotated drawing of part (a) produced by Algorithm LayoutCluster1; (c) the resulting drawing of part (a) produced
by Algorithm LayoutCluster2.

technique is to perform Algorithm 1 on the current biconnected component, Bi . This re-
quires O(mi) time, where mi is the number of edges in biconnected component Bi . Then
we update this drawing so that the ancestor and descendant nodes appear near their ideal
positions.

The first technique rotates the layout of the biconnected component as found by Al-
gorithm 1 such that many ancestor and descendant nodes are placed close to their ideal
positions. Then, the remaining ancestor and descendant nodes are moved to their closest
ideal position. This algorithm requires O(mi) time. See Fig. 14(b) for an example.

Algorithm 5. LayoutCluster1.
Input: A biconnected component, Bi .
Output: An circular layout of Bi such that the positions of the articulation points are placed
well with respect to the ideal positions.

(1) Perform Algorithm 1 on Bi and save the results in Γ1.
(2) If the number of ancestor nodes in Bi is less than the number of descendant nodes set

the block type to be descendant, otherwise set the block type to be ancestor.
(3) Loop through the nodes of Bi as they appear around the embedding circle in Γ1 and

for each node which is the same type as the block type, record the clockwise distance
to the last node of that type.

(4) Find the nodes which have the smallest value of the distances recorded in step 3 and
determine the median node, u, of this set.

(5) If the block type is descendant rotate the layout of Bi found in step 1 such that u is in
the middle of the lower half of the embedding circle.

(6) Else rotate the layout of Bi found in step 1 such that u is in the middle of the upper
half of the embedding circle.

(7) Place the remaining ancestor and descendant nodes in their closest ideal position.

The second technique LayoutCluster2 has a higher time complexity, but may lead to
layouts with fewer edge crossings. The first eight steps are the same as that of Algorithm 5.
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During the placement of ancestor and descendant nodes which are not in ideal positions,
each such node v is placed in an ideal position and if the number of edge crossings added
exceeds a threshold T1 or the movement of v exceeds a threshold T2, then the size of the
embedding circle is increased such that node v can be placed in an ideal position with-
out changing the relative order between v and its neighbors on the embedding circle. See
Fig. 14(c) for an example. The thresholds are determined on a per application basis. If in-
creasing component edge crossings or node movement is undesirable for an application,
the thresholds are adjusted accordingly. The time required for Algorithm LayoutCluster2
is O(mi) if the threshold T2 (based on node movement) is used or O(mi ∗ k), where k is
the number of ancestor and descendant nodes in the cluster, if the threshold T1 (based on
the number of crossings) is used.

Another technique for drawing a biconnected component would rotate the embedding
circle through many positions to find a good solution.

Now that we have addressed the subproblems, we present a comprehensive technique
for obtaining circular layouts of nonbiconnected graphs.

Algorithm 6. CIRCULAR—with Radial.
Input: Any graph G.
Output: A circular drawing Γ of G.

(1) Decompose G into a block-cutpoint tree T .
(2) If G has only one biconnected component perform Algorithm 1 on G.
(3) Else
(4) Assign the strict articulation points to a biconnected component.
(5) Layout the root cluster of T with Algorithm 1.
(6) For each subtree S of the root cluster
(7) Perform the ρ coordinate assignment phase of RADIAL—

with Different Node Sizes on S.
(8) For each biconnected component, Bi , of S

(9) Layout Bi with Algorithm LayoutCluster1,
or LayoutCluster2 taking into account
the radii defined for the superstructure tree
in step 7.

(10) Considering the order of the subtrees defined during the
layout of biconnected components in step 9,
perform the θ coordinate assignment phase of
RADIAL—with Different Node Sizes on S.

(11) Translate and rotate the clusters of S according to the
radial layout of S.

The time complexity of Algorithm 6 is O(m) if the biconnected components are laid
out with Algorithm LayoutCluster1 or O(m ∗ k), where k is the total number of ancestor
and descendant nodes in the graph if Algorithm LayoutCluster2 is used. See Fig. 15 for an
example.
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Fig. 15. A sample drawing as produced by Algorithm 6.

6. Implementation and experiments

6.1. Experimental analysis of Algorithm 1

We have implemented Algorithm 1 in C++ (GNU C++ version 2.7.2.1) on a SPARC
5 running SunOS 4.1.3. The code runs on top of the Tom Sawyer Software Graph Lay-
out Toolkit (GLT) version 2.3.1. We also performed an extensive experimental study to
compare Algorithms 1 and 2 with the circular layout component of the GLT. The circular
layout technique in the GLT requires O(n2) time [6,9]. The results of the study show that
the drawings of Algorithm 1 have about 15% fewer crossings on average than those pro-
duced by the GLT. Furthermore, the worst case time requirement for Algorithm 1 is O(m)

versus the O(n2) worst case time requirement for the GLT technique. Algorithm 2 is able
to significantly further reduce the number of edge crossings.

The set of input graphs for our experiments included 10,328 biconnected components of
minimum size 10 extracted from the 11,399 Rome graphs [5] which have between 10 and
80 nodes. The number of edge crossings is measured for Algorithm 1, Algorithm 2, and the
circular drawing component of the GLT. As shown in the plot of Fig. 16, our techniques
produce significantly fewer crossings on average than the GLT. Specifically the drawings
of Algorithm 1 have significantly fewer crossings. And as the plot shows, Algorithm 2 ef-
fectively reduces the number of edge crossings even further. The percentage improvement
between Algorithm 2 and GLT averages is a very good 30%. Sample drawings as produced
by both GLT and our techniques are shown in Figs. 17–19.

6.2. Implementation issues

During step 4 of Algorithm 1, the technique chooses a node of lowest degree with the
following priority: a wave front node, a wave center node, or some lowest degree node.
An efficient way to execute this is to initially sort the nodes by degree into a table of lists
which reflect those categories. The table is updated as nodes and edges are removed from



J.M. Six, I.G. Tollis / Journal of Discrete Algorithms 4 (2006) 25–50 45

Fig. 16. The average number of edge crossings produced by Algorithm 1, Algorithm 2, and the Graph Layout
Toolkit over 10,328 biconnected graphs.

Fig. 17. The drawing on the left is produced by the GLT. The drawing on the right is of the same graph and is
produced by Algorithm 2. The drawing produced by Algorithm 2 has 75% fewer crossings than the GLT drawing.

the graph. A bucket sort is initially used to place each node into its respective category.
In order to keep the table updated, when a node, v, is processed, we simply move each
neighbor of v into the front of its respective degree list during each iteration (similar to
self-adjusting lists). This way the nodes are retrieved in the desired priority: neighbor,
previous neighbor, and lowest degree node. See Fig. 20.

During step 15, the algorithm performs a DFS which will result in a DFS tree. Then we
place the nodes from the longest path within that DFS tree onto the embedding circle and
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Fig. 18. The drawing on the left is produced by the GLT. The drawing on the right is of the same graph and is
produced by Algorithm 2. The drawing produced by Algorithm 2 has 53% fewer crossings.

Fig. 19. The drawing on the left is produced by the GLT. The drawing on the right is of the same graph and is
produced by Algorithm 2. The drawing produced by Algorithm 2 has 55% fewer crossings.

Fig. 20. The construction of each degree list within the node table.

we merge in the nodes of the remaining DFS tree branches. See Fig. 21. The longest path
does not necessarily go through the root of the DFS tree as it does in this example.

If the input graph is outerplanar, the drawing produced by Algorithm 1 will always be
plane. But if there are crossings then it may be possible to further reduce the number of
crossings by moving nodes to a better position on the embedding circle. As noted in the
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Fig. 21. A DFS tree with the edges of the longest path designated by thick lines.

Fig. 22. This plot shows the average number of edge crossings produced by Algorithm 6 and the Graph Layout
Toolkit over 11,399 graphs from [5].

time complexity analysis of Algorithm 2, the order is dominated by the time required for
counting the number of crossings. Therefore it is vitally important to the time efficiency of
the implementation of this algorithm that the number of crossings be counted in an effec-
tive manner. In order to lower the average time cost of counting crossings in the drawing,
we ignore all edges which lie on the periphery of the embedding circle. These edges can-
not possibly cause crossings. Also, in the step which determines the number of crossings
caused by a single node, either the clockwise or counter-clockwise direction is first chosen
dependent on which has the shorter arc.
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6.3. Experimental analysis of Algorithm 6

We have implemented Algorithm 6 using Algorithm 5 and edge reduction postprocess-
ing in C + + and run experiments with 11,399 graphs from [5]. The plot in Fig. 22 shows
the average number of edge crossings produced by the circular layout component of the
GLT and Algorithm 6. As is shown by these results, the average number of crossings in the
drawings produced by our technique is about 35% less than that of the O(n2) GLT tech-
nique [6,9]. Sample drawings from both the GLT and Algorithm 6 are shown in Figs. 23
and 24.

The drawings produced by Algorithm 6 clearly show the biconnectivity characteristics
of networks. And although these drawings have a low number of edge crossings, they may
show more details than a user would wish to see at one time. Therefore, we suggest that
Algorithm 6 can be used in an interactive environment in which the superstructure would
be shown and the user would click on a node to see the details of the cluster. See Fig. 25 for

Fig. 23. The drawing on the left is produced by the GLT and the drawing on the right is of the same graph and is
produced by Algorithm 6.

Fig. 24. The drawing on the left is produced by the GLT and the drawing on the right is of the same graph and is
produced by Algorithm 6.
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Fig. 25. Example interactive circular visualization.

an example. Alternatively, the levels of visualization could be combined and some clusters
shown in detail while others are shown with a single node.

7. Conclusions and future work

Circular visualizations of networks which show the inherent strengths and weaknesses
of structures with clustered views would be advantageous additions to many design tools.
Some techniques for circular graph drawing have been previously presented, but the result-
ing drawings are visually complicated by the number of crossings.

We have introduced an O(m) time algorithm for drawing circular visualizations of bi-
connected graphs on a single embedding circle. Not only is this technique efficient, but it
also produces a plane drawing of the biconnected graph if such exists. Extensive experi-
ments show that our technique significantly outperforms the current state of technology.
We have also discussed an O(m) time technique which decomposes the given graph into
biconnected components and visualizes each cluster on a separate embedding circle. This
technique has been implemented and results of an experimental study also show this al-
gorithm to perform better than the current state of technology. Both techniques produce
drawings which clearly show the biconnectivity structure of the given graphs and also have
a low number of crossings. In the future, it would be interesting to study nonbiconnected
graph drawing techniques in which the clusters are not necessarily biconnected and also
that the superstructure is not a tree.
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