Distributed Clustering from Peer-to-Peer
Networks

Georgios Chinis
Computer Science Department
University of Crete

chinis@csd.uoc.gr

May 30, 2011

1 Introduction

Decentralized peer-to-peer (P2P) clustering has wide-ranging applications
such as in P2P file sharing systems, mobile ad-hoc networks, P2P sensor
networks and so forth. However, it is very challenging to design a clustering
protocol for such networks since by design there exist no central point of
administration or even an entity with complete knowledge of the network.
Moreover, nodes in such systems can communicate only with their neighbors.

Clustering algorithms are divided into two categories based on their clus-
tering criterion. First is the connectivity based clustering. This clustering
is based on criteria from the topology of the node. For instance its degree
or the probability returning back after a random walk in the graph. Second,
there is the content-based algorithm. In this approach clustering is based on
some similarity between the nodes that is orthogonal with the graph with its
position on the graph, usually nodes are clustered based on a property they
acquire from external sources.

2 CDC

The connectivity-based distributed node clustering (CDC) [3] algorithm clus-
ters nodes according to their position in the network. In contrast to central-

ized algorithms CDC only requires local knowledge about neighboring nodes.
An important property of this algorithm it the ability to cluster the entire
network or discover clusters around a given set of nodes. Moreover the al-
gorithm is capable of handling dynamic entrance and exit of nodes without
resorting to re-clustering.

2.1 The Idea

The CDC algorithm tries to simulate the network flow in the network in a
distributed and scalable fashion. The rationale behind clustering based on
network flow is based on the following intuition. Imagine the network as a
set of intersecting roads. Roads represent the edges of the graph and the
intersections the vertexes. Suppose that from a node in the graph, called the
originator node, starts a large number of people each holding some weight.
The crowd does not know the topology of graph so it chooses roads, vertezes
at random. Each time a person reaches a node it leaves some of it weight,
chooses a road at random and continues wandering in the graph. From this
algorithm we can observe the following results.

e Nodes around the originator node have accumulated more weight than
those far from it.

e Nodes that are densely connected with the originator, having more
paths with it, have accumulated more weight.

The CDC algorithm is based on the previous observations. If there exist
a few originators in the graph from where people could start random walks,
the nodes would acquire different weight for each originator. Then, the nodes
could join the cluster from whose originator received the maximum weight.

2.2 The Algorithm

The algorithm works by sending messages from the originator to the rest
of the nodes in the graph. The election of the originators will be dis-
cussed in the nect session for now let’s assume that there exist a set of
O = {01,0,,---,00}. These originator initiate the clustering by sending
messages to their neighbors. Each message contains the ID of the originator
that initiated (OID), a Time-to-Live (TTL) and the weight (MWeight). Each

originator O; initiates the MWeight = We(o-)' TTL is a small integer used

Figure 1: Different clusterings based on the selection of the originator nodes
(dark color).

for preventing messages from circulating in the network for ever. Each node
that receives a messages decreases the TTL by one before forwarding it to
its neighbors. If a node ever receive a message with TTL zero or less than
zero it discards it. Finally, the OID is used by the nodes to summarize the
weight they receive from each originator.

Upon receiving a message a node V; it updates the total weight received
from the corresponding originator. Then it checks the TTL of the message,
if it is greater then zero, the weight is divided by the degree of the node, the
TTL is decreased by 1 and the new message if propagate to all its neighbors.
Each node can receive multiple messages from each originator, after a node
has received the last message, the node joins the cluster from whose originator
it received the maximum weight. If the node has not accumulated enough
weight from any originator then it can choose to remain an outlier.

For a node to join a cluster it need to send message to the originator
of the cluster containing its ID. In the future if the node accumulate more
weight from a different originator it can withdraw from its current cluster
and join the new one, informing the two originators about the change.

2.3 THP Originator Determination Scheme

The algorithm is capable of automatic partitioning the whole graph or par-
titioning around some designated nodes. In the latter case the choice of the
originators is straightforward in the former case the choice of the originators
greatly affects the quality of the clustering. As shown in Figure 1 the orig-
inator in scerarios 1,2 results to fairly good clustering, on the other hand
scenarios 3,4 the clustering is far from optimal. In scenario 3, the originators
are very close to each other which causes areas off the graph to be remote
from any originator. In scerarion 4, the originators in spite of being scattered
fail to provide a good clustering. This leads to two properties that originators
must hold.

Property 1 The set of originators should be spread out in all the regions
of the graph.

Property 2 A node Vj is considered to be a good originator if it acquires
more weight due to messaged initiated by it than the weight acquired
by other originators.

Based on the previous two properties the authors draft an algorithm
for originator selection. Each node wakes up spontaneously and perform
two operations. First, it checks if there are other originator in the vicinity.
The vicinity configurable parameter. The node checks from the messages
it has received if MSG.TTL > InitialT'T L — Vicinity if this inequation
holds than the node is unsuitable for originator. In order to distributively
check if the second property holds the node computes the two hop probability.
TwoHopProb(Vi) = Yv.enurv)(Deg'ree(Vl)>1< Degree(V;)) The two hop probability
is the probability of returning the originator after performing a random walk
from the originator of length 2.

2.4 Handling Dynamics of Nodes

Since this algorithm is designed to work on P2P networks it is crucial to
handle nodes entering and leaving the system dynamically without the need
of re-clustering the network from the beginning. The first problem it handling
node entry. A node entering the system knows only its immediate neighbors.
Based on that knowledge the node computes how strong it is attracted to
neighbor clusters. ClustAttraction(C'L;) = YvcciavieNor(vy) We(%) The

4

node can choose to join the cluster with maximum ClustAttraction or remain
an outlier if it is not attracted enough from any neighboring cluster.

In case of a node leaving the system than the neighbors need to evaluate
their clustering since the leaving node may was the one that connected them
to their cluster. Hence, when a node exits the system the neighbors need
to compute the ClusterAttaction, as in node entry, to decide if they need to
change their clustering.

3 SDC

The SCM-based Distributed Protocol (SDC) [2] is another approach for dis-
tributed connectivity-based clustering. The main criterion for this clustering
is that in a good cluster the intra-node connectivity should be maximized
and the inter-cluster connectivity should be minimized. Also, the size of the
clusters should remain inside some boundaries since expanded cluster are
difficult to administered in decentralized systems and provide little to the
overall stability of the system.

3.1 The Idea

The algorithm is based on the Scaled Measured Moverage (SCM) metric
proposed in [1]. The SCM is defined as:

|FalsPos(v;, C)| + |FalseNeg(v;, C)|

SCM(v;) =1 — [Nbr(v;) U Clust(v;)]

Nbr(v;) is the set of neighbors of node v;.
Clust(v;) is the set of node in the same cluster as node v;.

FalsePos(v;, C') is the set of nodes in the same cluster as v; but not neigh-
bors of v;.

FalseNeg(v;, (') is the set of neighbors of v; but not in the same cluster as
V;.
Based on for the SCM for one node we also define the SCM for a graph
SCM (v;
as SCM(G) = M It is easy to see that the higher the SCM the

n

smaller the connectivity between clusters and the higher the connectivity in-
side clusters. For graphs containing only isolated clusters that are themselves
fully connected, the SCM value is 1. Based on the previous observations the
problem of network clustering can be simplified as partitioning a network
topology so that SCM is maximized.

3.2 The Algorithm

In the beginning, each node consists of a cluster by itself. Then nodes start
creating clusters in a greedy manner. Each node sends a cluster request to
its neighbors notifying them for its willingness to perform clustering. The
neighbors receive the request and respond if they are willing to participate
in the clustering. A node can deny taking part to some nodes clustering if it
is already involved in some else’s node clustering. If the neighbors confirm
that they will co-operate then the second phase of the clustering begins.
In this phase the originating node sends a ’cluster confirm’ message to its
neighbors, which in turn propagate this message to the other nodes in the
same cluster as them until all nodes in the cluster have received it. When
a node receives a ’cluster confirm’ message it sends back the originator a
message containing the ASCM. ASCM is computed as follows, if the node
belongs in the same cluster as the originator then ASCM is the difference
of the current value of the SCM for this node and the value of the SCM is
the originator leaves the cluster. If the node is not in the same cluster as
the originator is the difference between the current SCM and the SCM if the
originator joins the cluster. The originator receives the responses from all
the nodes in the same cluster and all nodes in the neighboring clusters and
compute the ASCM(G) = Ajoin + Ajeqve. Should this value is positive the
node will abandon its current cluster and join the neighboring cluster. After
that, the node notifies its neighbors so that they recompute their position
and maybe change cluster. If there are more than one neighboring clusters
then the node compute ASCM(G) = Ajyin + Ajeave for each one of them
and joins the one with the maximum positive value.

The algorithm can vulnerable to deadlock because for clustering opera-
tion of one node there have to co-operate two clusters. If two nodes start
clustering simultaneously and they share a common neighboring cluster then
it is possibly that some of the nodes in the cluster will participate in the
one node’s clustering and the other nodes in the cluster to the other node’s
clustering. In that case no originating will have the co-operation of the full

cluster and hence will wait forever until the rest of the nodes are available.
The authors propose the use of timeout where the originating node wait a
specific amount of time and then cancels the clustering and second the use
of random timing so that no two nodes decide to cluster at the same time.

\ / ——

- Cluster A Cluster B T Cluster A Cluster B
a. Node 0 sends “Clust_Request” b. Node 0 receives “Clust_Reply”
to all the neighbors from all the neighbors
L refused N waiting

- Cluster A Cluster B "7 Cluster A Cluster B
c. Node 0 sends “Clust Comfirm” d. Node 0 receives “Clust Reply”
to cluster A and B. “Clust Request” from the rest of cluster A and B
waiting waiting

Cluster A Cluster B Cluster A Cluster B

¢. Node 0 joins cluster A and f. Node 4 send “Clust_Request”
sends “Clust Update” to cluster A and B

Figure 2: Example of the SDC protocol

4 CAGA

The Clustering Algorithm with Granularity Awareness (CAGA) algorithm
is another connectivity-based clustering algorithm [5]. It has been proposed
as solution for P2P isolation in the face of threats like worm contamination.

The algorithm is designed to allow peers to maintain some level of service
even while they are isolated in their cluster.

4.1 The Idea

In order for the nodes to continue receive the service provided by the network
even while isolation is necessary that each node belongs to the same cluster
as its neighbors. Moreover, tightly connected (high degree) peers should not
be separated from its neighbors. Based on the previous assumptions the
authors propose two metrics to help them cluster the network.

e In a cluster with m members, for each member who has ¢; outward

links. .
5 — (Zizl ci)

m

e In a cluster with m members and n internal links for each member who
has ¢; outward links.
() Ci)

n

€ =

The smaller the 0 and € are, the better the clustering becomes.

4.2 The Algorithm

The algorithm works using a set of initial peers just as CDC in Section 2. As
initial peers can be chosen the most stable peers of the system, for instance
the ones with the bigger uptime. Each of these peers represent a cluster
and tries to expand. In order to expand the cluster sends messages to all
neighboring peers that are not member of the cluster and ask them to provide
some information about themselves. Based on that information the originator
of the cluster computes the metrics ¢ and € if one of these metrics is improved
by entering the node in the cluster then the originator sends an invitation
to the node to join the cluster. If the node does not already belong to a
cluster in accepts the invitation, it then sends to the originator a least of all
its neighbors so that the originator can continue expanding the cluster by
inviting those neighbors.

4.3 Complexity

CAGA must check each member of the cluster once and generate a neighbor-
list and an invitation message as well as their responses, so the time is O(1)
and the traffic is O(4). A few N’ peers may lead to redundant checking by
different clusters. So the total running time is O(N) + O(cN’) while the
traffic is O(4N) + O(2¢N’). As N’ << N, the running time is O(NV) and the
traffic is O(4N) = O(N).

5 Schelling

The Schelling’s algorithms [4] in unique in two ways. First, it belongs to
the category of content-based clustering in contrast to connectivity based-
cluster that we previously saw. This means that the clustering is based on
some property that the nodes exhibit, we try to cluster node having the same
property. Second, this algorithm does not try to discover existing clusters, it
tries to create them by re-arranging the graph.

5.1 The Idea

The model was proposed by the sociologist Tomas Schelling to explain the
existence of segregated neighbors in urban areas. The world is modeled as
a 2-D grid. Some cells are populated by blue or red turtles and the rest
are empty. All turtles desire at least a number of neighbors to have the
same color. If a turtle is not satisfied it can move to an adjacent empty cell.
Using game theory has been proven that the stable state for the system is a
segregated state. In the Schelling’s model turtles have only local view of the
grid which is a great analogy for the peers in a P2P system. The neighbors
can model

5.2 The Algorithm

Each peer desires to be connected with at least a percentage of peers with
similar property PN S Pyegireq- If the peer is not satisfied in its current posi-
tion it executes its topology adaptation steps. The adaptation steps consists
of dropping a link with a neighbor of a different property and then trying to
connect with a neighbor of the same property. Drop a connection increases
the PNSPj.gr.q both in this node and also in its neighbor. Searching for

9

a different neighbors can be implemented with many algorithms. An ex-
haustive approach with high probability of success could be using the BFS
algorithm, but this could impose a high traffic overhead. Another approach
for reduced traffic overhead it the use of random walks. Random walks are
cheaper but will not a peer’s neighborhood as thoroughly and is less likely to
find a similar peer. Another alternative is biased random walk that perform
a more exhaustive search when compared to random walk. In this technique
the random walk is biased towards peers with a high degree because they
have more information about resources on the overlay network.

A satisfied peer need not estimate its satisfaction state its satisfaction
state as small intervals. The same holds for peers that are unable to success-
fully execute their topology adaptation steps.

6 Comparison

For this project i have implemented three of the previous algorithms CDC,
CAGA and Schelling’s. Since the algorithms are supposed to be distributed
in my implementation each vertex is a different entity and entities can com-
municate only with other entities that are neighbors. For each algorithm i
initiated the system and waited until it balanced by itself, then out of the
new system i extracted the graph. For my experiments i used graphs from
50-150 vertexes with power law distribution, since this distribution best de-
scribes the P2P system that exist in the wild. Unfortunately, due to limited
processing resources my experiments did not pass the 150 nodes.

6.1 Graphical Comparison

In Figure 3 we one random graph of 50 nodes following the power low distri-
bution in the degrees. The normal graph will be used as input in the CDC
and CAGA algorithm whereas the colored one in the Schelling’s algorithm.
The second graphed was colored randomly. In Figure 4 we can see the result
that produced each clustering algorithm. For clarity in Figure 5 we can see
the clusters when there are no inter-connectivity between the clusters.

10

(a) Original graph (b) Original colored graph

Figure 3: Base line graphs

6.2 Message Complexity

In Figure 6 are the experimental results for the message complexities for
the three algorithms. It is obvious that the CDC algorithm has the worst
performance. This is because in the CDC algorithm each node propagates
each message to all its neighbors, this also includes the node from which it
received the message. Hence its message it travel once over an edge when
it reaches it destination it floods all edges including the one from which it
currently arrived consequently each message will travel each edge multiple
times and each time it will create a flood. Until the message is discarded from
the TTL. For the other two algorithms the results are directly comparable.
In Figure 7 we can observe how the algorithms scale as the number of nodes
in the system increases. Note that the y-axis is in log scale. It is obvious
that algorithms scale exponentially as the number of nodes in the system
increases. But on the other hand these algorithms provide specific operation
for handling node entry after the clustering has finished, so the need of re-
clustering as the size increases is not grave.

References

[1] Stijn Van Dongen. A new cluster algorithm for graphs. Technical report,
National Research Institute for Mathematics and Computer Science in
the, 1998.

11

(b) CAGA clustering

2]

3]

(c) Schelling’s clustering

Figure 4: Clustering result

Y. Li, L. Lao, and J.H. Cui. Sdc: A distributed clustering protocol.
International Journal of Computer Networks (IJCN), 2(6):205, 2011.

L. Ramaswamy, B. Gedik, and L. Liu. A distributed approach to node
clustering in decentralized peer-to-peer networks. IEEE Transactions on
Parallel and Distributed Systems, pages 814-829, 2005.

A. Singh and M. Haahr. Decentralized clustering in pure p2p overlay
networks using schelling’s model. In Communications, 2007. ICC"07.
IEEE International Conference on, pages 1860-1866. IEEE, 2007.

Sirui Yang, Hai Jin, Bo Li, Xiaofei Liao, and Hong Yao. Worm contain-
ment in peer-to-peer networks. In Scalable Computing and Communica-
tions; Fighth International Conference on Embedded Computing, 2009.

12

(c) Schelling’s clustering forest

(b) CAGA clustering forest

Figure 5: Clustering result when all inter-cluster edges have been removed.

SCALCOM-EMBEDDEDCOM’09. International Conference on, pages

308 —313, sept. 2009.

13

CDC | CAGA | SCHELLING
40 | 52057.6 | 743.304 740.691
60 | 101241 | 1369.5 1233.1
80 | 148198 | 1369.38 1703.5
100 | 184982 | 2242.3 2189.4
120 | 226233 | 3164.36 2495.36
140 | 219495 | 3967.6 3138.9

Figure 6: Number of exchanged messages per algorithm per number of nodes

in the system.

Message Complexity

le+06 ¢ T T 3

E CcDC — 1§

CAGA]

| R SCHELLING ————

100000 - .
10000

Number of messages

100 :

1000 —///—/—

40 60

80

100 120

Number of nodes

140

Figure 7: Comparison between the message complexities and how the evolve

over time

14

