Grid Hamiltonicity

Project report

Lazaros Koromilas
koromil@csd.uoc.gr

Computer Science Department
University of Crete

May 27, 2011

1 Introduction

The infinite grid (G*°) can be thought of as the graph whose vertex set
consists of all points in the plane with integer coordinates; edges exist only
between vertices whose Euclidean distance is equal to 1. A grid graph is a
finite, node-induced subgraph of G°°, thus is totally defined by its vertex
set. A bounded face with exactly four edges on its boundary is called a cell;
all other bounded faces are called holes. Other types of grids exist apart
from the square grid described previously. For instance, triangular grids can
be built by tiling equilateral triangles together; the same can be done with
regular hexagons to form hexagonal grids and so on. For more information
on general convex polygon grids see [2]. Throughout this document the
terms “grid graph” and “grid” are used interchangeably, and refer to finite
square grids.

Computations on grid graphs are very commonly used in the implemen-
tation of computer graphics engines, in computational geometry, robotics
and more. In computer science, in general, the grid is used as a tool to
approximate continuous domains with discrete point sets. Of course, the
theoretical construct of grid graphs is also of great importance. In this
work, the properties of grid graphs, as well as the Hamiltonian cycle and
Hamiltonian path problems on grids are being explored.

Grid graphs have unique properties that probably make some of the hard
problems easier to solve, and thus permit efficient algorithms. Firstly, they
are planar and have mazximum degree 4 by design. Another property is that

mailto:koromil@csd.uoc.gr

they are bipartite. The latter can be seen by coloring vertices according to
their coordinates: each vertex v has coordinates v, v, whose sum is either
even or odd, and all neighbors of v have different parity because they differ
by 1 in only one of the coordinates.

A tour that visits each vertex of a graph only once is called a Hamiltonian
cycle. Moreover, a graph that contains at least one such tour is called
Hamiltonian. If two endpoints s, t are specified, then the problem of finding
a path, beginning at s and finishing at ¢, that visits all vertices only once is
called the Hamiltonian path problem. Despite the distinct nature of grids,
the Hamiltonian cycle problem on general grid graphs has been proven to be
NP-complete [4]. The Hamiltonian path, which is a very similar problem,
is also NP-complete. Consider choosing a corner (degree 2) of the grid G as
s and any of its neighbors as t. Then the problem of finding a Hamiltonian
path from s to t in G becomes a matter of finding a Hamiltonian cycle in G.

A Hamiltonian cycle can also be seen as a special case of a 2-factor. A
2-factor of a graph G is a subgraph of G with the same vertex set and a
smaller edge set, such that all vertices have degree 2. Visually, this is a set
of disjoint cycles of G, and every such cycle is a component of the 2-factor.
Consequently, a 2-factor with only one component is by definition also a
Hamiltonian cycle.

The study of grid hamiltonicity requires more restrictions to be put on
the form of grid graphs in order for the problems to become easy. To this
end, a classification of grids is necessary. The class of grid graphs that will
be discussed here is known as solid grid graphs or grid graphs without holes.
More formally, this means that given a grid G, both graphs G and G* — G
are connected. Trivial cases of graphs containing a vertex of degree 1 are
excluded, because it cannot possibly be part of a tour. Examples of a grid
graph with and without holes are given in Figures 1 and 2 respectively.

Furthermore, the Hamiltonian cycle problem is closely related to the
Traveling Salesman problem. The Traveling Salesman problem is the prob-
lem of identifying a Hamiltonian cycle of minimum total length, and it gen-
erally concerns graphs with weighted edges. The complexity of the Traveling
Salesman problem in a solid grid graph is still an open problem, although
the Hamiltonian cycle problem for this subclass of grids has been proven to
be P-hard [6].

Figure 1: A grid graph with a hole. Figure 2: A solid grid graph.

2 Related work

In [4] a polynomial time algorithm for discovery of Hamiltonian paths in rect-
angular (see Figure 3) solid grid graphs is provided. They employ a striping
and splitting technique which is essentially a divide and conquer solution
that terminates when prime problems (those which cannot be stripped or
split) are encountered. Prime problems either have known solutions or no
solution at all. Rectangular solid grid graphs is of course a subclass of grid
graphs without holes.

Another grid class is defined in [1] and can be described as solid grids with
a vertical boundary, a horizontal boundary and a distorted ladder boundary.
An example of this type of grids can be seen in Figure 4. A linear algorithm
is given for computing Hamiltonian cycles in this class of grids, that obvi-
ously includes rectangular grids (a rectangular grid has a ladder in which
all “steps” are of equal height). The main idea of the algorithm is to locate
suitable horizontal and vertical cuts, in order to obtain solvable subproblems
and glue their solutions together. The choice of cuts uses properties of the
ladder and of graph balance, that is also defined for these grids.

A polynomial solution for hamiltonicity for a subclass of 3-dimensional
grid graphs can be found in [3]. The class of graphs they studied is called
polycubes and are constructed as layers of simple polyminos. A simple
polymino is a bi-connected solid grid graph; an example of this type of
grids is included in Figure 5. The authors even conjectured that deciding
Hamiltonicity for solid grids is NP-complete.

The computation of Hamiltonian cycles in solid grids, is proven in [6] to
have a polynomial solution. The algorithm first finds an initial 2-factor F' of
the grid G and works on the borders of the 2-factor’s components. A border
cell is a face that shares edges with many components. It is then possible

Figure 4: A grid graph with a ladder.

Figure 5: A simple polymino.

to employ cycle merging by identifying cell configurations and flipping their
adjacent edges. As an example consider a border cell with exactly two
non-adjacent edges be part of F'. Then, by inverting the face’s edges, two
components of the 2-factor are merged (Figure 6).

! HEEE

Figure 6: Merging of two cycles.

L

3 Algorithm implementation

In this project, the first step to finding Hamiltonian cycles in solid grid
graphs, as well as a visualizer for grid graphs, have been implemented. More
specifically, the algorithm studied finds a 2-factor in a grid, if one exists,
using a reduction to matching. A matching is a vertex-disjoint subset of the
edges chosen in such a way that no edges share a vertex. If all vertices are
matched with another one, then the matching is called perfect.

An auxiliary graph is constructed from the grid graph using the following
rules/steps: (i) two dummy vertices are added on every edge and (ii) a clone
vertex is created for every original vertex, and this clone vertex is connected
to the dummy vertices adjacent to the original. A maximum matching in
the auxiliary graph gives a 2-factor in the original graph. If a maximum
matching cannot be obtained, then there is no 2-factor in the grid and thus
it cannot contain a Hamiltonian cycle. In other words, a grid graph has a
2-factor if and only if the auxiliary graph has a perfect matching. A proof of
this can be found in [5]. The constructed graph for the grid of Figure 2 and a
perfect matching (shown with bold lines) are displayed in Figure 7. Finally,
to obtain the 2-factor (see Figure 6) only the edges between dummy nodes
are considered and map to the original edges. If such an edge is included in
the matching then it is excluded from the 2-factor. The algorithm runs in
time O(n - m) which is equivalent to O(n?) because the degree of a grid is
bounded.

The key function of the matching algorithm is based upon the notion
of augmenting paths. An augmenting path is a path starting from an un-
matched vertex, continuing with edges that alternate between being out
and in the matching, and ending to an unmatched vertex again. While such
paths are identified, their edges are inverted so that those already inside are

Figure 7: A perfect matching on the auxiliary graph.

LD

Figure 8: Augmenting of a path.

removed from —while the rest are added to— the matching (see Figure 8).
Observe that the path after the augmentation contains one more edge that
contributes to the matching. This is an approach of iterative improvement:
the solution is improved step-by-step until there is no room for improvement.
The resulting matching is guaranteed to be maximum.

The main idea of the algorithm described above is shown in Figure 9
(TwOFACTOR). In line 1 the auxiliary graph 7" is constructed and a max-
imum matching M is computed on this graph (line 2). Finally, at line 3
the 2-factor F' is obtained by the set difference between the edges E of the
original graph and the edges M that comprise the matching in the auxil-
iary graph. As stated previously, only the edges between the dummy nodes
added at step (i) are comparable to the original edges of the graph.

The other algorithm of Figure 9 (HAMILTONCYCLE) is the main proce-
dure for discovering Hamiltonian cycles. If a 2-factor F' cannot be obtained
at line 1, the algorithm exits (line 2) as there is no possible Hamiltonian
cycle in the specific graph G. The loop at lines 3-8 iterates over the compo-
nents of F' and tries to merge the respective cycles until only one component
remains. This component will be a Hamiltonian cycle. At each iteration, all

HAMILTONCYCLE(G)
Input: G is a grid without holes

1 F < TwOFACTOR(G) TWOFACTOR(G)

2 if not F' then exit Input: G is a grid graph
3 while components > 1 do

4 LABELCOMPONENTS(F)

5 S <« FINDSTRIPSEQUENCE(G, F))
6 if not S then exit

7 else APPLYSEQUENCE(F, S)

8 end

1 T < CONSTRUCTAUX(G)
2 M < MAXMATCHING(T)
3F+FE-M

Figure 9: The high-level algorithm for finding Hamiltonian cycles.

current components are identified /labeled (line 4) and the procedure FIND-
STRIPSEQUENCE searches for a sequence S of strips that when flipped, the
number of components in F' will be reduced by one. These strips are series
of cells with very specific configurations; for a detailed description of these
configurations refer to [6]. If no such sequence exists the algorithm termi-
nates resulting in a negative result for the existence of Hamiltonian cycle
in G (line 6). If a sequence S is found, it is applied at line 7 and the loop
continues. The time complexity of this algorithm is dominated by the run-
ning time of all-pairs-shortest-paths needed in FINDSTRIPSEQUENCE that
is O(n?®) with the generic algorithm and is repeated at most n times, so it
has a total time complexity O(n?). A smarter procedure for finding such
sequences would lower the time complexity and the total complexity could
be affected only by the initial 2-factorization.

The development of the visualizer required some understanding of the
FIG format® (Facility for Interactive Generation of figures). Consider an
object-oriented programming environment, where the Graph class contains
a to_fig method that reflects the state of the graph to a .fig file. This
can also work as a snapshoting mechanism in order to record an algo-
rithm’s progress by hooking figure generation calls in its code. The pro-
duced figures can be exported in numerous vector and raster graphics for-
mats using the fig2dev utility. The whole implementation consists of some
hundred lines of Ruby code and several shell scripts for image exporting
and video/animations generation. To better demonstrate the results of the
TwOFACTOR algorithm and the visualizer, another example of a 2-factor
for a larger solid grid graph is displayed at Figure 10.

"http://www.xfig. org/userman/fig-format.html

http://www.xfig.org/userman/fig-format.html

4 Conclusion

Several subclasses of grid graphs have been studied in this project, all with
very specific morphology that enable efficient algorithms for the Hamiltonian
cycle problem. For general grid graphs (grids with arbitrary holes) it is
NP-hard to identify a Hamiltonian cycle. The inherent difficulty of grids
containing holes, when it comes to algorithms’ correctness, is a topological
issue. The 2-factorization, for instance, does not require a solid grid, but the
algorithm that performs cycle merging cannot work without the assumption
of a solid grid. Intuitively, this is because, when applying a transformation,
an otherwise successful cycle merging may now fail because of the borders
of a hole. Similarly, for the divide and conquer algorithms proposed for
rectangular grids and grids with a ladder, the solutions of the subproblems
will not always have a proper join if holes are in-between. However, it is still
an open problem if some holes can be allowed in specific regions of a grid
for the Hamiltonian cycle problem to have an efficient polynomial solution.

References

[1] F.N. Afrati. The Hamilton Circuit problem on Grids. Informatique
Théorique et Applications (ITA), 28(6):567-582, 1994.

[2] E.M. Arkin, S.P. Fekete, K. Islam, H. Meijer, J.S.B. Mitchell, Y. Nigez-
Rodriguez, V. Polishchuk, D. Rappaport, and H. Xiao. Not Being (Su-
per) Thin or Solid is Hard: A Study of Grid Hamiltonicity. Computa-
tional Geometry, 42(6-7):582—605, 2009.

[3] C. Hwan-Gue and A. Zelikovsky. Spanning Closed Trail and Hamiltonian
Cycle in Grid Graphs. In Proceedings of the 6th international symposium
on Algorithms and Computations (ISAAC), Cairns, Australia, page 342.
Springer Verlag, 1995.

[4] A. Itai, C.H. Papadimitriou, and J.L. Szwarcfiter. Hamilton Paths in
Grid Graphs. Society for Industrial and Applied Mathematics (SIAM)
Journal on Computing, 11:676, 1982.

[5] C.Umans. An Algorithm for Finding Hamiltonian Cycles in Grid Graphs
Without Holes. Bachelor’s Thesis, Williams College, 1996.

[6] C. Umans and W. Lenhart. Hamiltonian Cycles in Solid Grid Graphs. In
Proceedings of the 38th Annual Symposium on Foundations of Computer
Science, pages 496-505. IEEE, 1997.

Appendix

O O O O O
O O O [Ol
O O QO O O—
O O O O
O O O ’ O O
Qe O O O O
[O e, O O O
Ol O i
O O O O i
O O O O e,] O ¢
e, O O O o
O O @r—)
O O QO O ® QO
O O e, l O
O O O O O O O
e O [e ®) [e]
O O O O Ol O
(e, O O O e, O
O O O O O O O
O O O O O @) Om—
O O O (e,
O O O O O O

Figure 10: The 2-factor obtained for a larger grid graph.

	Introduction
	Related work
	Algorithm implementation
	Conclusion

