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1 Bayesian Networks

A Bayesian network consists of a graphical model and a set of probabilities.
The graphical model is a directed acyclic graph (DAG), in which nodes represent
random variables and edges represent probabilistic dependence. The terms node
and variable will be used interchangeably. Figure 1 shows an example of a
Bayesian network. For each node there is a probability distribution on that
node given the state of its parents. Thus, a Bayesian network specifies a joint
probability distribution over all nodes. We will not go into detail about the
joint probability distribution, but will only focus on the structure of Bayesian
networks. Before doing this, we will first introduce a few basic definitions. A
good introduction to Bayesian networks can be found in [1].

1.1 Basic Definitions

We denote a variable with an upper-case letter (e.g. X) and a set of variables
by upper-case bold letters (e.g. Z).

A DAG consists of a set of nodes V, and a set of edges E between nodes
of V. The number of nodes is n = | V | and the number of edges is is m =
| E |, where | · | denotes set cardinality. A DAG contains only directed edges
(→). The two ends of an edge we call marks or orientations. A directed edge
consists of a tail (−) and an arrowhead (>). We say an edge is into (or out
of) a node if the edge mark at the node is an arrowhead (or a tail).

Given a DAG G, two nodes are said to be adjacent in G if there is an edge
between them. Given two adjacent nodes X and Y , X is said to be a parent of
Y and Y a child of X if X → Y . A path in G is a sequence of distinct nodes
〈V0, . . . , Vn〉 such that for 0 ≤ i ≤ n− 1, Vi and Vi+1 are adjacent. A directed
path from V0 to Vn in G is a sequence of distinct nodes 〈V0, . . . , Vn〉 such that
for 0 ≤ i ≤ n − 1, Vi is a parent of Vi+1. X is called an ancestor of Y and
Y a descendant of X if X = Y or there is a directed path from X to Y . A
directed cycle occurs in G if Y → X and there is a directed path from X to
Y . Obviously a DAG cannot contain any directed cycles.

1.2 The Markov Condition and the D-separation Crite-
rion

A Bayesian network represents independence relationships between variables.
An edge denotes dependence, whereas the absence of an edge denotes (condi-
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Figure 1: A Bayesian Network

tional) independence. We define conditional dependence (independence) of two
sets of variables X,Y given Z as Dep(X; Y|Z) (Ind(X; Y|Z)), where X,Y are
distinct non-empty subsets of the variables V and Z is a (possible empty) subset
of the variables V \ {X,Y}, where \ denotes set difference.

This independence relationships in a Bayesian network are given by the
Markov condition:

Definition 1. Any node is conditionally independent of its nondescendants,
given its parents.

For example, consider the Bayesian network shown in Figure 1. The Markov
Condition implies:

1. Ind(Y ; {V,U, Z} | X)

2. Ind(W ; {X,U,Z} | {V, Y })

3. Ind(V ;Y | {X,U})

4. Ind(Z; {X,Y,W,U} | V )

A graphical criterion called d-separation captures exactly all the indepen-
dencies that are implied by the Markov condition. Before defining d-separation,
we first introduce the notion of colliders and blocked paths.

Definition 2. A node X of a path p is a collider if the previous and next nodes
of X on the path are into X.

In Figure 1, the node W is a collider on the path 〈Y,W, V 〉.

Definition 3. A path p from X to Y is blocked by a set of nodes Z, if some
node on p:

1. is a collider and neither it or any of its descendants are in Z, or

2. is not a collider and is in Z

If a path p is not blocked by a set of nodes Z, it is said to be active.

In Figure 1, the path 〈Y,W, V 〉 is blocked by Z = ∅, because W is a collider
and is not in Z.
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Figure 2: X,Y are the observed variables, whereas L is the unobserved variable.
Case 1: X is a parent of Y (in the context of the measured variables).
Case 2: Y is a parent of X (in the context of the measured variables).
Case 3: X and Y appear to be independent, which is correct.
Case 4: There is no Bayesian Network that can represent this situation; X and
Y are not independent, but no edge between them correctly represents their
independence relation.

Definition 4. Two nodes X and Y are d-separated by Z if and only if every
path from X to Y is blocked by Z. If two nodes are not d-separated, they are
d-connected.

Again, in Figure 1, the d-separation criterion implies:

1. Ind(U ; {X,Y } | ∅)

2. Ind(U ; {W,Z} | V )

3. Ind(Y ; {V,Z} | X)

4. Ind(X; {Y, V } | {W,Z})

1.3 Causal Sufficiency

If we could observe all variables in a domain, we could model the independence
relationships between them using a Bayesian network (this is not always the
case; we have to make a few (reasonable) assumptions, but this is out of the
scope of the current report). However, in practice it is impossible to measure all
variables in a domain. Therefore, when learning Bayesian networks, we assume
that there are no unobserved variables. This assumption is called the Causal
Sufficiency assumption.

For two variables and an unobserved (hidden) variable, there are four distinct
cases. All distinct cases are shown in Figure 2. Only one of them cannot be
modeled by Bayesian networks (the case where both variables have a hidden
common cause). In the next section we introduce Maximal Ancestral Graphs,
which are able to model this.
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Figure 3: Left: Real causal model. Right: An ancestral graph representing
the model on the left.

2 Maximal Ancestral Graphs

Maximal Ancestral Graphs (MAGs) ([5], [6], [4]) are a class of graphical
models with the property of modeling hidden common causes without explicitly
introducing them. From now on, the terms hidden common cause and hidden
variable will be used interchangeably. Hence, the Causal Sufficiency assumption
can safely be dropped. In the following subsection we introduce basic definitions
for MAGs.

2.1 Basic Definitions

Most of the definitions for Bayesian networks also hold for MAGs. In addition,
we will introduce some definitions for MAGs.

A directed mixed graph is a graph which in addition to directed edges (→)
also contains bi-directed edges (↔). Notice that a bi-directed edge is not the
same as two directed edges between two nodes; bi-directed edges model hidden
variables between the two variables. A mixed graph can also contain undirected
edges (−), but for the purpose of this report we focus only on directed mixed
graphs (i.e. mixed graphs without any undirected edges). Again, as in DAGs,
between two nodes there is at most one edge. X is called a spouse of Y if
X ↔ Y is in G. An almost directed cycle occurs when X ↔ Y is in G and X
is an ancestor of Y . The notions of parent, child, path, directed path, ancestor,
descendant and directed cycle remain the same as in DAGs.

Definition 5. A mixed graph is ancestral if the following conditions hold:

1. there is no directed cycle, and

2. there is no almost directed cycle.

It follows that an arrowhead edge mark denotes non-ancestry (whereas a tail
edge mark denotes ancestry in directed ancestral graphs).

The analogous of the d-separation criterion for mixed graphs is the m-
separation criterion. For directed mixed graphs, the m-separation criterion
is equivalent to the d-separation criterion.

As in DAGs, if two variables are m-separated by any set of variables they
are also conditionally independent. However, the opposite does not hold for
ancestral graphs. For DAGs, if two variables are not adjacent (i.e. conditionally
independent), then there is a set of variables that m-separates the two. This
does not always hold for ancestral graphs (see Figure 3). In this example, given
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Figure 4: Left: An ancestral graph. Right: The corresponding maximal an-
cestral graph.

the model on the left, one could represent it with the ancestral graph on the
right. Notice however that W cannot be m-separated from Y by conditioning on
any subset of the observed variables. But the ancestral graph does not contain
an edge between W and Y, implying that they are independent.

This motivates the following definition:

Definition 6. An ancestral graph is said to be maximal if every missing edge
corresponds to a conditional independency.

Maximality is closely related to the notion of primitive inducing paths. They
are defined as follows:

Definition 7. Let G be an ancestral graph. Let X,Y be any two vertices. A
path p between X and Y is called a primitive inducing path if:

1. every non-endpoint node on p is a collider, and

2. every collider on p is an ancestor of either X or Y .

It is known ([2]) that the presence of a primitive inducing path is sufficient
and necessary for two variables not to be m-separated by any set of other vari-
ables in an ancestral graph. Therefore:

Lemma 1. An ancestral graph is maximal if and only if there is no primitive
inducing path between any two non-adjacent nodes in the graph.

See Figure 4 for an example. The ancestral graph is not maximal, because
there is a primitive inducing path between W and Z (W ↔ X ↔ Y ↔ Z, X
is an ancestor of Z and Y is an ancestor of W). The ancestral graph can be
extended to the maximal ancestral graph on the right by adding a bi-directed
edge between W and Z.

2.2 Limitations

If two variables have a directed edge between them and also share a hidden
common cause, the MAG will only give us information about the directed edge.
That is because edges in MAGs focus on representing ancestral information; a
directed edge dominates a bi-directed edge. If we had a bi-directed edge instead
of a directed, it would imply that neither of the variables is an ancestor of the
other variable, which is obviously false in the presence of a directed edge. But
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the situation is even worse: there are cases where even if there is only a hidden
common cause between two nodes, the edge has to be oriented towards a node
to retain the ancestral semantics of MAGs.

Another issue is that, because MAGs focus on the representation of condi-
tional independencies between variables, there may exist edges in the MAG that
do not exist in the real underlying causal model. For this reason, we cannot
always interpret directed edges causally.

In the next sections we will analyze those cases and give conditions under
which we can (partially) identify them.

3 Pure Causal, Latent and Mixed Edges

A result stemming from the definition of ancestral graphs is the following:

Lemma 2. An arrowhead end-point out of some node X into another node Y ,
denotes that Y is not an ancestor of X.

Proof. Consider a MAG M, and two nodes X and Y .
First, assume X → Y is in M. Now assume that Y is an ancestor of X.

This would imply that there is a directed path from Y to X. But if there is
a directed path from Y to X, M would contain a directed cycle, which is not
possible by definition. Therefore, if X → Y , Y is not an ancestor of X.

Now assume that X ↔ Y is in M. Without loss of generality, assume that
X is an ancestor of Y . This would imply that there is a directed path from Y
to X. But if there is a directed path from Y to X,M would contain an almost
directed cycle, which is not possible by definition. Therefore, if X ↔ Y , Y is
not an ancestor of X, and vice versa.

A side effect resulting from the semantics of edge end-points is that, if two
variables share a directed edge and a hidden common cause, the MAG will
only contain a directed edge and will hide the bi-directed edge between them.
Another side effect is that, because a MAG cannot contain any almost directed
cycles, a directed edge in a MAG may not exist in the real underlying causal
model, but may be there due to a hidden variable (i.e. it should be bi-directed,
but it can’t be). Figure 5 shows all possible real models for two nodes that share
a directed edge.

A question that arises is, if and under what conditions we can classify di-
rected edges into one (or more) of the three categories. Ideally, we would like
to classify each directed edge into one category. However, this is not possible.
Directed edges can be classified into the following categories:

1. directed or directed and bi-directed ({→} or {→ and ↔}, mixed)

2. directed or directed and bi-directed or bi-directed ({→} or {→ and↔} or
{↔}, mixed)

3. directed only ({→}, pure causal)

Hence, the problem is defined as follows:
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Figure 5: Left: X is into Y, and both share a hidden common cause. Middle:
X and Y share a hidden common cause. Right: X is into Y.

Problem 1. Given a MAG M, classify each directed edge into one of the three
categories.

As a first step towards the solution, recall that a bi-directed edge may be
oriented as a directed edge, if and only if it would create an almost directed cycle
if oriented as a bi-directed edge. This has to be done to retain the ancestral
semantics of edge end-points. This fact leads to a simple rule:

Rule 1. For a directed edge X → Y , if there is another directed path from X
to Y , it may not be directed in the real underlying model, but may be due to a
hidden variable. Thus, if there is no directed path from X to Y , the edge surely
does not belong to the second category.

By applying this rule, we can, sometimes, exclude the second case. But we
can do even better. The notion of visibility ([3]) will help us at our task. But
before defining it, we first define what a collider path is.

Definition 8. A collider path between two nodes X and Y , is a path where
each node on it is a collider.

Now we can define visible and invisible edges:

Definition 9. A directed edge X → Y is visible if there is a node W not
adjacent to Y , such that either there is an edge between W and X that is into
X, or there is a collider path between W and X that is into X and every node
on the path is a parent of Y . Otherwise the edge is said to be invisible.

Figure 6 shows all possible cases for a visible edge. Visibility is defined in
the context of a totally different problem, but seems to be closely related to our
problem .

Lemma 3. If a directed edge is visible, it is also pure causal.

Proof. We will prove it for one of the four cases and generalize it to all of
them. Consider the upper-left case in Figure 6. The edge X → Y is visible, by
definition, subject to W . We will show that the edge is also pure causal, i.e.
there is no hidden common cause of X and Y .
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Figure 6: All possible cases where the edge X → Y is visible.

Assume the real model contains the directed edge X → Y and X,Y share
a hidden common cause L. By observing the MAG, we see that there is no
edge between W and Y , which means that they are m-separated by {∅} or {X}.
But {∅} cannot m-separate W and Y , because the path W → X → Y remains
active. Neither can {X}, because it opens the path W → X ← L→ Y . But if
it cannot be m-separated by any set of measured variables, W and Y must be
connected. Contradiction.

But we also saw that if X → Y and there is another directed path from X
to Y , the edge may not be directed at all in the real model. Therefore, we also
have to show that even in that case, X → Y is pure causal, if it is visible.

Assume that X,Y share a hidden common cause L in the real model and
there is an indirect directed path p from X to Y (i.e. they are not directly
connected via a directed edge). Again, because there is no edge between W
and X, they have to be m-separated by {∅} or some subset of the nodes on
p
⋃
X. But {∅} cannot m-separate W and Y , because the path W → X → Y

remains active. Neither can any subset of p
⋃
X, because it opens the path

W → X ← L→ Y . That is because if X (which is a collider on that path) or any
of its descendants is in the separating set, it opens the path W → X ← L→ Y .
But all nodes on p are descendants of X. Thus, W and Y cannot be m-separated
by set of measured variables and must be connected. Contradiction.

Now to generalize this proof, notice that what holds for the upper-left case,
also holds for the lower-left case. Also notice that for the other cases, to block
all paths from W to Y , one has to include all nodes on the collider path in the
separating set. That is because the first node V1 has to be there, to block the
path W → V1 → Y , but it opens the path W → V1 ↔ V2 → Y , thus V2 has
to be also in the separating set, which inductively holds for all nodes on p until
X. Because of that, the upper-right and lower-right cases trivially reduce to the
upper-left and lower-left cases, by including all nodes on p in the conditioning
set.

Based on lemma 3, we can define the following rule:

Rule 2. For a directed edge X → Y , if the edge is visible, the edge belongs to
the third category.
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Algorithm 1: Find Visible Edges(MAG M)

1 Mark all directed edges as invisible;
2 Q ← Queue();
3 for each directed edge X → Y in M do
4 if ∃ W s.t. (W → X or W ↔ X) and (W not adjacent to Y ) then
5 Mark X → Y as visible;
6 Q.enqueue({X,Y });

7 while not Q.isempty() do
8 {X,Y } ← Q.dequeue();
9 for each V s.t. X ↔ V and V → Y do

10 if V → Y is invisible then
11 Mark V → Y as visible;
12 Q.enqueue({V, Y });

13 return All Marked Edges;

To summarize:

Rule 3. For a directed edge X → Y :
If the edge is visible

X → Y ⇒ category 3 ({→})
Else if there is another directed path from X to Y

X → Y ⇒ category 2 ({→} or {→ and ↔} or {↔})
Else

X → Y ⇒ category 1 ({→} or {→ and ↔})

Algorithm Find Visible Edges finds all visible edges in a MAG. We will
prove that it is sound and complete and provide an upper bound for its time
complexity. The following lemma will be helpful.

Lemma 4. Given a collider path p 〈W∗ → V1 ↔ V2 ↔ · · · ↔ Vk〉, (where ∗ →
can be either → or ↔) and a node Y s.t. W and Y are not adjacent and for
each node Vi, i = 1, 2, . . . , k, Vi is into Y , all edges Vi → Y are visible.

Proof. By definition, V1 → Y is visible, because W is not adjacent to Y . We
will prove that this also holds for any other edge Vi → Y by induction.
Base case: V2 → Y is visible relative to W , because V1 ↔ V2 is a collider path
and each node on the path is into Y
Inductive hypothesis: Vi → Y is visible relative to W
Inductive step: Vi+1 → Y is visible relative to W , because:

1. W is not connected to Y ,

2. W∗ → V1,

3. there is a collider path from V1 to Vi, and every node on it is into Y ,

4. by adding Vi+1 to the path, it remains a collider path because Vi ↔ Vi+1

and each node is into Y because Vi+1 is also into Y .
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Lemma 4 introduces the basic idea which is used in algorithm Find Visible
Edges. Starting from a trivial visible edge (without the collider path), it incre-
mentally searches for additional visible edges. The most important idea to make
the algorithm efficient is that, if while searching for visible edges we find an edge
that already is marked as visible, the current search can be stopped. That is
because if we encounter such an edge, it means that we already searched out of
all collider paths from that node and all visible edges after that will already be
marked as visible. Because of that, the search tree can be pruned so much mak-
ing the algorithm run in O(n ·m) time. We next show that the algorithm Find
Visible Edges is sound and complete and that its time complexity is O(n ·m).

Theorem 1. The algorithm Find Visible Edges is sound and complete, i.e.
it finds all visible edges imposed by definition 9.

Proof. Obviously the algorithm is sound, because an edge will be classified as
visible if and only if it is due to some of the cases in definition 9, which are the
cases considered by the algorithm.

Also the algorithm is complete, because the algorithm first finds all trivial
visible edges (first two cases) and then incrementally searches for all visible
edges resulting from collider paths (which is correct due to lemma 4). This
search finds all possible visible edges for the last two cases. Thus, the algorithm
always finds all possible visible edges as defined in definition 9.

Theorem 2. The algorithm Find Visible Edges runs in O(n ·m) time.

Proof. The computational costly parts of the algorithm are lines 3-6 and 7-12.
Note that each operation on the queue takes constant time O(1).

The loop at line 3 will run O(m) times. For the if statement at line 4, we
have to find all nodes W → X and W ↔ X, which can be computed in O(n)
time (each node is adjacent to at most n−1 other nodes), and then out of those
check if any is not adjacent to Y , which again takes O(n) time. The statements
at lines 5 and 6 take constant time. Thus, lines 3-6 take O(n ·m) time.

At this point, Q may contain at most O(m) elements. At each iteration
we remove one element (line 8). Line 9 takes O(n) time (similar to line 4).
Lines 10-12 take constant time. The only line that could cause a problem is line
12, because it increases the elements in Q and could lead to more iterations.
Notice however that an element is added only if a visible edge is found which was
previously invisible (line 10). But if it was invisible, it never was in Q. Therefore
each visible edge will be exactly once in Q. But the number of visible edges
is at most O(m). Thus, the outer loop (line 7) will run O(m) times, with a cost
of O(n) each, and the total running time of lines 7-12 is O(n ·m).

Both, lines 3-6 and 7-12 run in O(n ·m) time, therefore the algorithm Find
Visible Edges runs in O(n ·m) time.

Theorem 3. The total time needed to classify all edges using Rule 3 is O(n2 +
n ·m).

Proof. The time to find all ancestors for some node is O(n+m), by using some
modified graph search procedure such as DFS or BFS. This has to be done for
each node and therefore takes O(n2 + n ·m) time. Classifying all edges takes
O(n ·m) time. Therefore the total time complexity is O(n2 + n ·m).
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Figure 7: Left: Real underlying model. Right: Respective MAG.
The MAG contains the directed edge W → Y even though it does not exist in
the real model. That happens because it W and Y cannot be m-separated by
conditioning on any subset of the observed variables.

4 Direct and Possibly Indirect Edges

As stated in section 2.2, there may exist edges in a MAG, without existing in
the real underlying causal model. That happens because the MAG focuses on
representing independence relationships between variables rather than causal
relationships. The consequence of this is that directed edges cannot always be
interpreted causally. An example is shown in Figure 7.

It is proven ([2]) that two nodes are not m-separated by any set of variables
if and only if there is an inducing path between them. Therefore, an extra edge
between two nodes exists in a MAG if and only if there is an inducing path
between them. In Figure 7, the inducing path is W → X ← L → Y . But how
are the edges directed? This is answered by the next theorem ([5]):

Theorem 4. If G is an ancestral graph then there exists a unique maximal
ancestral graph M formed by adding bi-directed edges to G.

So, additional edges in a MAG are bi-directed. But that is not always the
case; recall that sometimes a bi-directed edge has to be directed because it
would create an almost directed cycle if left as bi-directed. Based on this, we
can define the next rule.

Rule 4. A directed edge X → Y which does not exist in the real model exists
in the MAG if and only if, a) there is an inducing path between X to Y , and b)
there is a directed path from X to Y . Thus, a directed edge possibly does not
exist in a MAG if and only if both a) and b) hold, and should be classified as
possibly indirect. If this is not the case, the edge exists and should be classified
as direct.

An immediate problem that occurs is that it is very hard to identify inducing
paths when only observing the MAG. That is, because bi-directed edges may
be hidden by directed edges. But we already solved this problem in section 3.
Although we may not be able to fully identify in which category each directed
edge belongs, we can at least partially identify it. A directed edge is possible
bi-directed if it is in category 2 or 3. A path is a possible inducing path, if
it would be an inducing path if possible bi-directed edges would be treated as
bi-directed. The next rule describes when a directed edge is direct or possibly
indirect.

11



Rule 5. For a directed edge X → Y :
If ∃ possible inducing path from X to Y ∧ ∃ directed path from X to Y

X → Y ⇒ possibly indirect
Else

X → Y ⇒ direct

Theorem 5. The complexity of applying rule 5 for all directed edges in a MAG
M, is O(n2 + n ∗m).

Proof. As a first step, we have to find the category of each edge. This takes
O(n ·m) time. Then we have to find all descendants for each node, and all nodes
it may have an inducing path to. Finding the descendants of one node can be
done using a modified graph search procedure such as DFS or BFS in O(n+m)
time. The same applies for finding all nodes it may have an inducing path to,
by modifying the search procedure accordingly. There are a total of n nodes,
therefore we need O(n2 + n ·m) time.

The second step is to classify each edge. For a single edge X → Y it takes
O(n) time, because we just have to check if Y is in both, the descendant and
possible inducing path sets, which can be done with a linear search. This is done
for each directed edge (at most m), therefore the time complexity is O(n ·m).

The total time complexity of applying rule 5 is O(n2 + n ·m).
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