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Abstract 

Several data presentation problems involve drawing graphs so that they are easy to 
read and understand. Examples include circuit schematics and software engineering 
diagrams. In this paper we present a bibliographic survey on algorithms whose goal is 
to produce aesthetically pleasing drawings of graphs. Research on this topic is spread 
over the broad spectrum of Computer Science. This bibliography constitutes an attempt 
to encompass both theoretical and application oriented papers from disparate areas. 

1. Introduction 

A number of data presentation problems involve the drawing of a graph 
on a two-dimensional surface. Examples include circuit schematics, algorithm 
animation, and software engineering. In this paper we present a bibliographic 
survey on algorithms whose goal is to produce clear and readable drawings of 
graphs. 
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Fig. 1. Polyline drawing. 

Various graphic standards have been proposed for the representation of 
graphs in the plane. Usually, the vertices are represented by symbols such as 
circles or boxes, and each edge (u, 21) is represented by a simple open curve 
between the symbols associated with the vertices u and ‘u. 

A drawing such that each edge is represented by a polygonal chain is a 
polyline drawing (see Fig. 1). There are two common special cases of this 
standard. A straight-line drawing maps each edge into a straight-line seg- 
ment (see Fig. 2). This standard is commonly adopted in graph theory 
texts. An orthogonal drawing maps each edge into a chain of horizontal 
and vertical segments (see Fig. 3). Entity Relationship diagrams in data 
base design are usually drawn according to this standard. Note that poly- 
line drawings can be modified to give drawings with nicely curved edges. 
A drawing is planar if no two edges intersect. A polyline drawing is a 
grid drawing if the vertices and the bends of the edges have integer coor- 
dinates. 

A graph drawing algorithm reads as input a combinatorial description of a 
graph G, and produces as output a drawing of G according to a given graphic 
standard. The drawing is described in terms of graphics primitives such as 
DRAW-LINE and FILL-CIRCLE, which can be interpreted on a physical graphics 
device. 

Within a graphic standard, a graph has infinitely many different drawings. 
However, in almost all data presentation applications, the usefulness of a 
drawing of a graph depends on its readability, that is, the capability of con- 
veying the meaning of the diagram quickly and clearly. Readability issues are 
expressed by means of aesthetics, which can be formulated as optimization 
goals for the drawing algorithms. In general, the aesthetics depend on the 
graphic standard adopted and the particular class of graphs of interest. A 
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Fig. 2. Straight-line drawing. 

Fig. 3. Orthogonal drawing. 

fundamental and classical aesthetic is the minimization of crossings between 
edges. In polyline drawings it is desirable to avoid bends in edges. In grid 
drawings, the area of the smallest rectangle covering the drawing should be 
minimal. In all graphic standards, the display of symmetries is desirable. It 
should be noted that aesthetics are subjective and may need to be tailored 
to suit personal preferences, traditions and culture. For example, although the 
cube graph is planar, it is traditionally drawn with crossing edges, as shown in 
Fig. 4. 

Research on graph drawing algorithms is spread over the broad spectrum 
of Computer Science, from VLSI to data base design. This bibliography con- 
stitutes a first attempt to encompass both theoretical and application ori- 
ented papers from disparate areas. However, we do not consider layout al- 
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Fig. 4. Two drawings of the cube graph. 

gorithms (such as some VLSI layout techniques) that have no impact on 
the problem of producing aesthetically pleasing drawings. As indicated in 
the title, this bibliography concentrates on algorithms for drawing graphs. 
It is written from a Computer Science viewpoint, and does not deal with 
other aspects of the problem of drawing graphs. Namely, we do not attempt 
to cover the large literature on the mathematical theory of embeddings of 
graphs, work on circuit and facilities layout, or psychological and philosoph- 
ical issues of aesthetically pleasing drawings. We have omitted many papers 
which describe graphic user interfaces and visualization systems; although 
these often use graph drawings, few currently have automatic layout facili- 
ties. However, introductory textbooks on graphs and algorithms, and a few 
significant papers from related areas have been included for the reader’s con- 
venience. 

In Section 2 we mention background reference material for graph drawing 
problems. Sections 3, 4, 5, and 6 consider in turn algorithms for drawing trees, 
general graphs, planar graphs and directed graphs. Literature on systems which 
use graph layout algorithms is outlined in Section 7. Papers on topics that do 
not lit the above classification are mentioned in Section 8. A list of significant 
open problems is given in Section 9. The talks given at the first workshop on 
graph drawing are listed in Appendix A. An index of authors is provided in 
Appendix B. 

Throughout the paper yt and m denote the number of vertices and edges of 
the graph currently being considered. 

2. Background 

For elementary graph theory, the following textbooks may be consulted: 
1. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North-Holland, Ams- 

terdam, 1976. 

2. F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969. 

Fundamentals of data structures and algorithms are described in: 
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E. Horowitz and S. Sahni, Fundamentals of Data Structures, Computer Science Press, 
Potomac, MD, 1983. 

T.H. Cormen, C.E. Leiserson, and R.L. Rives& Introduction to Algorithms, MIT Press, 
Cambridge, MA, 1990. 

E.M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms: Theory and Prac- 
tice, Prentice-Hall, Englewood Cliffs, NJ, 1977. 

Algorithms for graph problems and applications are described in: 

S. Even, Graph Algorithms, Computer Science Press, Potomac, MD, 1979. 

A. Gibbons, Algorithmic Graph Theory, Cambridge University Press, Cambridge, Great 
Britain, 1985. 

J.A. McHugh, Algorithmic Graph Theory, Prentice-Hall, Englewood Cliffs, NJ, 1990. 

R.E. Tarjan, Data Structures and Network Algorithms, CBMS-NSF Regional Conference 
Series in Applied Mathematics, vol. 44, SIAM, Philadelphia, PA, 1983. 

Algorithms for planar graphs are presented in: 
10. T. Nishizeki and N. Chiba, Planar Graphs: Theory and Algorithms, Annals of Discrete 

Mathematics 32, North-Holland, Amsterdam, 1988. 

Concepts and applications of NP-completeness and complexity theory are 
described in: 

11. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of 
NP-Completeness, Freeman, San Francisco, CA, 1979. 

Basic concepts of computer graphics and computational geometry are given 
in: 

12. 

13. 

Two 
14. 

15. 

J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes, Computer Graphics: Principles 
and Practice, Addison-Wesley, Reading, MA, 1990. 

F.P. Preparata and M.I. Shamos, Computational Geometry, Springer-Verlag, New York, 
1985. 

previous versions of this bibliography have appeared as: 
P. Eades and R. Tamassia, Algorithms for Drawing Graphs: An Annotated Bibliography, 
Technical Report 82, Department of Computer Science, University of Queensland, 1987. 

P. Eades and R. Tamassia, Algorithms for Drawing Graphs: An Annotated Bibliogra- 
phy, Technical Report CS-09-89, Department of Computer Science, Brown University, 
Providence, RI, 1989. 

Many abstracts of recent papers on graph drawing appear in: 
16. G. Di Battista, H. de Fraysseix, P. Eades, P. Rosenstiehl, and R. Tamassia, eds., Graph 

Drawing ‘93, Proc. ALCOM International Workshop on Graph Drawing and Topological 
Graph Algorithms, Sevres, Part of Saint Cloud, Paris, September 25-29, 1993. Avail- 
able by anonymous ftp from Wilma. cs . brown. edu, /pub/papers/compgeo/gd93. tex. Z, 
/pub/papers/compgeo/gd93.ps.Z. 

The talks presented at Graph Drawing ‘93 are listed in Appendix A. 
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Fig. 5. Drawings of a rooted tree in straight line and polyline orthogonal standards. 

3. Trees 

3.1. Rooted trees 

Rooted trees are often used to represent hierarchies such as family trees, 
organization charts, and search trees. Planar straight-line drawings and or- 
thogonal polyline drawings are commonly used to represent rooted trees (see 
Fig. 5). The following additional aesthetics are often adopted. 

 Vertices are placed along horizontal lines according to their level (graph- 
theoretic distance from the root ). 

 There is a minimum separation distance between two consecutive vertices 
on the same level. 

 The width of the drawing is as small as possible. 
Further, for ordered binary trees such as search trees, we require: 

 The left and right children of each vertex u are placed to the left and right 
of 21, respectively. 

The following papers contain heuristics for drawing rooted trees that address 
the above aesthetics. Additional aesthetics, such as centering each parent upon 
its children, and generating congruent drawings for isomorphic subtrees, are 
also investigated. 

17. R.E. Sweet, Empirical Estimates of Program Entropy, Technical Report STAN-CS-78-698, 
Stanford University, Stanford, CA, 1978. 

18. C. Wetherell and A. Shannon, Tidy Drawing of Trees, IEEE Trans. Software Engineering, 
vol. SE-5, no. 5, pp. 514-520, 1979. 
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19. J. Vaucher, Pretty Printing of Trees, Software Practice and Experience, vol. 10, no. 7, 
pp. 553-561, 1980. 

20. E. Reingold and J. Tilford, Tidier Drawing of Trees, IEEE Trans. Software Engineering, 
vol. SE-7, no. 2, pp. 223-228, 1981. 

21. J.S. Tilford, Tree Drawing Algorithms, Technical Report UIUCDCS-R-81-1055, De- 
partment of Computer Science, University of Illinois at Urbana-Champaign, IL, 1981. 

22. J.Q. Walker II, A Node-Positioning Algorithm for Genera1 Trees, Software Practice and 
Experience, vol. 20, no. 7, pp. 685-705, 1990. 

Implementation details of a variation of the algorithm by Reingold and 
Tilford [ 201 are discussed by Brueggemann-Klein and Wood; the paper presents 
a set of TEX macros to implement the algorithm. 

23. A. Brueggemann-Klein and D. Wood, Drawings Trees Nicely with TEX, Electronic Pub- 
lishing, Origination, Dissemination, and Design, vol. 2, pp. 101-l 15, 1989. 

The extension of these algorithms to rooted trees with arbitrary vertex 
degree is straightforward. The algorithms give aesthetically acceptable drawings. 
However, Supowit and Reingold show that they can produce drawings much 
wider than necessary. 

24. K.J. Supowit and E.M. Reingold, The Complexity of Drawing Trees Nicely, Acta Infor- 
matica, vol. 18, pp. 377-392, 1983. 

This paper addresses the problem of constructing a minimum width drawing of 
a binary tree such that parents are centered upon their children and isomorphic 
subtrees are congruent. This problem is NP-complete if a grid drawing is re- 
quired, but otherwise polynomially solvable by linear programming techniques. 

The area requirement of straight-line and polyline grid drawings of binary 
and rooted trees is investigated in: 

25. P. Crescenzi, G. Di Battista, and A. Piperno, A Note on Optima1 Area Algorithms for 
Upward Drawings of Binary Trees, Computational Geometry: Theory and Applications, 
vol. 2, pp. 187-200, 1992. 

26. A. Garg, M.T. Goodrich, and R. Tamassia, Area-Efficient Upward Tree Drawings, in: 
Proc. ACM Symp. on Computational Geometry, pp. 359-368, 1993. 

Three drawing conventions that are appealing for their practical applicability 
are investigated in: 

27. P. Eades, T. Lin, and X. Lin, Two Tree Drawing Conventions, Internat. J. Computational 
Geometry and Applications, vol. 3, no. 2, pp. 133-l 53, 1993. 

28. P. Eades, T. Lin, and X. Lin, Minimum Size h-v Drawings, in: Advanced Visual Interfaces 
(Proc. AVI 92), World Scientific Series in Computer Science, vol. 36, pp. 386-394. 

In the inclusion convention nodes are represented by boxes and parent-child 
relationships are represented by inclusion of one box in another. The tip-over 

convention is similar to the classical one, however, children of some nodes may 
be arranged vertically rather than horizontally. An h-v drawing is similar to a 
tip-over drawing. Examples of inclusion and tip-over drawings are in Fig. 6. 
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3.2. Free trees 

Free trees do not represent hierarchies and have no specific root. The above 
algorithms for rooted trees can be modified to produce acceptable radial 
drawings of free trees by arranging the vertices of each level on a concentric 
circle about the graphtheoretic center of the tree. Folklore on radial and other 
simple drawings of free trees is summarized in: 

29. P.D. Eades, Drawing Free Trees, Bull. Institute for Combinatorics and its Applications, 
vol. 5, pp. 10-36, 1992. 

Strategies for constructing radial drawings are described in: 
30. M.A. Bernard, On the Automated Drawing of Graphs, in: Proc. 3rd Caribbean Conf. on 

Combinatorics and Computing, pp. 43-55, 1981. 

3 1. T. Ramada, Visualizing Abstract Objects and Relations, World Scientific, 1989. 

The following paper shows how to display symmetries in radial drawings. 
32. J. Manning and M.J. Atallah, Fast Detection and Display of Symmetry in Trees, Con- 

gressus Numerantium, vol. 64, pp. 159-169, 1988. 

Bhatt and Cosmadakis show that it is NP-complete to construct an orthogonal 
grid drawing of a tree such that the maximum edge length is minimized: 

33. S. Bhatt and S. Cosmadakis, The Complexity of Minimizing Wire Lengths in VLSI 
Layouts, Information Processing Letters, vol. 25, pp. 263-267, 1987. 

I 

b - C 

d f 

Tl 
(b) (a) 

Fig. 6. Inclusion and tip-over conventions. 
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The techniques of Bhatt and Cosmadakis are relined and extended in the 
following: 

34. F.J. Brandenburg, Nice Drawings of Graphs and Trees Are Computationally Hard, 
Technical Report MIP-8820, Fakultat fur Mathematik und Informatik, University of 
Passau, Germany, 1988. 

35. A. Gregori, Unit Length Embedding of Binary Trees on a Square Grid, Information 
Processing Letters, vol. 31, pp. 167-172, 1989. 

36. P.J. Idicula, Drawing Trees in Grids, Master Thesis, Department of Computer Science, 
University of Auckland, 1990. 

4. General graphs 

There are several aesthetics for obtaining attractive drawings of general 
undirected graphs. The main such aesthetics are: 

display symmetry; 
 avoid edge crossings; 
 avoid bends in edges; 
 keep edge lengths uniform; 
 distribute vertices uniformly. 

In general, the optimization problems associated with these aesthetics are 
NP-hard. Several complexity results are reported in: 

37. D.S. Johnson, The NP-Completeness Column: An Ongoing Guide, J. Algorithms, vol. 3, 
no. 1, pp. 89-99, 1982. 

38. D.S. Johnson, The NP-Completeness Column: An Ongoing Guide, J. Algorithms, vol. 5, 
no. 2, pp. 147-160, 1984. 

Many problems are NP-hard even for restricted classes of graphs, such as trees 
and planar graphs. Specific results are presented in [24, 27, 33-36, 1201 and: 

39. M.R. Garey and D.S. Johnson, Crossing Number is NP-Complete, SIAM J. Algebraic 
and Discrete Methods, vol. 4, no. 3, pp. 312-316, 1983. 

40. M.R. Kramer and J. van Leeuwen, The Complexity of Wire-Routing and Finding Min- 
imum Area Layouts for Arbitrary VLSI Circuits, in: F.P. Preparata, ed., Advances in 
Computing Research, vol. 2, pp. 129-146, JAI Press, Greenwich, CT, 1984. 

41. Z. Miller and J.B. Orlin, NP-Completeness for Minimizing Maximum Edge Length in 
Grid Embeddings, J. Algorithms, vol. 6, pp. 10-16, 1985. 

Besides time complexity limitations, the above aesthetics are also competitive 
in that the optimality of one often prevents the optimality of others. Because 
of such difficulties, general approaches to graph drawing are usually heuristic. 

4.1. Straight-line drawings 

A model for measuring the symmetry of a straight-line drawing of a graph 
is given in: 
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42. R. Lipton, S. North, and J. Sandberg, A Method for Drawing Graphs, in: Proc. ACM 
Symp. on Computational Geometry, pp. 153- 160, 1985. 

This paper also proposes an algorithm for constructing a straight-line drawing of 
a graph with as much symmetry as possible; however the algorithm requires the 
solution of the apparently intractable problem of computing the automorphism 
group of a graph. A completely different approach to symmetry display (which 
avoids computing automorphisms) is described in: 

43. P. Eades, A Heuristic for Graph Drawing, Congressus Numerantium, vol. 42, pp. 149- 
160, 1984. 

This algorithm, called spring embedder, is a heuristic based on a physical model. 
The straight-line standard is adopted. The drawing process is to simulate a 
mechanical system, where vertices are replaced by rings, and edges are replaced 
by springs. The springs attract the rings if they are too far apart, and repel 
them if they are too close. 

The algorithms of [X9, 90, 94, 951 may be viewed as spring algorithms 
with the positions of some of the vertices fixed; although originally designed 
for planar graphs, they may be applied to nonplanar graphs with reasonable 
results. 

Other algorithms of a similar force directed nature are described in [31] 
and: 

44. 

45. 

46. 

47. 

48. 

49. 

J.E. Cuny, D.A. Bayley, J.W. Hagerman, and A.A. Hough, The Simple Simon Program- 
ming Environment: A Status Report, Technical Report 87-22, Department of Computer 
and Information Science, University of Massachusetts, Amherst, MA, May 1987. 

T. Kamada and S. Kawai, Automatic Display of Network Structures for Human Under- 
standing, Technical Report 88-007, Department of Information Science, University of 
Tokyo, 1988. 

T. Kamada, On Visualization of Abstract Objects and Relations, Ph.D. Dissertation, 
Department of Information Science, University of Tokyo, 1988. 

T. Kamada and S. Kawai, An Algorithm for Drawing General Undirected Graphs, 
Information Processing Letters, vol. 31, pp. 7-15, 1989. 

T. Kamada, Symmetric Graph Drawing by a Spring Algorithm and its Applications to 
Radial Drawing, Manuscript, Department of Information Science, University of Tokyo, 
1989. 

T. Fruchterman and E. Reingold, Graph Drawing by Force-Directed Placement, Software 
Practice and Experience, vol. 2 1, no. 11, pp. 1129-l 164, 199 1. 

A general model for spring algorithms is defined in [ 1881; this thesis also 
attempts to explain mathematically the apparent connection between spring 
algorithms and symmetrical drawings. 

An extension of the spring approach is presented by Davidson and Harel. 
An energy function is defined in terms of the desired aesthetics: for instance, 
the number of edge crossings plus a measure of the closeness of vertices. A 
layout of minimal energy (an thus maximal beauty according to the energy 
function) is obtained by simulated annealing. 
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50. R. Davidson and D. Harel, Drawing Graphs Nicely Using Simulated Annealing, Technical 
Report CS 89-13, Department of Applied Mathematics and Computer Science, The 
Weizmann Institute of Science, Rehovot, Israel, 1989 (revised July 1993; to appear in 
Comm. ACM). 

An algorithm based on multidimensional scaling (a standard statistical 
method) that finds a placement of vertices with euclidean distances that 
approximate the graph-theoretic distances is presented in: 

51. J.B. Kruskal and J.B. Seery, Designing Network Diagrams, in: Proc. First General 
Conference on Social Graphics, U.S. Department of the Census (Washington, DC), pp. 
22-50, July 1980. 

An algorithm that uses several heuristics to obtain near-optimal drawings 
is presented by Tunkelang. The heuristics improve on existing approaches by 
focusing on three aspects of the graph drawing problem: computation of the 
aesthetic cost of a drawing, order of node placement, and local optimization 
techniques. The algorithm and comparison with the techniques of [49] and 
[ 501 are described in: 

52. D. Tunkelang, An Aesthetic Layout Algorithm for Undirected Graphs, M.S. Thesis, 
Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, 
1992. 

A simple heuristic for constructing straight-line drawings which adds one 
vertex at a time is described in: 

53. H. Watanabe, Heuristic Graph Displayer for G-BASE, Technical Report no. 17, Ricoh 
Software Research Center, Tokyo, Japan, 1988. 

Makinen considers straight-line drawings with vertices placed along the cir- 
cumference of a circle. He shows that several related optimization problems 
are NP-complete and gives a heuristic for reducing the maximum edge length. 

54. E. Makinen, On Circular Layouts, Internat. J. Computer Mathematics, vol. 24, pp. 29-37, 
1988. 

4.2. Planarization 

As discussed above, most of the techniques for drawing general undirected 
graphs are heuristics based on various types of simulation. Given the wealth of 
techniques available for drawing planar graphs, a sensible strategy for drawing 
a nonplanar graph is to first planarize the graph, and then apply a planar graph 
drawing algorithm. Significant examples of this strategy are presented in [73, 
1071. The term planarization is used for several related problems. In general, 
planarization seeks to transform a nonplanar graph into a planar graph with a 
small number of well defined operations. 

The most common planarization operation is edge deletion: one must find a 
small number of edges whose deletion yields a planar graph. This is equivalent 
to finding a planar subgraph with a large number of edges. Finding a planar 
subgraph with a maximum number of edges is NP-hard. However, a maximal 
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planar subgraph can be found efficiently, as shown in [277] and: 
55. J. Cai, X. Han, and R.E. Tarjan, An O(m log n )-time Algorithm for the Maximal 

Subgraph Problem, SIAM J. Computing, to appear. 

Heuristics for finding a maximum planar subgraph and algorithms for finding 
a maximal planar subgraph are presented in: 

56. 

57. 

58. 

59. 

60. 

61. 

62. 

63. 

64. 

65. 

66. 

M. Marek-Sadowska, Planarization Algorithms for Integrated Circuits Engineering, in: 
Proc. IEEE Intemat. Symp. on Circuits and Systems, pp. 919-923, 1978. 

N. Chiba, I. Nishioka, and I. Shirakawa, An Algorithm of Maximal Planarization of 
Graphs, in: Proc. IEEE Internat. Symp. on Circuits and Systems, pp. 649-652, 1979. 

E. Nardelli and M. Talamo, A Fast Algorithm for Planarization of Sparse Diagrams, 
Technical Report R.105, IASI-CNR, Rome, 1984. 

T. Ozawa and H. Takahashi, A Graph-Planarization Algorithm and its Applications to 
Random Graphs, in: Graph Theory and Algorithms, Lecture Notes in Computer Science, 
vol. 108, pp. 95-107, Springer-Verlag, Berlin, 1981. 

R. Jayakumar, K. Thulasiraman, and M.N.S. Swamy, On Maximal Planarization of 
Nonplanar Graphs, IEEE Trans. Circuits and Systems, vol. CAS-33, no. 8, pp. 843-854, 
1986. 

R. Jayakumar, K. Thulasiraman, and M.N.S Swamy, 0(n2) Algorithms for Graph Pla- 
narization, Technical Report CSD-88-0 1, Department Computer Science, Concordia Uni- 
versity, Montreal, Que., 1988. 

G. Kant, An 0(n2) Maximal Planarization Algorithm Based on PQ-trees, Technical Re- 
port RUU-CS-92-03, Department of Computer Science, Utrecht University, Netherlands, 
1992. 

L.R. Foulds, P.B. Gibbons, and J.W. Giffin, Graph Theoretic Heuristics for the Facilities 
Layout Problem: An Experimental Comparison, Operations Research, 1985. 

P. Eades, L. Foulds, and J. Giffin, An Efftcient Heuristic for Identifying a Maximal 
Weight Planar Subgraph, in: Combinatorial Mathematics IX, Lecture Notes in Mathe- 
matics, vol. 952, pp. 239-251, Springer-Verlag, Berlin, 1982. 

0. Goldschmidt and A. Takvorian, An Efficient Graph Planarization Two-Phase Heuris- 
tic, Technical Report ORP91-01, Department of Mechanical Engineering, University of 
Texas at Austin, 1991. 

M. Jiinger and P. Mutzel, Solving the Maximum Weight Planar Subgraph Problem, in: 
Proc. 3rd Integer Programming and Combinatorial Optimization Conf., pp. 479-492, 
1993. 

Another planarization technique is to find a drawing with the minimum 
number of crossings. Again, this problem is NP-hard [ 391. Heuristics for 
crossing minimization are given in: 

67. D. Ferrari and L. Mezzalira, On Drawing a Graph with the Minimum Number of Cross- 
ings, Technical Report no. 69-l 1, Istituto di Elettrotecnica ed Elettronica, Politecnico di 
Milano, 1969. 

A new technique for planarization is splitting. The splitting operation is 
to make two copies of a vertex and share the neighbors between the two 
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copies. This technique is used in manual layout to simplify complex graphs. A 
minimum splitting sequence is a minimum length sequence of splittings which 
makes the graph planar. Heuristics for finding a minimum splitting sequence 
are discussed in: 

68. C.X. Mendonca, Heuristics for Planarization by Vertex Splitting, Manuscript, University 
of Newcastle, Callaghan, Australia, 1992. 

The topological equivalence among nonplanar drawings of a graph is studied 
in: 

69. R.B. Eggleton, Rectilinear Drawings of Graphs, Utilitas Mathematics, vol. 29, pp. 146- 
172, 1986. 

There is an extensive mathematical literature on crossing numbers of graphs, 
see the following papers for references: 

70. H. Harborth and I. Mengersen, Edges without Crossings in Drawings of Complete Graphs, 
J. Combinatorial Theory (B), vol. 17, no. 3, pp. 229-311, 1974. 

7 1. R.K. Guy, Crossing Numbers of Graphs, in: Graph Theory and Applications, Lecture 
Notes in Mathematics, vol. 303, pp. 111-124, Springer-Verlag, Berlin, 1972. 

4.3. Polyline drawings 

A comprehensive approach to the construction of orthogonal grid drawings, 
based on a number of graph algorithms, is presented in: 

72. C. Batini, E. Nardelli, M. Talamo, and R. Tamassia, A Graphtheoretic Approach to 
Aesthetic Layout of Information Systems Diagrams, in: Proc. 10th Internat. Workshop 
on Graphtheoretic Concepts in Computer Science (Berlin), pp. 9-18, Trauner Verlag, 
1984. 

73. R. Tamassia, G. Di Battista, and C. Batini, Automatic Graph Drawing and Readability 
of Diagrams, IEEE Trans. Systems, Man and Cybernetics, vol. SMC-18, no. 1, pp. 61-79, 
1988. 

Within this approach the drawing is incrementally specified in three phases 
(see Fig. 7): The first phase, plunarization, determines the topology of the 
drawing. The second phase, orthogonalization, computes an orthogonal shape 
for the drawing. The third phase, compaction, produces the final drawing. 
This approach allows homogeneous treatment of a wide range of diagrammatic 
representations, aesthetics and constraints. 

Another approach to the construction of orthogonal grid drawings, based on 
the results of [83] and on visibility representations (Section 5.4), is presented 
in: 

74. H. de Fraysseix and P. Rosenstiehl, Structures Combinatoires pour des Traces Automa- 
tiques de Reseaux, in: Proc. 3rd European Conf. on CAD/CAM and Computer Graphics 
(Paris), pp. 332-337, Hermes, 1984. 

An algorithm for constructing polyline grid drawings that allows the user to 
choose between a hierarchical drawing method and the orthogonal grid drawing 
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Fig. 7. A general strategy for orthogonal grid drawings. (a) Given graph. (b) Planarization. 
(c) Orthogonalization. (d) Compaction. 

technique of [73] is presented in: 
75. H. Trickey, Drag: A Graph Drawing System, in: Proc. Internat. Conf. on Electronic 

Publishing, pp. 17 l-l 82, Cambridge University Press, Cambridge, Great Britain, 1988. 

Orthogonal grid drawings of graphs whose vertices have preassigned locations 
in the plane are investigated in: 

76. Y. Kajitani and H. Takahashi, Rectilinear Drawing of a Graph on a Plane with the 
Minimum Number of Segments, Manuscript (presented at the 2nd Internat. Catania 
Combinatorial Conf.), 1989. 

5. Planar graphs 

A graph is planar if it admits a planar drawing. Planar graphs play an 
important role in graph theory [ 1, 21 and graph algorithms; see [ 6, lo], and: 

77. R.E. Tarjan, Algorithm Design, Comm. ACM, vol. 30, no. 3, pp. 205-212, 1987. 

Clearly, planar drawings are aesthetically desirable. Furthermore, as discussed 
in the previous section, algorithms for drawing nonplanar graphs often begin 
by plunarizing the graph (see Section 4.2), and then by applying a planar 
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graph drawing algorithm. 

5.1. Planarity testing and planar representations 

A planar representation is a data structure representing the combinatorial 
adjacencies between the faces of a planar drawing. Most planar graph drawing 
methods proceed as follows: 

Step 1. Test planarity. 
Step 2. (if the graph is planar) Construct a planar representation. 
Step 3. Use the planar representation to draw the graph according to some 

graphic standard. 
In this subsection we consider the first two steps. 
Finding a linear time algorithm to test the planarity of a graph was an inter- 

esting challenge for early algorithms research. The first algorithm to succeed 
used a path addition approach and was presented in: 

78. J. Hopcroft and R.E. Tarjan, Efficient Planarity Testing, J. ACM, vol. 21, no. 4, pp. 
549-568, 1974. 

Minor errors of [ 781 are corrected in: 
79. N. Deo, Note on Hopcroft and Tarjan’s Planarity Algorithm, J. ACM, vol. 23, no. 1, pp. 

74-75, 1976. 

The vertex addition approach was developed to give a linear time algorithm 
in the following papers: 

80. A. Lempel, S. Even, and I. Cederbaum, An Algorithm for Planarity Testing of Graphs, 
in: Theory of Graphs, Internat. Symposium (Rome, 1966), pp. 215-232, Gordon and 
Breach, New York, 1967. 

81. S. Even and R.E. Tarjan, Computing an St-Numbering, Theoretical Computer Science, 
vol. 2, pp. 339-344, 1976. 

82. IS. Booth and G. Lueker, Testing for the Consecutive Ones Property, Interval Graphs, 
and Graph Planarity Using PQ-Tree Algorithms, J. Computer and System Sciences, vol. 
13, pp. 335-379, 1976. 

Another approach is presented in: 
83. H. de Fraysseix and P. Rosenstiehl, A Depth-First-Search Characterization of Planarity, 

in: Annals of Discrete Mathematics, vol. 13, pp. 75-80, North-Holland, Amsterdam, 
1982. 

The aforementioned planarity testing algorithms can be modified to construct 
planar representations. The following paper extends the algorithm of [82] in 
this way. 

84. N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa, A Linear Algorithm for Embedding Planar 
Graphs Using PQ-Trees, J. Computer and System Sciences, vol. 30, no. 1, pp. 54-76, 
1985. 

In the remainder of this section we consider drawing algorithms that con- 
struct a planar drawing from a given planar representation. 
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Fig. 8. Convex drawing. 

5.2. Straight-line drawings 

A classical result independently established by Wagner, Fat-y and Stein shows 
that every planar graph admits a planar straight-line drawing. 

85. K. Wagner, Bemerkungen zum Vierfarbenproblem, Jber. Deutsch. Math.-Verein, vol. 46, 
pp. 26-32, 1936. 

86. I. Fary, On Straight Lines Representation of Planar Graphs, Acta Sci. Math. Szeged, vol. 
11, pp. 229-233, 1948. 

87. SK. Stein, Convex Maps, Proc. Amer. Math. Sot., vol. 2, pp. 464-466, 1951. 

This result also follows from Steinitz’s theorem on convex polytopes in three 
dimensions. 

88. E. Steinitz and H. Rademacher, Vorlesung iiber die Theorie der Polyeder, Springer-Verlag, 
Berlin, 1934. 

Convex drawings of planar graphs, that is, planar straight-line drawings where 
every face is drawn as a convex polygon (see Fig. 8) were first studied by 
Tutte. 

89. W.T. Tutte, Convex Representations of Graphs, Proc. London Math Sot., vol. 10, pp. 
304-320, 1960. 

90. W.T. Tutte, How to Draw a Graph, Proc. London Math. Sot., vol. 3, no. 13, pp. 743-768, 
1963. 

Tutte shows that a convex drawing of a 3-connected graph (see [ 11) can be 
obtained by solving a system of linear equations. Thomassen characterizes the 
class of graphs that admit a convex drawing. 



G. Di Battista et al. /Computational Geometry 4 (1994) 235-282 251 

9 1. C. Thomassen, Planarity and Duality of Finite and Infinite Planar Graphs, J. Combina- 
torial Theory, Series B, vol. 29, pp. 244-27 1, 1980. 

Chiba et al. show that Thomassen’s result can be implemented as an algo- 
rithm for producing a convex drawing in linear time. 

92. N. Chiba, T. Yamanouchi, and T. Nishizeki, Linear Algorithms for Convex Drawings of 
Planar Graphs, in: J.A. Bondy and U.S.R. Murty, eds., Progress in Graph Theory, pp. 
153-173, Academic Press, New York, 1984. 

93. N. Chiba, K. Onoguchi, and T. Nishizeki, Drawing Planar Graphs Nicely, Acta Infor- 
matica, vol. 22, pp. 187-201, 1985. 

Becker et al. investigate the problem of minimizing the total edge length 
(according to several metrics, not including the Euclidean metric) in a planar 
straight-line drawing where the external face is a prescribed convex polygon. 
They show that the optimal drawing is unique and convex, and can be obtained 
by standard numerical techniques. 

94. B. Becker and G. Hotz, On the Optimal Layout of Planar Graphs with Fixed Boundary, 
SIAM J. Computing, vol. 16, no. 5, pp. 946-972, 1987. 

95. B. Becker and H.G. Osthof, Layout with Wires of Balanced Length, Information and 
Computation, vol. 73, pp. 45-58, 1987. 

Eades and Wormald show that the problem of constructing a planar straight- 
line drawing with prescribed edge lengths (according to the Euclidean metric) 
is NP-hard. 

96. P. Eades and N. Wormald, Fixed Edge Length Graph Drawing is NP-hard, Discrete 
Applied Mathematics, vol. 28, pp. 11 l-l 34, 1990. 

An elegant algorithm for constructing planar straight-line drawings has been 
given by Read. The algorithm uses O(n) time but 0 (n*) storage. 

97. R. Read, New Methods for Drawing a Planar Graph Given the Cyclic Order of the Edges 
at Each Vertex, Congressus Numerantium, vol. 56, pp. 31-44, 1987. 

Manning and Atallah give algorithms for and discuss complexity of displaying 
symmetries in planar straight-line drawings of planar graphs in [32] and: 

98. J. Manning and M. Atallah, Fast Detection and Display of Symmetry in Outerplanar 
Graphs, Discrete Applied Mathematics, vol. 39, no. 1, pp. 13-35, 1992. 

99. M.J. Atallah and J. Manning, Fast Detection and Display of Symmetry in Embedded 
Planar Graphs, Manuscript, Purdue University, West Lafayette, IN, 1988. 

100. J. Manning, Computational Complexity of Geometric Symmetry Detection in Graphs, 
in: Lecture Notes in Computer Science, vol. 507, pp. l-7, Springer-Verlag, Berlin, 1991. 

101. J. Manning, Geometric Symmetry in Graphs, Ph.D. Thesis, Department of Computer 
Sciences, Purdue University, West Lafayette, IN, 1990. 

Schnyder and de Fraysseix et al. independently show that every planar graph 
admits a planar straight-line grid drawing with area 0( n*). 
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102. H. de Fraysseix, J. Path, and R. Pollack, Small Sets Supporting Fary Embeddings of 
Planar Graphs, in: Proc. 20th ACM Symp. on Theory of Computing, pp. 426-433, 1988. 

103. H. de Fraysseix, J. Path, and R. Pollack, How to Draw a Planar Graph on a Grid, 
Combinatorics, vol. 10, pp. 41-51, 1990. 

104. W. Schnyder, Embedding Planar Graphs on the Grid, in: Proc. ACM-SIAM Symp. on 
Discrete Algorithms, pp. 138-148, 1990. 

Chrobak and Payne show that the constructive proof of [ 1021 can be mod- 
ified to yield an 0( n)-time drawing algorithm. 

105. M. Chrobak and T.H. Payne, A Linear Time Algorithm for Drawing a Planar Graph 
on a Grid, Technical Report UCR-CS-90-2, Department of Mathematics and Computer 
Science, University California, Riverside, CA, 1990. 

The performance of the algorithms in [92, 105, 97, 901 are compared in 
the following paper. These algorithms have been implemented and tested on 
randomly generated maximal planar graphs. The standard deviations in angle 
size, edge length, and face area are used to compare the quality of the planar 
straight-line drawings produced. 

106. S. Jones, P. Eades, A. Moran, N. Ward, G. Delott, and R. Tamassia, A Note on Planar 
Graph Drawing Algorithms, Technical Report 216, Department of Computer Science, 
University of Queensland, 199 1. 

Kant presents an algorithm for constructing planar convex straight-line grid 
drawings with area O(n2). His technique has several other graph drawing 
applications. 

107. G. Kant, Algorithms for Drawing Planar Graphs, Ph.D. Thesis, Utrecht University, 
Netherlands, 1993. 

108. G. Kant, Drawing Planar Graphs Using the Imc-Ordering, in: Proc. IEEE Symp. on 
Foundations of Computer Science, pp. 101-l 10, 1992. 

Several of the algorithms that produce planar straight-line drawings operate 
primarily on triangulations. Thus for this and other applications, algorithms 
for triangulating planar graphs are required. Such algorithms are presented in: 

109. G. Kant and H.L. Bodlaender, Triangulating Planar Graphs while Minimizing the Maxi- 
mum Degree, in: 0. Nurmi E. Ukkonen, ed., Algorithm Theory (SWAT ‘92), Proc. 3rd 
Scandinavian Workshop on Algorithm Theory (Helsinki, July 1992), Lecture Notes in 
Computer Science, vol. 621, pp. 258-271, Springer-Verlag, Berlin, 1992. 

5.3. Orthogonal grid drawings 

Investigations of planar orthogonal grid drawings were first motivated by 
problems in circuit layout. Within this graphic standard, minimizing the num- 
ber of bends and the area is important for both diagram readability and VLSI 
applications (see Fig. 9). 

Any planar graph of degree at most 4 admits a planar orthogonal grid drawing 
with area 0 ( n2). Further, there are graphs which need quadratic area. These 



G. Di Battista et al. /Computational Geometry 4 (1994) 235-282 253 

4 1 2 
- ------ ------------------- 

’ 6; 5 
I I I I I I 

I 31 Ill 112, 
a - -- L - 

I 
_o L--@ I I -- - 

I I I 
I I ’ 3 
I 

“8- --:-- 
I 

------- -- 
- 

I I 

I I I 6 I 7 
I -_-- l ----- ---- 
I I 7 

I I I I I 
- I I I I _- - 

4 5 8 

area 20, bends 6 area 9, bends 2 

Fig. 9. Examples of planar orthogonal grid drawings. 

results are presented in: 
110. Y. Shiloach, Arrangements of Planar Graphs on the Planar Lattice, Ph.D. Thesis, Weiz- 

mann Institute of Science, Rehovot, Israel, 1976. 

111. L. Valiant, Universality Considerations in VLSI Circuits, IEEE Trans. Computers, vol. 
C-30, no. 2, pp. 135-140, 1981. 

Tamassia uses network flow techniques to give an 0 ( n2 log n )-time algorithm 
for minimizing bends in a fixed embedding setting. 

112. R. Tamassia, On Embedding a Graph in the Grid with the Minimum Number of Bends, 
SIAM J. Computing, vol. 16, no. 3, pp. 421-444, 1987. 

Di Battista, Liotta, and Vargiu give polynomial time algorithms for minimiz- 
ing bends (considering all the possible embeddings) for series-parallel graphs 
and graphs with degree at most 3. 

1 13. G. Di Battista, G. Liotta, and F. Vargiu, Spirality of Orthogonal Representations and 
Optimal Drawings of Series-Parallel Graphs and 3-Planar Graphs, in: Proc. WADS ‘93, 
Lecture Notes in Computer Science, vol. 709, Springer-Verlag, Berlin, 1994. 

Storer gives three heuristics for constructing drawings with O(n) bends. 
1 14. J.A. Storer, On Minimal Node-Cost Planar Embeddings, Networks, vol. 14, pp. 18 1-212, 

1984. 

Tamassia and Tollis present another heuristic for bend minimization which 
has the same performance bounds as the ones by Storer and runs in O(n) 
time. 

1 15. R. Tamassia and I.G. Tollis, Efficient Embedding of Planar Graphs in Linear Time, in: 
Proc. IEEE Intemat. Symp. on Circuits and Systems (Philadelphia, PA), pp. 495-498, 
1987. 
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116. R. Tamassia and I.G. Tollis, Planar Grid Embedding in Linear Time, IEEE Trans. 
Circuits and Systems, vol. CAS-36, no. 9, pp. 1230-1234, 1989. 

The structure of orthogonal embeddings of graphs is investigated in: 
117. G. Vijayan and A. Wigderson. Rectilinear Graphs and their Embeddings, SIAM J. 

Computing, vol. 14, no. 2, pp. 355-372, May 1985. 

Lower bounds for planar orthogonal drawings of graphs, and parallel algo- 
rithms for achieving the same performance bounds as the ones by Storer and 
Tamassia and Tollis are described in: 

118. R. Tamassia, I.G. Tollis, and J.S. Vitter, Lower Bounds for Planar Orthogonal Drawings 
of Graphs, Information Processing Letters, vol. 39, pp. 35-40, 1991. 

119. R. Tamassia, I.G. Tollis, and J.S. Vitter, Lower Bounds and Parallel Algorithms for 
Planar Orthogonal Grid Drawings, in: Proc. IEEE Symp. on Parallel and Distributed 
Processing, pp. 386-393, 199 1. 

NP-completeness results related to the minimization of area and total edge 
length in planar orthogonal grid drawings have been presented in [ 33, 34, 114, 
35, 361 and: 

120. D. Dolev, F.T. Leighton, and H. Trickey, Planar Embedding of Planar Graphs, in: 
F.P. Preparata, ed., Advances in Computing Research, vol. 2, pp. 147-161, JAI Press, 
Greenwich, CT, 1985. 

This paper also gives a heuristic for area minimization. 
Orthogonal drawing algorithms are briefly surveyed in: 
12 1. R. Tamassia, Planar Orthogonal Drawings of Graphs, in: Proc. IEEE Internat. Symp. on 

Circuits and Systems, 1990. 

5.4. Visibility representations 

A visibility representation for a planar graph G consists of representing the 
vertices of G by horizontal segments, and the edges of G by vertical segments, 
so that the edge-segment associated with each edge (u, u ) intersects exactly 
the vertex-segments associated with u and v, and no other vertex-segment (see 
Fig. 10). 

The study of this graphic standard was originally motivated by VLSI layout 
and compaction problems because it gives regular and modular drawings. 

122. M. Schlag, F. Luccio, P. Maestrini, D.T. Lee, and C.K. Wong, A Visibility Problem in 
VLSI Layout Compaction, in: F.P. Preparata, ed., Advances in Computing Research, vol. 
2, pp. 259-282, JAI Press, Greenwich, CT, 1985. 

Theoretical results characterizing visibility representations and variations of 
it appear in: 

123. P. Duchet, Y. Hamidoune, M. Las Vergnas, and H. Meyniel, Representing a Planar 
Graph by Vertical Lines Joining Different Levels, Discrete Mathematics, vol. 46, pp. 
319-321, 1983. 
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Fig. 10. Visibility representation for the graph of Fig. 9. 

C. Thomassen, Plane Representations of Graphs, in: J.A. Bondy and U.S.R. Murty, eds., 
Progress in Graph Theory, pp. 43-69, Academic Press, New York, 1984. 

S.K. Wismath, Characterizing Bar Line-of-Sight Graphs, in: Proc. ACM Symp. on Com- 
putational Geometry, pp. 147-152, 1985. 

R. Tamassia and LG. Tollis, Centipede Graphs and Visibility on a Cylinder, in: G. 
Tinhofer and G. Schmidt, eds., Graph-Theoretic Concepts in Computer Science (Proc. 
Intemat. Workshop WG ‘86, Bernierd, June 1986), Lecture Notes in Computer Science, 
vol. 246, pp. 252-263, Springer-Verlag, Berlin, 1987. 

R. Tamassia and LG. Tollis, Representations of Graphs on a Cylinder, SIAM J. Discrete 
Mathematics, vol. 4, no. 1, pp. 139-149, 1991. 

F. Luccio, S. Mazzone, and C. Wong, A Note on Visibility Graphs, Discrete Mathematics, 
vol. 63, pp. 105-110, 1987. 

D.G. Kirkpatrick and S.K. Wismath, Weighted Visibility Graphs of Bars and Related 
Flow Problems, in: Algorithms and Data Structures (Proc. WADS ‘89), Lecture Notes 
in Computer Science, vol. 382, pp. 325-334, Springer-Verlag, Berlin, 1989. 

T. Andreae, Some Results on Visibility Graphs, Discrete Applied Mathematics, vol. 40, 
pp. 5-17, 1992. 

Algorithms that construct visibility representations in linear time are given 
in the following papers and in [ 135 1. 

131. 

132. 

133. 

R.H.J.M. Otten and J.G. van Wijk, Graph Representations in Interactive Layout Design, 
in: Proc. IEEE Internat. Symp. on Circuits and Systems (New York), pp. 9 14-9 18, 1978. 

P. Rosenstiehl and R.E. Tarjan, Rectilinear Planar Layouts and Bipolar Orientations of 
Planar Graphs, Discrete & Computational Geometry, vol. 1, no. 4, pp. 343-353, 1986. 

J. Nummenmaa, Constructing Compact Rectilinear Planar Layouts Using Canonical 
Representation of Planar Graphs, Theoretical Computer Science, vol. 99, pp. 213-230, 
1992. 
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134. G. Kant, A More Compact Visibility Representation, in: Proc. Internat. Workshop on 
Graph-Theoretic Concepts in Computer Science (WG ‘93), Lecture Notes in Computer 
Science, vol. 790, Springer-Verlag, Berlin, 1994. 

A complete combinatorial characterization of three classes of visibility rep- 
resentations and linear time drawing algorithms are presented in: 

135. R. Tamassia and LG. Tollis, A Unified Approach to Visibility Representations of Planar 
Graphs, Discrete & Computational Geometry, vol. 1, no. 4, pp. 321-341, 1986. 

An algorithm to construct constrained visibility representations (that is, 
representations where the edges of given paths are aligned) is presented in: 

136. G. Di Battista, R. Tamassia, and LG. Tollis, Constrained Visibility Representations of 
Graphs, Information Processing Letters, vol. 41, pp. 1-7, 1992. 

Linear time algorithms for constructing visibility representations of trees 
with optimal area are presented in: 

137. G. Kant, G. Liotta, R. Tamassia, and I.G. Tollis, Area Requirement of Visibility Rep- 
resentations of Trees, in: Proc. 1993 Canadian Conference on Computational Geometry 
(Waterloo, Ont.), pp. 192-197, August 1993. 

A bipolar orientation of an undirected graph consists of orienting the edges 
so that the resulting directed graph is acyclic and has exactly one source 
(vertex without incoming edges) and exactly one sink (vertex without outgoing 
edges). The creation of a bipolar orientation is often the first step for the 
generation of a visibility representation. The properties of bipolar orientations 
are systematically explored in terms of circuits, cocircuits, rank activities, Tutte 
polynomial, poset dimension, angle bipartition and max flow-min cut theorem 
in: 

138. H. de Fraysseix, P.O. de Mendez, and P. Rosenstiehl, Bipolar Orientations Revisited, 
Technical Report P089, Centre d’Analyse et de Mathematique Sociales, Ecole des Hautes 
Etudes en Sciences Sociales, Paris, 1993. (Preliminary version in: Proc. Fifth Franco- 
Japanese Days on Combinatorics and Optimization, 1992.) 

Efficient algorithms are described to list, generate or extend bipolar ori- 
entations for general graphs or plane ones, with or without constraints. The 
importance of the paper goes beyond visibility representations; in fact bipolar 
orientations are exploited in several drawing algorithms. 

5.5. Other graphic standards 

Algorithms for constructing planar polyline grid drawings are described in 
[llO] and: 

139. A.K. Hope, A Planar Graph Drawing Program, Software Practice and Experience, vol. 
1, pp. 83-91, 1971. 

140. D. Woods, Drawing Planar Graphs, Ph.D. Dissertation, Technical Report STAN-CS-82- 
943, Computer Science Department, Stanford University, Stanford, CA, 1982. 
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Another standard is proposed by Ozawa: vertices are placed on a horizontal 
line and edges are drawn as half-circles or smooth connections of half-circles. 

14 1. T. Ozawa, Planarity Testing for IC Layout with Constraints for Pin Order and Congestion 
between Pins, in: IEEE Conf. Record of the 14th Asilomar Conf. on Circuits, Systems 
Computers, pp. 188-192, 1980. 

Kant investigates representations of planar cubic graphs in the hexagonal 
grid, presenting a linear time algorithm: 

142. G. Kant, Hexagonal Grid Drawings, Technical Report RUU-CS-92-06, Department of 
Computer Science, Utrecht University, Netherlands, 1992. 

Representations of planar graphs by means of subdivisions of the plane into 
polygons (usually rectangles) have been motivated by problems in architectural 
design. Each vertex is represented by a polygon, and for each edge (u, V) 
the polygons associated with vertices u and w are geometrically adjacent. 
Essentially, this amounts to representing the graph by its dual. In most cases, 
the polygons are required to be rectangles; linear time algorithms for finding 
such dual representations are presented in: 

143. J. Bhasker and S. Sahni, A Linear Algorithm to Find a Rectangular Dual of a Planar 
Triangulated Graph, Algorithmica, vol. 3, no. 2, pp. 247-278, 1988. 

144. X. He, On Finding the Rectangular Duals of Planar Triangulated Graphs, to appear 
in SIAM J. Computing. Technical Report 90-24, Department of Computer Science, 
University of Buffalo, 1990. 

145. G. Kant and X. He, Two Algorithms for Finding Rectangular Duals of Planar Graphs, 
in: Proc. Internat. Workshop on Graph-Theoretic Concepts in Computer Science (WC 
‘93), Lecture Notes in Computer Science, vol. 790, Springer-Verlag, Berlin, 1994. 

Background to the architectural motivation can be found in: 
146. J.P. Steadman, Architectural Morphology, Pion, London, 1983. 

In a tessellation representation, each constituent (vertex, edge, and face) 
of an embedded planar graph is represented by a rectangle with horizontal 
and vertical sides, and incidencies between constituents correspond to geo- 
metric adjacencies between rectangles (see Fig. 11). These representations are 
investigated in: 

147. R. Tamassia and LG. Tollis, Tessellation Representations of Planar Graphs, in: Proc. 
27th Annual Allerton Conf., pp. 48-57, 1989. 

An algorithm that maps vertices to grid points to facilitate the construction 
of a planar drawing is described in: 

148. R. Jayakumar, K. Thulasiraman, and M.N.S Swamy, Planar Embedding: Linear-Time 
Algorithms for Vertex Placement and Edge Ordering, IEEE Trans. Circuits and Systems, 
vol. CAS-35, no. 3, pp. 334-344, 1988. 
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Fig. 11. (a) A planar graph G. (b) Tessellation representation for G. 

6. Directed graphs 

6.1. Acyclic digraphs 

Acyclic digraphs are widely used to display hierarchical structures. Examples 
include PERT diagrams, ISA hierarchies, and various dependency graphs. It 
is customary to represent these graphs so that the edges all flow in the same 
direction, e.g., from top to bottom, or from left to right (see Fig. 12). Namely, 
we say that a drawing of a digraph is upward if each arc is a curve monotonically 
increasing in the y-direction. 

An important class of acyclic digraphs are covering digraphs of partially 
ordered sets. These digraphs are commonly represented by upward straight- 
line drawings, called order diagrams, Hasse diagrams, or simply diagrams. 

A drawing algorithm for order diagrams is described in: 
149. H. Jiirgensen and J. Loewer: Drawing Hasse diagrams of partially ordered sets, in: 

G. Kalmbach, ed., Orthomodular Lattices, pp. 331-345, Academic Press, London, 1983. 

Several issues in drawing order diagrams, such as the minimization of the 
number of slopes used for the arcs, are investigated in: 
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Fig. 12. Upward drawing of an acyclic digraph. 

150. I. Rival and R. Wille, Lattices Freely Generated by Partially Ordered Sets: Which Can 
Be Drawn?, J. fur Reine und Angewandte Mathematik, vol. 310, pp. 56-80, 1979. 

15 1. J. Czyzowicz, A. Pelt, and I. Rival, Drawing Orders with Few Slopes, Technical Report 
TR-87-12, Department of Computer Science, University of Ottawa, Ont., 1987. 

152. J. Czyzowicz, A. Pelt, I. Rival, and J. Urrutia, Crooked Diagrams with Few Slopes, 
Technical Report TR-87-26, Department of Computer Science, University of Ottawa, 
Ont., 1987. 

153. A. Pelt and I. Rival, Orders with Level Diagrams, Technical Report TR-87-11, Depart- 
ment of Computer Science, University of Ottawa, Ont., March 1987. 

154. J. Czyzowicz, Lattice Diagrams with Few Slopes, Technical Report #3, Dtpartement 
D’Informatique, University of Quebec at Hull, 1987. 

155. J. Czyzowicz, Planar Lattices and the Slope Problem, Technical Report #4, Departement 
D’Informatique, University of Quebec at Hull, 1987. 

156. J. Czyzowicz, A. Pelt, and I. Rival, Planar Ordered Sets of Width Two, Technical Report 
TR-87-31, Department of Computer Science, University of Ottawa, Ont., 1987. 

Surveys on drawing techniques for order diagrams appear in: 
157. I. Rival, The Diagram, in: I. Rival, ed., Graphs and Orders, pp. 103-133, Reidel, 

Dordrecht, Netherlands, 1985. 

158. I. Rival, Graphical Data Structures for Ordered Sets, in: I. Rival, ed., Algorithms and 
Order, pp. 3-31, Kluwer Academic Publishers, Dordrecht, Netherlands, 1989. 

6.1. I. Upward planarity 
The notion of planarity of undirected graphs has a corresponding notion 

of upward planarity for directed graphs. A drawing of a directed graph so 
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Fig. 13. Planar acyclic digraph which is not upward planar. 

that no pair of arcs cross and every arc is monotonically increasing in the y 
direction is an upward drawing. A graph is upward planar if it has an upward 
drawing. An upward planar drawing is in Fig. 12. Note that an upward planar 
graph must be acyclic, and its underlying undirected graph must be planar; 
however, there are planar acyclic digraphs which are not upward planar: see 
Fig. 13. 

Various combinatorial characterizations of planar straight-line upward draw- 
ings are presented in: 

159. 

160. 

161. 

162. 

163. 

D. Kelly and I. Rival, Planar Lattices, Canadian J. Mathematics, vol. 27, no. 3, pp. 
636-665, 1975. 

C. Platt, Planar Lattices and Planar Graphs, J. Combinatorial Theory, Series B, vol. 21, 
pp. 30-39, 1976. 

D. Kelly, Fundamentals of Planar Ordered Sets, Discrete Mathematics, vol. 63, pp. 
197-216, 1987. 

G. Di Battista and R. Tamassia, Algorithms for Plane Representations of Acyclic Di- 
graphs, Theoretical Computer Science, vol. 61, pp. 175-198, 1988. 

C. Thomassen, Planar Acyclic Oriented Graphs, Order, vol. 5, no. 4, pp. 349-361, 1989. 

Planarization-based algorithms for upward drawings have three steps cor- 
responding to the three phases for drawing general graphs as described in 
Subsection 4.3. However, the basic problem of algorithmically testing whether 
an acyclic digraph has an upward drawing is currently unsolved (see Sec- 
tion 9). For special classes of graphs, polynomial time algorithms have been 
found. These appear in: 

164. G. Di Battista, W.P. Liu, and I. Rival, Bipartite Graphs, Upward Drawings, and Planarity, 
Information Processing Letters, vol. 36, pp. 317-322, 1990. 

165. M.D. Hutton and A. Lubiw, Upward Planar Drawing of Single Source Acyclic Digraphs, 
in: Proc. 2nd ACM-SIAM Symp. on Discrete Algorithms, pp. 203-211, 1991. 
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166. P. Bertolazzi and G. Di Battista, On Upward Drawing Testing of Triconnected Digraphs, 
in: Proc. 7th ACM Symp. on Computational Geometry, pp. 272-280, 1991. 

167. P. Bertolazzi, G. Di Battista, G. Liotta, and C. Mannino Upward Drawings of Tricon- 
netted Digraphs, to appear in Algorithmica. 

168. P. Bertolazzi, G. Di Battista, C. Mannino, and R. Tamassia, Optimal Upward Planarity 
Testing of Single-Source Digraphs, in: Proc. European Symp. on Algorithms, 1993. 

If the topological structure (that is, a planar representation) of an upward 
planar digraph is known, then an upward drawing may be efficiently obtained; 
algorithms are given in [ 1621. For a survey see: 

169. R. Tamassia, Drawing Algorithms for Planar St-Graphs, Australasian J. Combinatorics, 
vol. 2, pp. 217-235, 1990. 

In contrast to undirected graphs, upward planar straight line grid drawings 
may require exponential area. These results, as well as a discussion of symmetry 
display, may be found in: 

170. G. Di Battista, R. Tamassia, and I.G. Tollis, Area Requirement and Symmetry Display in 
Drawing Graphs, in: Proc. ACM Symp. on Computational Geometry, pp. 51-60, 1989. 

17 1. G. Di Battista, R. Tamassia, and I.G. Tollis, Area Requirement and Symmetry Display 
of Planar Upward Drawings, Discrete & Computational Geometry, vol. 7, pp. 381-401, 
1992. 

Lower bounds on area requirements and algorithms for constructing planar 
upward drawings of series-parallel digraphs are given in: 

172. P. Bertolazzi, R.F. Cohen, G. Di Battista, R. Tamassia, and I.G. Tollis, How to Draw 
a Series-Parallel Digraph, in: Nurmi E. Ukkonen, ed., Algorithm Theory (SWAT ‘92), 
Proc. 3rd Scandinavian Workshop on Algorithm Theory (Helsinki, July 1992), Lecture 
Notes in Computer Science, vol. 621, pp. 272-283, Springer-Verlag, Berlin, 1992. 

173. P. Bertolazzi, R.F. Cohen, G. Di Battista, R. Tamassia, and LG. Tollis, How to Draw 
a Series-Parallel Digraph, to appear in Internat. J. Computational Geometry & Applica- 
tions. 

6.1.2. Hierarchical Drawings 
A hierarchical drawing of an acyclic digraph is an upward polyline drawing 

where the vertices and bends are constrained to lie on a set of equally spaced 
horizontal lines, called layers (see Fig. 14). In some applications the assignment 
of vertices to layers is given, e.g., by the semantics of the graph. Such graphs 
are called layered digraphs, or hierarchies. 

Most of the rooted tree drawing algorithms of Section 3 may be used to 
draw trees as hierarchies. Sugiyama et al. present a comprehensive approach 
(see Fig. 15): 

Step 1. Assign vertices to the layers so that arcs are directed upward and 
vertices are distributed uniformly. 

Step 2. Select a permutation of the vertices in each layer to reduce crossings. 
Step 3. Adjust the position of the vertices in each layer to reduce the number 

of bends. 
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-- 

--- 

Fig. 14. Hierarchical drawing. 

(a) 6 5 (b) 

Cc) (d) 

Fig. 15. A general strategy for hierarchical drawings. (a) Given digraph. (b) Assignment of vertices 
to layers. (c) Crossing reduction. (d) Placement of vertices and bends. 
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175. 

176. 

G. Di Battista et al. /Computational Geometry 4 (1994) 235-282 263 

K. Sugiyama, S. Tagawa, and M. Toda, Methods for Visual Understanding of Hierarchical 
Systems, IEEE Trans. Systems, Man, and Cybernetics, vol. SMC-11, no. 2, pp. 109-125, 
1981. 

K. Sugiyama and M. Toda, Structuring Information for Understanding Complex Systems: 
A Basis for Decision Making, FUJITSU Scientific and Technical J., vol. 21, no. 2, pp. 
144-164, 1985. 

K. Sugiyama, A Cognitive Approach for Graph Drawing, Cybernetics and Systems: 
Intemat. J., vol. 18, pp. 447-488, 1987. 

Variations and extensions of this approach are presented in: 
177. 

178. 

179. 

180. 

181. 

182. 

183. 

184. 

M.J. Carpano, Automatic Display of Hierarchized Graphs for Computer Aided Decision 
Analysis, IEEE Trans. Systems, Man, and Cybernetics, vol. SMC-10, no. 11, pp. 705-7 15, 
1980. 

M.J. Carpano and M. Delarche, Apport des Techniques Graphiques Interactives a 
1’Analyse Structurale de Systemes, II: Exemples de Realisation et d’Application, RAIRO 
Sept. Anal. Cont., June 1980. 

M. May and P. Mennecke, Layout of Schematic Drawings, Systems Analysis Modelling 
Simulation, vol. 1, no. 4, pp. 307-338, 1984. 

L.A. Rowe, M. Davis, E. Messinger, C. Meyer, C. Spirakis, and A. Tuan, A Browser for 
Directed Graphs, Software Practice and Experience, vol. 17, no. 1, pp. 61-76, 1987. 

E.B. Messinger, Automatic Layout of Large Directed Graphs, Technical Report 88-07-08, 
University of Washington, Department of Computer Science, Seattle, WA, 1988. 

E.R. Gansner, S.C. North, and K.P. Vo, DAG-A Program that Draws Directed Graphs, 
Software Practice and Experience, vol. 18, no. 11, pp. 1047-1062, 1988. 

D. Jablonowski and V.A. Guama, GMB: A Tool for Manipulating and Animating Graph 
Data Structures, Software Practice and Experience, vol. 19, no. 3, pp. 283-301, 1989. 

E.R. Gansner, E. Koutsofios, S.C. North, and K.P. Vo, A Technique for Drawing Directed 
Graphs, IEEE Trans. Software Engineering, vol. SE-19, no. 3, pp. 214-230, 1993. 

Analyses of algorithms used at each of the three steps are presented in: 

185. 

186. 

187. 

188. 

P. Eades and X. Lin, How to Draw a Directed Graph, in: Proc. IEEE Workshop on 
Visual Languages (VL ‘89), pp. 13-17, 1989. 

P. Eades and K. Sugiyama, How to Draw a Directed Graph, J. Information Processing, 
vol. 14, no. 4, pp. 424-437, 1990. 

P. Eades, Complexity Issues in Drawing Directed Graphs, in: Proc. Internat. Workshop 
on Discrete Algorithms and Complexity (Fukuoka, Japan), pp. 9-15, 1989. 

X. Lin, Analysis of Algorithms for Drawing Graphs, Ph.D. Thesis, Department of Com- 
puter Science, University of Queensland, 1992. 

Heuristics for the assignment of vertices to layers in Step 1 of the above 
technique are described in: 

189. K. Sugiyama, A Readability Requirement on Drawing Digraphs: Level Assignment and 
Edge Removal for Reducing the Total Length of Lines, Research Report no. 45, Internat. 
Institute for Advanced Study of Social Information Science, FUJITSU, Numazu, Japan, 
March 1984. 
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190. P. Eades and X. Lin,, Notes on the Layer Assignment Problem for Drawing Directed 
Graphs, in: ACSC 14, Proc. 14th Australian Computer Science Conference (University 
of New South Wales), pp. 26- 10, 199 1. 

A divide-and-conquer algorithm for hierarchical drawings is proposed in: 
19 1. E.B. Messinger, L.A. Rowe, and R.H. Henry, A Divide-and-Conquer Algorithm for the 

Automatic Layout of Large Directed Graphs, IEEE Trans. Systems, Man, and Cybernetics, 
vol. SMC-21, no. 1, pp. 1-12, 1991. 

A recursive algorithm for hierarchical drawings that partitions the original 
graph into subgraphs whose elements are closely related is presented in: 

192. D.J. Gschwind and T.P. Murtagh, A Recursive Algorithm for Drawing Hierarchical 
Directed Graphs, Technical Report CS-89-02, Department of Computer Science, Williams 
College, Williamstown, MA, 1989. 

A linear time algorithm for constructing hierarchical drawings is presented 
in: 

193. G. Robins, The IS1 Grapher: A Portable Tool for Displaying Graphs Pictorially, Technical 
Report ISI/RS-87-196, Information Sciences Institute, University of Southern California, 
Marina de1 Rey, CA, 1987. (Also in: Proc. Symboliikka ‘87, Helsinki, Finland, August 
1987.) 

Orthogonal hierarchical drawings are investigated in: 

194. J.E. Savage, Heuristics for Level Graph Embeddings, in: Proc. Workshop on Graphthe- 
oretic Concepts in Computer Science, pp. 307-318, Trauner Verlag, 1983. 

Crossing reduction is a fundamental aesthetic for hierarchical drawings. An 
efficient algorithm to construct a planar hierarchical drawing of a layered 
digraph is given in: 

195. G. Di Battista and E. Nardelli, An Algorithm for Testing Planarity of Hierarchical 
Graphs, in: G. Tinhofer and G. Schmidt, eds., Graph-Theoretic Concepts in Computer 
Science (Proc. Internat. Workshop WG ‘86, Bemierd, June 1986), Lecture Notes in 
Computer Science, vol. 246, pp. 277-289, Springer-Verlag, Berlin, 1987. 

196. G. Di Battista and E. Nardelli, Hierarchies and Planarity Theory, IEEE Trans. Systems, 
Man, and Cybernetics, 1988. 

An algorithm which uses a technique adapted from [90] for hierarchical 
drawings is presented in: 

197. P. Eades, X. Lin and R. Tamassia, An Algorithm for Drawing a Hierarchical Graph, 
in: J. Urrutia, ed., Proc. Second Canadian Conference on Computational Geometry, 
(Ottawa, Ont.), pp. 142-146, 1990. 

Minimizing crossings for layered digraphs is NP-hard even if there are only 
two layers [ 391, and even if there is only one node in each layer: 

198. S. Masuda, K. Nakajima, T. Kashiwabara, and T. Fujisawa, Crossing Minimization in 
Linear Embeddings of Graphs, IEEE Trans. Computers, vol. C-39, no. 1, pp. 124-127, 
1990. 

Further NP-completeness results, as well as analyses of an heuristics (one of 
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which gives at most three times the minimum number of crossings) are given 
in: 

199. P. Eades, B. McKay, and N. Wormald, On an Edge Crossing Problem, in: Proc. 9th 
Australian Computer Science Conf. (Australian National University), pp. 327-334, 1986. 

200. P. Eades and N. Wormald, Edge Crossings in Drawings of Bipartite Graphs, Technical 
Report 108, Department of Computer Science, University od Queensland (to appear in 
Algorithmica). 

Other heuristics for crossing minimization in layered digraphs are studied in 
the following papers: 

201. J. Wartield, Crossing Theory and Hierarchy Mapping, IEEE Trans. Systems, Man, and 
Cybernetics, vol. SMC-7, no. 7, pp. 502-523, 1977. 

202. P. Eades and D. Kelly, Heuristics for Reducing Crossings in 2-Layered Networks, Ars 
Combinatoria, vol. 21.A, pp. 89-98, 1986. 

203. E. Makinen, Experiments on Drawing t-level Hierarchical Graphs, Intemat. J. Computer 
Mathematics, vol. 36, pp. 175-l 8 1, 1990. 

204. E. Makinen, A Note on the Median Heuristic for Drawing Bipartite Graphs, Fundamenta 
Informaticae, vol. XII, pp. 563-570, 1989. 

205. T. Catarci, The Assignment Heuristic for Crossing Reduction in Bipartite Graphs, in: 
Proc. 26th Annual Allerton Conf., 1988. 

206. M. May and K. Szkatula, On the Bipartite Crossing Number, Control and Cybernetics, 
vol. 17, no. 1, pp. 85-98, 1988. 

207. E. Mlkinen, Remarks on the Assignment Heuristic for Drawing Bipartite Graphs, Techni- 
cal Report A-1990-7, Department of Computer Science, University of Tampere, Finland, 
1990. 

208. E. Mlkinen, On Drawing Regular Bipartite Graphs, Internat. J. Computer Mathematics, 
vol. 43, pp. 39-43, 1992. 

A heuristic algorithm that simplifies dense hierarchical graphs by replacing 
complete bipartite subgraphs with a single concentrator node is presented in 
the following paper. 

209. F.J. Newbery, Edge Concentration: A Method for Clustering Directed Graphs, in: Proc. 
2nd Internat. Workshop on Software Configuration Management, pp. 76-85, 1989. 

The transformation greatly enhances visual simplicity and may reduce the 
number of crossings; see [ 1881 for a discussion of the complexity issues 
involved. 

The display of symmetries in hierarchical drawings is investigated in [ 1971 
and: 

2 10. K. Sugiyama, Achieving Uniqueness Requirement in Drawing Digraphs: Optimum Code 
Algorithm and Hierarchic Isomorphism, Research Report no. 58, Internat. Institute for 
Advanced Study of Social Information Science, FUJITSU, Numazu, Japan, July 1985. 

Radial drawings of layered digraphs are investigated in [ 1771 and: 
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211. M.G. Reggiani and F.E. Marchetti, A Proposed Method for Representing Hierarchies, 
IEEE Trans. Systems, Man, and Cybernetics, vol. SMC-18, no. 1, pp. 2-8, 1988. 

61.3. Dominance drawings 
A dominance drawing of an acyclic directed graph G = (V, E) is a function 

f : V + Rk such that (f(u),f(~)) E E if and only if f(u) # f(u) and 
each coordinate of f(v)  is at least as large as the corresponding coordinate of 
f (IA). A dominance drawing in dimension k can be viewed as an embedding of 
the graph in a k dimensional partial order. Thus several mathematical results 
on partial orders can be used to derive algorithms for dominance drawings. 
Algorithms and complexity of creating such representations are given in [ 17 1 ] 
and: 

2 12. T. Kameda, On the Vector Representation of the Reachability in Planar Directed Graphs, 
Information Processing Letters, vol. 3, no. 3, pp. 75-77, 1975. 

213. A. Pnueli, A. Lempel, and S. Even, Transitive Orientation of Graphs and Identification 
of Permutation Graphs, Canadian J. Mathematics, vol. 23, pp. 160-175, 1971. 

2 14. M. Yannakakis, The Complexity of the Partial Order Dimension Problem, SIAM J. 
Algebraic and Discrete Methods, vol. 3, no. 3, pp. 351-358, 1982. 

Related results appear in [ 159, 16 11. 
Algorithms for dominance drawings of series parallel graphs are in [ 1721. A 

linear time algorithm for finding a dominance drawing of a bipartite graph in 
two dimensions is given in: 

2 15. P. Eades, H. ElGindy, M. Houle, W. Lenhart, M. Miller, D. Rappaport, and S. Whitesides, 
Dominance Drawings of Bipartite Graphs, Manuscript, 1993. 

6.2. General digraph drawing algorithms 

When the representation of flow in digraphs with cycles is an important 
aesthetic, one would like to maximize the number of arcs that are directed 
upward. This problem is equivalent to reversing a minimum number of arcs 
to make the digraph acyclic, and is commonly known as the feedback arc 
set problem. The problem is NP-complete in general, but it is polynomially 
solvable for several classes of graphs including planar digraphs: 

2 16. A. Frank, How to Make a Digraph Strongly Connected, Combinatorics, vol. 1, no. 2, 
1981. 

Heuristics for the feedback arc set problem are discussed in [ 174, 177, 
180-183, 189, 191, 192, 185, 1881, and: 

217. B. Berger and P. Shor, Approximation Algorithms for the Maximum Acyclic Subgraph 
Problem, in: Proc. ACM-SIAM Symp. on Discrete Algorithms, pp. 236-243, 1990. 

After the transformation into an acyclic digraph, the techniques surveyed in 
the previous subsection can be applied. 
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If the representation of flow is not important, algorithms for drawing undi- 
rected graphs can be applied by ignoring the directions of the arcs. 

6.3. Application-specific algorithms 

There are several drawing algorithms developed for specific applications, 
especially circuit schematics and software engineering diagrams. In this frame- 
work, the semantics of the diagram and the conventions of the application 
area may put constraints on the drawing. For example, vertices representing 
interfaces in a Data Flow diagram are conventionally placed on the external 
boundary. In this section we list a sample of papers covering such application 
specific techniques. 

The problem of dealing with constraints on the drawing imposed by the user 
is specifically investigated in: 

2 18. R. Tamassia, New Layout Techniques for Entity-Relationship Diagrams, in: Proc. 4th 
Intemat. Conf. on Entity-Relationship Approach (Chicago, IL), pp. 304-311, 1985. 

The automatic generation of schematic diagrams for digital systems is studied 
in: 

219. A. Arya, A. Kumar, V. Swaminathan, and A. Misra, Automatic Generation of Digital 
System Schematic Diagrams, in: Proc. 22nd Design Automation Conf., pp. 388-395, 
1985. 

220. F. Aoudja, M. Laborie, and A. Saint-Paul, CASE: Automatic Generation of Electrical 
Diagrams, Computer-Aided Design, vol. 18, no. 7, pp. 356-360, 1986. 

22 1. M.A. Majewski, F.N. Krull, T.E. Fuhrman, and P.J. Ainslie, Autodraft: Automatic Syn- 
thesis of Circuit Schematics, in: Proc. IEEE Internat. Conf. on Computer-Aided Design, 
pp. 435-438, 1986. 

Following the classical layout approach for integrated circuits, these algo- 
rithms perform the placement of modules and the routing of connections in 
two separate steps. 

A drawing algorithm for PERT diagrams is presented in: 
222. G. Di Battista, E. Pietrosanti, R. Tamassia, and I.G. Tollis, Automatic Layout of PERT 

Diagrams with XPERT, in: Proc. IEEE Workshop on Visual Languages (VL ‘89), pp. 
171-176, 1989. 

An algorithm for drawing flowcharts appears in: 

223. D.E. Knuth, Computer Drawn Flocharts, Comm. ACM, vol. 6, 1963. 

The following papers describe divide-and-conquer algorithms targeted toward 
Entity Relationship diagrams: 

224. D. Reiner, M. Brodie, G. Brown, M. Chilenskas, M. Friedell, D. Kramlich, J. Lehman, 
and A. Rosenthal, A Database Design and Evaluation Workbench: Preliminary Re- 
port, in: Proc. Internat. Conf. on Systems Development and Requirements Specification 
(Gothenburg, Sweden), 1984. 
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225. D. Reiner, G. Brown, M. Friedell, J. Lehman, R. McKee, P. Rheingans, and A. Rosenthal, 
A Database Designer’s Workbench, in: S. Spaccapietra, ed., Entity-Relationship Approach 
(Proc. 5th Internat. Conf. on Entity-Relationship Approach, Dijon, France, 1987), pp. 
347-360, North-Holland, Amsterdam, 1987. 

226. D. Reiner and G. Brown, Heuristic Layout for DDEW ER+ Diagrams, Manuscript, 
Computer Corporation of America, 1985. 

An algorithm for Entity Relationship diagrams based on visibility represen- 
tations is in: 

227. J. Nummenmaa and J. Tuomi, Constructing Layouts for ER-Diagrams from Visibility 
Representations, in: Proc. 9th Internat. Conf. on Entity-Relationship Approach (Lau- 
sanne, Switzerland), pp. 303-3 17, 1990. 

Based on the general strategy of [72, 731, drawing algorithms for three dia- 
grammatic representations widely used in databases and software engineering 
are given in: 

228. C. Batini, M. Talamo, and R. Tamassia, Computer Aided Layout of Entity-Relationship 
Diagrams, J. Systems and Software, vol. 4, pp. 163-173, 1984. 

229. P. Di Felice and R. Tamassia, Automatic Layout of Flow Diagrams: Preliminary Analysis, 
in: Proc. ISMM (Madrid, Spain), pp. 263-267, 1985. 

230. C. Batini, E. Nardelli, and R. Tamassia, A Layout Algorithm for Data-Flow Diagrams, 
IEEE Trans. Software Engineering, vol. SE-12, no. 4, pp. 538-546, 1986. 

Layout methods for class hierarchies used in object-oriented systems are 
developed in: 

231. H. Koike, An Application of Three Dimensional Visualization to Object-Oriented Pro- 
gramming, in: Advanced Visual Interfaces (Proc. AVI ‘92), World Scientific Series in 
Computer Science, vol. 36, pp. 180-192, 1992. 

7. Graph drawing systems 

There are many computer systems available for editing graphs and graph-like 
diagrams. Some of these contain a simple automatic drawing facility: 

232. M. Dao, M. Habib, J. Richard, and D. Tallot, CABRI, An Interactive System for 
Graph Manipulation, in: G. Tinhofer and G. Schmidt, eds., Graph-Theoretic Concepts 
in Computer Science (Proc. Internat. Workshop WG ‘86, Bernierd, June 1986), Lecture 
Notes in Computer Science, vol. 246, pp. 58-67, Springer-Verlag, Berlin, 1987. 

233. J.M Foumeau, I. Fournier, A. Germa, and D. Sotteau, Unicorn: A Computer-Aided 
Scratch Book for Graph Theory, Technical Report 38 1, L.R.I., UA4 10 CNRS, University 
Paris Sud, 1987. 

234. F. Aschim and B.M. Mostue, IFIP WG 8.1 Case Solved Using SYSDOC and SYSTEM- 
ATOR, in: T. Olle et al., eds., Information Systems Design Methodologies: A Comparative 
Review (Proc. IFIP WG 8.1 Working Conf. on Comparative Review of Information Sys- 
tems Design Methodologies, Noordwijkerhout, Netherlands), pp. 15-40, North-Holland, 
Amsterdam, 1982. 
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235. M. Nagl and H. Zischler, A Dialog System for the Graphical Representation of Graphs, 
in: Applied Computer Science, vol. 13 (Proc. Workshop WG ‘78 on Graphtheoretic 
Concepts in Computer Science), pp. 325-339, 1979. 

236. M. Sarkar and M.H. Brown, Graphical Fisheye Views of Graphs, Technical Report 
CS-9 l-6 1, Department of Computer Science, Brown University, Providence, RI, 1991. 

Other systems use significant layout algorithms. They are described in [279, 
139, 140, 149, 174, 175, 177, 180, 182, 183, 44, 46, 53, 73, 220-222, 224, 
2251 and: 

237. 

238. 

239. 

240. 

241. 

242. 

243. 

244. 

245. 

246. 

247. 

248. 

249. 

M. Himsolt, GraphEd: An Interactive Graph Editor, in: Proc. STACS 89, Lecture Notes 
in Computer Science, vol. 349, pp. 532-533, Springer-Verlag, Berlin, 1989. 

J. Hynd and P. Eades, The Typed Graph Editing System-TYGES, in: Proc. 3rd Aus- 
tralasian Conf. on Computer Graphics (Ausgraph 85, Brisbane, Australia), pp. 15-19, 
1985. 

P. Eades, I. Fogg, and D. Kelly, SPREMB: A System for Developing Graph Algorithms, 
Congressus Numerantium, vol. 66, 123-140, 1988. 

C. Batini, E. Nardelli, M. Talamo, and R. Tamassia, GINCOD: A Graphical Tool for 
Conceptual Design of Data Base Applications, in: A. Albano, V. De Antonellis, and A. Di 
Leva, eds., Computer Aided Data Base Design, pp. 33-51, North-Holland, Amsterdam, 
1985. 

G. Di Battista and R. Tamassia, An Integrated Graphic System for Designing and Access- 
ing Statistical Data Bases, in: Proc. 7th Symp. on Computational Statistics (COMPSTAT 
1986), pp. 231-236, Physica-Verlag, 1986. 

C. Batini, P. Brunetti, G. Di Battista, P. Naggar, E. Nardelli, G. Richelli, and R. 
Tamassia, An Automatic Layout Facility and its Applications (invited paper), in: Proc. 
Internat. Workshop on Software Engineering Environment, pp. 139- 157, China Academic 
Publishers, Beijing, China, 1986. 

R. Read, Methods for Computer Display and Manipulation of Graphs, and the Corre- 
sponding Algorithms, Research Report CORR 86-12, Faculty of Mathematics, University 
of Waterloo, Ont., July 1986. 

K. Nakamura, H. Fujimoto, T. Suzuki, Y. Tarui, and Y. Kiyokane, Visual Programming 
Environment in Communications Software, in: Proc. 5th IEEE Global Telecom Conf., 
pp. 435-439, 1986. 

W.F. Tichy and F.J. Newbery, Knowledge-Based Editors for Directed Graphs, in: H.K. 
Nichols and D. Simpson, eds., ESEC’87 (Proc. 1st European Software Engineering Conf.), 
pp. 109-l 17, Springer-Verlag, Berlin, 1987. 

G. Kar, B.P. Madden, and R.S. Gilbert, Heuristic Layout Algorithms for Network 
Management Presentation Services, IEEE Network, , pp. 29-36, November 1988. 

F. Newbery, An Interface Description Language for Graph Editors, in: Proc. IEEE 
Workshop on Visual Languages, 1988. 

F. Newberry Paulisch and W.F. Tichy: EDGE: An Extendible Graph Editor, Software 
Practice and Experience, vol. 20, no. Sl, pp. 63-88, 1990 

S.P. Reiss and J.N. Pato, Displaying Program and Data Structures, in: Proc. 20th Hawaii 
Intemat. Conf. on System Sciences, 1987. 
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250. S.P. Reiss, Integration Mechanisms in the FIELD Environment, Technical Report CS- 
88-18, Department of Computer Science, Brown University, Providence, RI, 1988. 

25 1. S.P. Reiss, S. Meyers, and C. Duby, Interacting with the FIELD Environment, Technical 
Report CS-89-5 1, Department of Computer Science, Brown University, Providence, RI, 
1989. 

252. B. Birgisson and G. Shannon, GraphView: A Workstation-Based Environment for Viewing 
Graphs and Animating Graph Algorithms, Technical Report 295, Department Computer 
Science, Indiana University, Bloomington, IN, 1989. 

253. V. Jansen, A. Potthoff, W. Thomas, and U. Wermuth, A Short Guide to the AMORE 
System, Technical Report 90-2, Fachgruppe Informatik, RWTH Aachen, 1990. 

254. 0. Baudon, Cabri-Graphes, Un CAhier de BRouillon Interactif pour la Theorie des 
Graphes, These de Doctorat de l’universitt Joseph Fourier, Grenoble, France, 1990. 

255. J. Bordier and J.M. Laborde, An Interactive Tool for Graph Theory, in: Proc. 7th Annual 
Apple European University Consortium Conference (Paris), pp. 5 l-53, Apple Computer 
Europe, 1991. 

256. G. Di Battista, G. Liotta, M. Strani and F. Vargiu, Diagram Server, in: Advanced Visual 
Interfaces (Proc. AVI ‘92), World Scientific Series in Computer Science, vol. 36, pp. 
415-417, 1992. 

257. G. Di Battista, A. Giammarco, G. Santucci, and R. Tamassia, The Architecture of 
Diagram Server, in: Proc. IEEE Workshop on Visual Languages (VL ‘90), pp. 60-65, 
1990. 

258. M. Beccaria, P. Bertolazzi, G. Di Battista, and G. Liotta, A Tailorable and Extensible 
Automatic Layout Facility, in: Proc. IEEE Workshop on Visual Languages (VL ‘91), pp. 
68-73, 1991. 

259. M. Bousset and P. Rosenstiehl, Twist, Technical Report, CAMS P.073, 1991. 

260. J.C. Smart and V. Vemuri, A-Vu: A Visualization Tool for Complex Software Systems, 
in: Proc. Symp. on Assessment of Quality Software Development Tools, IEEE Computer 
Society Press, New Orleans, LA, May 27-29, 1992. 

261. E.R. Gansner, E. Koutsofios, S.C. North, and K.P. Vo, Graph Visualization in Software 
Analysis, in: Proc. Symp. on Assessment of Quality Software Development Tools, IEEE 
Computer Society Press, New Orleans, LA, May 27-29, 1992. 

262. S. Skiena, Implementing Discrete Mathematics, Addison-Wesley, Reading, MA, 1990. 

A graph drawing system for dataflow diagrams based on placement-and- 
routing techniques is described in: 

263. L.B. Protsko, P.G. Sorenson, J.P. Tremblay, and D.A. Schaefer, Towards the Automatic 
Generation of Software Diagrams, IEEE Trans. Software Engineering, vol. SE-17, no. 1, 
pp. 10-21, 1991. 

A tool for displaying large graphs supporting multiple views, nonuniform 
scaling, and user-defined constraints on the layout is described in: 

264. T.R. Henry and S.E. Hudson, Viewing Large Graphs, Technical Report 90-13, Depart- 
ment of Computer Science, University of Arizona, Phoenix, AZ, 1990. 

A tool that uses clustering techniques is described in: 
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265. P. Brown and T. Gargiulo, An Object Oriented Layout for Directed Graphs, in: Proc. 
Symp. on Assessment of Quality Software Development Tools, IEEE Computer Society 
Press, New Orleans, LA, May 27-29, 1992. 

8. Special topics 

8. I. Parallel algorithms 

A parallel algorithm for planarity testing that runs in O(log n) time on a 
CRCW PRAM with (n log log n )/ log n processors is presented in: 

266. V. Ramachandran and J.H. Reif, An Optimal Parallel Algorithm for Graph Planarity, 
in: Proc. IEEE Symp. on Foundations of Computer Science, pp. 282-293, 1989. 

267. V. Ramachandran and J. Reif, Planarity Testing in Parallel, Technical Report TR-90-15, 
Department of Computer Science, The University of Texas at Austin, 1990. 

Previous results on parallel planarity testing are: 
268. J. Ja’Ja’ and J. Simon, Parallel Algorithms in Graph Theory: Planarity Testing, SIAM J. 

Computing, vol. 11, no. 2, pp. 3 14-328, 1982. 

269. G.L. Miller and J.H. Reif, Parallel Tree Contraction and its Applications, in: Proc. 26th 
IEEE Symp. on Foundations of Computer Science, pp. 478-489, 1985. 

270. P.N. Klein and J.H. Reif, An Efficient Parallel Algorithm for Planarity, J. Computer and 
System Sciences, vol. 37, no. 2, pp. 190-246, 1988. 

Parallel graph drawing algorithms for planar graphs are presented in [ 1191 
and in the following papers: 

271. R. Tamassia and J.S. Vitter, Optimal Parallel Algorithms for Transitive Closure and 
Point Location in Planar Structures, in: Proc. ACM Symp. on Parallel Algorithms and 
Architectures, pp. 399-408, 1989. 

272. R. Tamassia and J.S. Vitter, Parallel Transitive Closure and Point Location in Planar 
Structures, SIAM J. Computing, vol. 20, no. 4, pp. 708-725, 1991. 

273. M. Finer, X. He, M.-Y. Kao, and B. Raghavachari, O(nloglogn)-Work Parallel Algo- 
rithms for Straight-Line Grid Embeddings of Planar Graphs, in: Proc. ACM Symp. on 
Parallel Algorithms and Architectures, 1992. 

274. M. Ftirer, X. He, M.-Y. Kao, and B. Raghavachari, Optimal Parallel Algorithms for 
Straight-Line Grid Embeddings of Planar Graphs, to appear in SIAM J. Discrete Math- 
ematics. 

275. F. Dehne, H. Djidjev, and J.-R. Sack, An Optimal PRAM Algorithm for Planar Convex 
Embedding, Manuscript, 1993. 

8.2. Dynamic algorithms 

A reference model for dynamic drawing algorithms is given in: 
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276. R.F. Cohen, G. Di Battista, R. Tamassia, LG. Tollis, and P. Bertolazzi, A Framework 
for Dynamic Graph Drawing, in: Proc. ACM Symp. on Computational Geometry, pp. 
261-270, 1992. 

The paper contains also several results on dynamic problems within the pro- 
posed model. 

An on-line planarity testing algorithm supporting insertions of vertices and 
edges with logarithmic query/update time is presented in: 

277. G. Di Battista and R. Tamassia, Incremental Planarity Testing, in: Proc. 30th IEEE 
Symp. on Foundations of Computer Science, pp. 436-441, 1989. 

The best result on fully dynamic planarity testing (where both insertions 
and deletions are allowed) is an algorithm with 0( Jii) amortized query and 
update time, given in: 

278. D. Eppstein, Z. Galil, G.F. Italiano, and T.H. Spencer, Separator Based Sparsification 
for Dynamic Planar Graph Algorithms, in: Proc. ACM Symp. on Theory of Computing, 
pp. 208-217, 1993. 

An algorithm for drawing trees in a dynamic environment is presented in: 
279. S. Moen, Drawing Dynamic Trees, IEEE Software, vol. 7, pp. 21-28, 1990. 

The incremental construction of an orthogonal drawing is investigated in: 
280. K. Miriyala, S.W. Hornick, and R. Tamassia, An Incremental Approach to Aesthetic 

Graph Layout, in: Proc. Internat. Workshop on Computer-Aided Software Engineering 
(CASE ‘93), 1993. 

An important consideration in dynamic graph layout is preserving the mental 
map: when a change is made to a graph by the user, the re-application of a 
layout algorithm may destroy the user’s mental map. Models and techniques 
for preserving the mental map are discussed in: 

28 1. P. Eades, W. Lai, K. Misue and K. Sugiyama, Preserving the Mental Map of a Diagram, 
in: Proc. Compugraphics 91 (Portugal), pp. 24-33, 1991. 

282. K. Lyons, Cluster Busting in Anchored Graph Drawing, in: Proc. CAS Conference (IBM 
Centre for Advanced Studies, Toronto, Ont.), pp. 7-16, 1992. 

283. K. Bohringer and F. Newbery Paulisch, Using Constraints to Achieve Stability in Auto- 
matic Graph Layout Algorithms, in: Proc. ACM CHI 90, pp. 43-5 1, 1990. 

8.3. Three dimensions 

Three-dimensional drawings of graphs are investigated in [ 183, 23 1 ] and 
284. G.G. Robertson, J.D. Mackinlay, and S.K. Card, Cone Trees: Animated 3D Visualizations 

of Hierarchical Information, in: Proc. CHI, pp. 189-193, 1991. 

285. S.P. Reiss, A Framework for Abstract 3D Visualization, in: Proc. IEEE Symp. on Visual 
Languages (VL ‘93), 1993. 
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8.4. Hypergraphs 

Two notions of planarity for hypergraphs and NP-completeness results are 
given in: 

286. D.S. Johnson and H.O. Pollak, Hypergraph Planarity and the Complexity of Drawing 
Venn Diagrams, J. Graph Theory, vol. 10, no. 3, pp. 309-325, 1987. 

A new formalism for representing graphs and hypergraphs, called higraph, is 
introduced in: 

287. D. Harel, On Visual Formalisms, Comm. ACM, vol. 31, no. 5, pp. 514-530, 1988. 

An algorithm for drawing hypergraphs is presented in: 
288. E. Mlkinen, How to Draw a Hypergraph, Internat. J. Computer Mathematics, vol. 34, 

177-185, 1990. 

8.5. Separator-based algorithms 

Separator-based algorithms for area-efficient (nonplanar) orthogonal draw- 
ings of trees, planar graphs, and other computationally interesting networks 
(e.g., d-dimensional mesh, cube-connected cycles, and shuffle-exchange) are 
studied in [ 1111 and: 

289. C.E. Leiserson, Area-Efficient Graph Layouts (for VLSI), in: Proc. IEEE Symp. on 
Foundations of Computer Science, pp. 270-28 1, 1980. 

290. D. Sherlekar, Minimizing the Maximum Wire Length in VLSI Graph Layouts, in: Proc. 
28th Annual Allerton Conf., 1990. 

Goodrich gives an optimal algorithm for the separator decomposition of pla- 
nar graphs, which improves the time complexity of separator-based algorithm 
for planar graphs. 

291. M.T. Goodrich, Planar Separators and Parallel Polygon Triangulation, in: Proc. 24th 
ACM Symp. on Theory of Computing, pp. 507-516, 1992. 

8.6. Declarative methods 

Several recent techniques for graph drawing emphasize the expression of the 
aesthetics rather than the algorithmic complexity of achieving the aesthetics. 
These techniques, called declarative techniques, often require very large com- 
putational resources, and are perhaps outside the scope of this bibliography. 
An example is the use of genetic algorithms: 

292. C. Kosak and J. Marks, A Parallel Genetic Algorithm for Network-Diagram Layout, in: 
Proc. 4th Internat. Conf. on Genetic Algorithms (ICGA9 1 ), 199 1. 

293. C. Kosak, J. Marks, and S. Shieber, New Approaches to Automating Network-Diagram 
Layout, to appear in IEEE Trans. Systems, Man, and Cybernetics. 



274 G. Di Battista et al. /Computational Geometry 4 (1994) 235-282 

Other examples include the simulated annealing methods of [ 501, and the 
constraint resolution methods of [ 3 I]. 

The formal specification of constraints in the drawing of a graph is studied 
in [263] and in: 

294. J.D. Mackinlay, Automating the Design of Graphical Presentations of Relational Infor- 
mation, ACM Trans. Graphics, vol. 5, no. 2, 1986. 

295. J. Marks, A Formal Specification Scheme for Network Diagrams that Facilitates Auto- 
mated Design, J. Visual Languages and Computing, vol. 2, pp. 395-414, 1991. 

296. E. Dengler, M. Friedell, and J. Marks, Constraint-Driven Diagram Layout, in: Proc. IEEE 
Symp. on Visual Languages (VL ‘93), 1993. 

297. S. Deal, The Specification and Recognition of Optimal Layout Configurations for Graph 
Structures, Ph.D. Dissertation, Department Computer Science, University College Lon- 
don, 1989. 

An approach to drawing graphs based on graph grammars is presented by 
Brandenburg: 

298. F.J. Brandenburg, Layout Graph Grammars: The Placement Approach, in: Graph- 
Grammars and their Application to Computer Science, Proc. 4th Intemat. Workshop 
(Bremen, Germany, 1990), Lecture Notes in Computer Science 532, pp. 144-156, 
Springer-Verlag, Berlin, 199 1. 

A visual approach to graph drawing is presented in: 
299. I.F. Cruz, R. Tamassia, and P. Van Hentenryck, A Visual Approach to Graph Drawing, 

Manuscript, Brown University, Providence, RI, 1993. 

8.7. Aesthetics 

A discussion of graph drawing aesthetics appears in: 
300. C. Esposito, Graph Graphics: Theory and Practice, Computers & Mathematics with 

Applications, vol. 15, no. 4, pp. 247-253, 1988. 

An experimental study of aesthetics used in Entity Relationship diagrams is 
reported in: 

30 1. C. Batini, L. Furlani, and E. Nardelli, What is a Good Diagram? A Pragmatic Approach, 
in: Proc. 4th Internat. Conf. on the Entity Relationship Approach, Chicago, IL, 1985. 

An analogous study in the field of data structure diagrams is in: 
302. C. Ding and P. Mateti, A Framework for the Automated Drawing of Data Structure 

Diagrams, IEEE Trans. Software Engineering, vol. SE-16, no. 5, pp. 543-557, 1990. 

8.8. Compound graphs 

In compound digraphs, edges represent both adjacency and inclusion rela- 
tions. Compound graphs and similar structures (such as higraphs [287] ) are 
powerful modeling tools for relational information. 

Layout algorithms for compound digraphs are given in [ 3 1 ] and: 
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303. K. Sugiyama and K. Misue, Visualization of Structural Information: Automatic Drawing 
of Compound Digraphs, IEEE Trans. Systems, Man and Cybernetics, vol. SMC-21, no. 
4, pp. 876-892, 1991. 

8.9. Angles 

An interesting aesthetic is to ensure that the angles between the segments 
that represent edges are not too small. Studies of this aesthetic applied to 
planar straight-line drawings are in: 

304. G. Vijayan, Geometry of Planar Graphs with Angles, in: Proc. ACM Symp. on Compu- 
tational Geometry, pp. 116-124, 1986. 

305. S. Malitz and A. Papakostas, On the Angular Resolution of Planar Graphs, in: Proc. 24th 
ACM Symp. on the Theory of Computing, pp. 527-538, 1992. 

306. G. Di Battista and L. Vismara, Angles of Planar Triangular Graphs, in: Proc. ACM 
Symp. on Theory of Computing, pp. 431-437, 1993. 

It is shown in [ 3051 that it is always possible to construct a straight line 
planar drawing whose smallest angle is O(&), where 0 < (Y < 1, and d is 
the maximum degree of a vertex of the graph. Further results are given for 
outerplanar graphs. 

A similar problem, but for nonplanar graphs, is considered in: 
307. M. Formann, T. Hagerup, J. Haralambides, M. Kaufmann, F.T. Leighton, A. Simvonis, 

E. Welzl, and G. Woeginger, Drawing Graphs in the Plane with High Resolution, in: 
Proc. IEEE Symp. on Foundations of Computer Science, pp. 86-95, 1990. (To appear 
in SIAM J. Computing, 1993.) 

It is shown that it is always possible to construct a drawing whose smallest 
angle between the edges incident at a vertex is 0 (l/d*), where d is the 
maximum degree of a vertex of the graph. Other results are given for particular 
classes of graphs. 

9. Open problems 

Despite the abundance of literature on graph drawing, many theoretical and 
practical problems are still open. A few of the most promising directions for 
further research are listed below. 

 Performance Bounds for Planarization. Although crossing minimization is 
a fundamental issue, nontrivial performance bounds have not been found 
for any heuristic. A guaranteed heuristic would be very important both for 
aesthetic graph drawing and VLSI layout. 

 Upward Planarity Testing. There is a combinatorial characterization of 
the acyclic digraphs that admit a planar upward drawing [ 161, 1621. 
However, no polynomial time algorithm for testing upward planarity in 
general acyclic digraphs is known. 
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 Simple Planarity Testing. The known planarity algorithms that achieve 
linear time complexity (Section 5.1) are all difficult to understand and 
implement. This is a serious limitation for their use in practical systems. 
A simple and efficient algorithm for testing the planarity of a graph and 
constructing planar representations would be a significant contribution. 

 General Strategy for Straight-Line Drawings. General strategies have been 
successfully developed for hierarchical drawings (Section 6.1) and orthog- 
onal grid drawings (Section 4.3). These techniques take several aesthetics 
into account. The simplicity of straight-line drawings is very appealing, 
and a general straight-line drawing technique would find immediate ap- 
plications. The most versatile technique for planar straight-line drawings 
is the the one by Kant [ 1081. Some further progress in this direction is 
reported in [257]. 

 Dynamic Drawing Algorithms. Several graph manipulation systems allow 
the user to interactively modify a graph by inserting and deleting vertices 
and edges. Data structures that allow for fast restructuring of the drawing 
would be very useful. Especially important is the dynamic planarity testing 
problem, where we want a data structure for planar graphs that supports 
in polylogarithmic time the following operations: (a) testing whether a 
new edge can be added while preserving planarity; (b) adding vertices 
and edges which preserve planarity; and (c) removing vertices and edges. 
When only insertions are allowed, this problem can be efficiently solved 
in 0 (log n ) time per test or update, as shown in [ 2771. However, the best 
solution for the general problem (insertions and deletions) has 0 ( fi) 
amortized query and update time [278]. 

 Complexity of Bend Minimization. Several issues on the computational 
complexity of minimizing bends in planar orthogonal drawings are open. 
No general polynomial-time algorithm for this problem is known. If the em- 
bedding is fixed, bend minimization can be done in time 0 ( n2 log n ) [ 1121. 
Particular classes of graphs are investigated in [ 1131. It would be interest- 
ing to improve on the sequential complexity and to develop a fast parallel 
algorithm for the fixed-embedding problem. 

a Area of Planar Upward Drawings of Trees. The area requirement of up- 
ward planar drawings of trees has been studied in [25, 261, where tight 
bounds are given for polyline drawings (8 (n ) ) and orthogonal drawings 
(@(n log log n) ). The area requirement of straight-line drawings is not 
known instead. The best upper bound is 0 (n log n ), while only the trivial 
Q(n) lower bound is known. 

 Angular Resolution of Planar Straight-Line Drawings. The angular resolu- 
tion of a planar straight-line drawing is the minimum angle formed by two 
edges incident on the same vertex. It has been shown that a planar graph 
of degree d has a drawing with angular resolution L2( 1/7d) [305]. Only 
the trivial 0( l/d) upper bound is known. 

 Size Bounds for Three-Dimensional Grid Drawings. Graph drawing systems 
which exploit for three dimensions already exist but very little theory has 
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been developed. In particular, practically nothing is known about upper 
and lower bounds for the sides of the enclosing rectangular prism of a 
three dimensional grid drawing. 
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Appendix A. Graph Drawing ‘93 

The following papers have been presented at Graph Drawing ‘93 [ 16 1. 

Session 0: Invited Lecture. Chair: Pierre Rosenstiehl 
On the Four Colour Problem. C. Berge 

Session 1: Geometric Graph Theory. Chair: Roberto Tamassia 
New Developments in Geometric Graph Theory. J. Path 

Session 2: Trees. Chair: Giuseppe Di Battista 
Characterizing Proximity Trees. P. Bose, W. Lenhart and G. Liotta 
A Note on Free Drawings of Binary Trees on a Square. F.J. Brandenburg and P. Eades 
Two Algorithms for Drawing Trees in Three Dimensions. B. Regan 
Area Requirement of Visibility Representations of Trees. G. Kant, G. Liotta, R. Tamassia and 

I. G. Tollis 
Session 3: Upward Drawings. Chair: Takao Nishizeki 

Efficient Computation of Planar Straight-Line Upward Drawings. A. Garg and R. Tamassia 
An Approach for Bend-Minimal Upward Drawing. U. F$meier and M. Kaufmann 

Session 4: Invited Lecture. Chair: Hubert de Fraysseix 
Representations of Planar Graphs. C. Thomassen 

Session 5: Representations in the Plane I. Chair: Anna Lubiw 
On Lattice Structures Induced by Orientations. P.O. de Mendez 
Complexity of Intersection Classes of Graphs. J. Kratochvil and Jifi MatouSek 
On Triangle Contact Graphs. H. de Fraysseix, P.O. de Mendez and P. Rosenstiehl 

Session 6: Representations in the Plane II. Chair: Ioannis G. Tollis 
Characterization and Construction of the Rectangular Dual of a Graph. S. Pimont and M. 

Terrenoire 
Two Algorithms for Finding Rectangular Duals of Planar Graphs. G. Kant and X. He 
A More Compact Visibility Representation. G. Kant 
Cone Visibility Graphs. A. Lubiw 

Session 7: Beyond the Plane I. Chair: Jgnos Path 
Circle Packing Representations in Polynomial Time. B. Mohar 
Generalizing Kuratowski’s Theorem. B. Mohar 
Automorphisms and Genus on Generalised Maps. A. Bergey 
Upward Drawing on Surfaces. I. Rival 

Session 8: Beyond the Plane II. Chair: Ivan Rival 
Tessellation and Visibility Representations of Maps on the Torus. B. Mohar and P. Rosenstiehl 
A Simple Construction of High Representativity Triangulations. T. M. Przytycka and J.H. 

Przytycki 
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On a Visibility Representation for Graphs in Three Dimensions. P. Bose, H. Everett, S. Fekete, 
A. Lubiw, H. Metjer, K. Romanik, T. Shermer and S. Whitesides 

On Graph Drawings with Smallest Number of Faces. J. Chen, S.P. Kanchi and J.L. Gross 
Session 9: Drawings and Flows. Chair: Michael Kaufmann 

A Flow Model of Low Complexity for Twisting a Layout. M. Bousset 
Convex and non-Convex Cost Functions of Orthogonal Representations. G. Di Battista, G. Liotta 

and F. Vargiu 
Topology and Geometry of Planar Triangular Graphs. G. Di Battista and L. Vismara 

Session 10: Complexity. Chair: Joseph Manning 
An Optimal PRAM Algorithms for Planar Convex Embedding. F. Dehne, H. Djia’jev and J-R. 

Sack 
Algorithms for Embedding Graphs Into a 3-page Book. M.S. Miyauchi 
Dominance Drawings of Bipartite Graphs. H. ElGindy, M. Houle, B. Lenhart, M. Miller, D. 

Rappaport and S. Whitesides 
Computing the Overlay of Regular Planar Subdivisions in Linear Time. U. Finke and K. Hinrichs 
Generation of Random Planar Maps. A. Denise 

Session 11: Symmetry. Chair: Peter Eades 
Symmetric Drawings of Graphs. J. Manning 
Recognizing Symmetric Graphs. T. Pisanski 

Session 12: Declarative Approaches. Chair: Franz J. Brandenburg 
Algorithmic and Declarative Approaches to Aesthetic Layout. P. Eades and T. Lin 
A Visual Approach to Graph Drawing. I.F. Cruz, R. Tamassia and P. Van Hentenryck 
Layout of Trees with Attribute Graph Grammars. G. Zinjmeister 
The Display, Browsing and Filtering of Graph-Trees. S.P. Foubister and C. Runciman 

Session 13: Graph Drawing Systems I. Chair: David Rappaport 
A Layout Algorithm for Undirected Graphs. D. Tunkelang 
Drawing Ranked Digraphs with Recursive Clusters. S.C. North 

Session 14: Graph Drawing Systems II. Chair: Robert F. Cohen 
Graph Drawing Algorithms for the Design and Analysis of Telecommunication Networks. Z.G. 

Tollis and C. Xia 
A View to Graph Drawing Algorithms through GraphEd. M. Himsolt 
An Automated Graph Drawing System Using Graph Decomposition. C.L. McCreary, CL. 

Combs, D.H. Gill and J. V Warren 
Session 15: Embedding and Planarization I. Chair: Bojan Mohar 

Maximum Planar Subgraphs and Nice Embeddings: Practical Layout Tools. M. Jiinger and P. 
Mutzel 

Heuristics for Planarization by Vertex Splitting. P. Eades and X Mendonca 
Planar Graph Embedding with a Specified Set of Face-Independent Vertices. T. Ozawa 

Session 16: Embedding and Planarization II. Chair: Herbert Fleischner 
Implementation of the Planarity Testing Algorithm by Demoucron, Malgrange and Pertuiset. 

S. B. Johansen 
A Unified Approach to Testing, Embedding and Drawing Planar Graphs. J.F. Small 
A Simple Linear-Time Algorithm for Embedding Maximal Planar Graphs. H. Stamm- Wilbrandt 
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