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Introduction
• Traditional Text-To-Speech (TTS) systems are based on multi-stage, hand-engineered pipelines 

• Neural network-based TTS models outperform conventional concatenative and statistical 
parametric approaches in terms of speech quality. 

• Most popular neural network-based TTS systems have two-stage pipelines.  
1. Generate mel-scale spectrograms from text input.

2. Synthesize speech from the generated mel-spectrograms using a separately trained neural vocoder.

• Also, there are End-to-end neural network-based TTS system.
• Trained on <text, audio> pairs with minimal human annotation and effort.

• However, end-to-end models are harder to train and require a large number of high-quality 
recordings with transcriptions. 



The classic three-stage pipeline of statistical 
parametric speech synthesis

Front end
+ duration model
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The end-to-end problem

Front end Statistical model
Waveform 
generator

text waveform
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change now



Tacotron 2: A two stage pipeline

• Tacotron 2 produces mel-scaled spectrograms, which are used as local conditioning to a WaveNet vocoder.

Front end Statistical model Waveform generator

Tacotron 2
WaveNet
Vocoder

Text Audio

Mel-scaled 
Spectrogram2
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Tacotron 2 – A Sequence-to-Sequence model
• Tacotron 2 maps a sequence of letters to a sequence of 80-dimensional Mel-scaled spectrograms. 

• Finally these spectrograms are converted to waveform using a WaveNet-like architecture.



Encoder

Bi-directional RNN based encoder takes the input sequence 
𝐱 = {𝑥1 , 𝑥2, … , 𝑥𝑇} and outputs the hidden states
𝒉 = ℎ1 , ℎ2, … , ℎ𝑇 (memory vectors).

𝑥1 𝑥2 𝑥3 𝑥4

ℎ1 ℎ2 ℎ3 ℎ4 Memory vectors

Input vectors

Concatenate

Note that a memory vector does not directly depend on the other memory vectors.
The RNNs in the implementation of the encoder extend the receptive field of a memory vector to the whole input sequence.
However, the use of RNNs prevent the parallel generation of the memory vectors.



Encoder: Character embedding
• Input characters are represented using a learned 512-dimensional character 

embedding.

Number of characters

Randomly initialized embedding table

Embedding dimension
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Decoder: An autoregressive module



Decoder: Unrolling in time

At each decoder output step i, inputs to the RNN cell are 𝑠𝑖−1, 𝑦𝑖−1 and the context 𝑐𝑖 and outputs the vectors 𝑠𝑖 and 𝑦𝑖 . 

Usually, a stack of two unidirectional RNNs𝑠1

𝑠𝑖 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝑠𝑖−1, 𝑦𝑖−1, 𝑐𝑖)

𝑦𝑖 = 𝑂𝑢𝑡𝑝𝑢𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑠𝑖)

𝑐1 𝑐2 𝑐3 𝑐4

𝑦1 𝑦2 𝑦3 𝑦4 Output vectors

Context vectors which depend on the memory vectors of encoder 

𝑦0

𝑠2 𝑠3 𝑠4𝑠0



The attention mechanism
1. Alignment scores:
• The alignment model takes the encoded hidden states, ℎ𝑗, and the previous decoder output, 𝑠𝑖−1, 

to compute a score, 𝑒𝑖𝑗

• The score indicate how well the elements of the input sequence align with the current output at 
position, 𝑖

𝑒𝑖𝑗 = 𝑠𝑖𝑚 𝑠𝑖−1, ℎ𝑗 ,  𝑗 = 1, … , 𝑇𝑥

𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑇𝑥
= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 [𝑒𝑖1 , 𝑒𝑖2, … , 𝑒𝑖𝑇𝑥

] =
1

𝑍
exp 𝑒𝑖1 , exp 𝑒𝑖2 , … , exp 𝑒𝑖𝑇𝑥

,  𝑍 = ෍

𝑘=1

𝑇𝑥

exp(𝑒𝑖𝑘)

𝑒𝑖1 𝑒𝑖2 𝑒𝑖𝑇𝑥 = 𝑠𝑖𝑚( 𝑠𝑖−1 , ℎ𝑖1 ℎ𝑖2 ℎ𝑖𝑇𝑥 )

2. Alignment weights or probabilities:
• The weights, 𝑎𝑖𝑗, are computed by applying a softmax operation to the previously computed alignment scores:



The attention mechanism
3. Context vector
• A unique context vector, 𝑐𝑖, is fed into the decoder at each time step. It is computed by a weighted sum of all, 

𝑇𝑥, encoder hidden states:

𝑐𝑖 = ෍

𝑗=1

𝑇𝑥

𝑎𝑖𝑗ℎ𝑗

sim sim sim simsim



Attention mechanisms
• Dot product attention  (Luong)

  𝑠𝑖𝑚 𝑠𝑖−1, ℎ𝑗 = 𝑠𝑖−1
𝑇 ℎ𝑗

• Multiplicative attention

  𝑠𝑖𝑚 𝑠𝑖−1, ℎ𝑗 = 𝑠𝑖−1
𝑇 𝑊ℎ𝑗

• Additive attention  (Bahdanau)

  𝑠𝑖𝑚 𝑠𝑖−1, ℎ𝑗 = 𝑤𝑇tanh(𝑊𝑠𝑠𝑖−1 + 𝑊ℎℎ𝑗 + 𝑏)

• Location sensitive additive attention

  𝑠𝑖𝑚 𝑠𝑖−1, ℎ𝑗 = 𝑤𝑇tanh(𝑊𝑠𝑠𝑖−1 + 𝑊ℎℎ𝑗 + 𝑊𝑓𝑓𝑖𝑗 + 𝑏)

 𝒇𝑖 = 𝐹 ∗ 𝒂𝑖−1,  where 𝒂𝑖−1 = 𝑎𝑖−1,1, … , 𝑎𝑖−1,𝑇𝑥

• Cumulative attention
 𝒄𝒂1 = 𝒂1,        𝒄𝒂𝑖 = 𝒄𝒂𝑖−1 + 𝒂𝑖

• Monotonic attention



Tacotron 2 vs Transformer TTS



Issues with autoregressive acoustic models
• Tacotron and Transformer TTS face several challenges:

• Slow inference speed for autoregressive generation.

• Synthesized speech is usually not robust, with words being skipped and repeated.

Text: Bad speech synthesis                           Stop token plot

• Lack of controllability since the generation length is automatically determined.

• The voice speed and the prosody (such as word breaks) cannot be adjusted.



Non-autoregressive acoustic models
• Researchers from Microsoft and Zhejiang University propose FastSpeech.

• Fast generation speed

• Robustness

• Controllability (?)

• High quality (similar to autoregressive models, such as Tacotron 2 and Transformer TTS)

Text: Bad speech synthesis

Created with TensorFlowTTS 
with MelGAN vocoder



FastSpeech: Feed-Forward Transformer



Scaled Dot-Product Multi-Head Attention

Layer input

Keys Queries Values

𝑊𝐾 𝑊𝑄 𝑊𝑉

MatMul

Scale 
1

𝑑𝐾

Mask (opt)

Softmax

Probabilities

Context

MatMul

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑𝑘

𝑉

Attention heads=2



Length Regulator
• Since the length of the phoneme sequence is smaller than that of the mel-spectrogram sequence, 

one phoneme corresponds to several mel-spectrograms. 

• The number of mel-spectrograms that aligns to a phoneme is called phoneme duration. 

• The length regulator expands the hidden sequence of phonemes according to the duration in 
order to match the length of a mel-spectrogram sequence.

Durations = 3, 4, 2, 5, 1

Encoder output



FastSpeech: Feed-Forward Transformer



FastSpeech: Feed-Forward Transformer



Loss functions
• Mel-loss: Usually the mean-absolute or the mean-square 

error between the ground-truth mels and the predicted-mels. 

• Duration-loss: Mean square error between the ground-truth 
log-duration and the predicted log-duration.



FastSpeech 2
• FastSpeech can generate mel-spectrograms with improved robustness and controllability, and can 

achieve comparable voice quality with previous autoregressive models. 

• However, there are still some disadvantages to it:
1. The two-stage teacher-student distillation pipeline is complicated;

2. The duration extracted from the attention map of the teacher model is not accurate enough, and the 
target mel-spectrograms distilled from the teacher model suffer from information loss due to data 
simplification, both of which limit the voice quality and prosody.

• FastSpeech 2 addresses these issues.
1. FastSpeech 2 is trained with ground-truth mel targets instead of the simplified output from a teacher.

2. It uses the Montreal forced alignment tool to extract the phoneme duration.

3. To reduce the information gap between the input (text sequence) and target output (mel-
spectrograms), the input includes pitch, energy, and more accurate duration than the duration of 
FastSpeech. 

• during training, the duration, pitch, and energy are extracted from the target speech waveform. 

• during inference, these values are predicted by the predictors that were jointly trained with the 
FastSpeech 2 model.



FastSpeech 2

Phoneme Embedding

Encoder

Variance Adaptor

Mel-spectrogram 
Decoder

Phoneme
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Encoding
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Encoding

Duration Predictor

Pitch Predictor

Energy Predictor

LR

Energy

Pitch

Duration

Conv1D + ReLU

LN + Dropout

Conv1D + ReLU

LN + Dropout

Linear Layer

Variance Adaptor Duration/pitch/energy 
predictor



FastSpeech 2

Phoneme Embedding

Encoder

Variance Adaptor

Mel-spectrogram 
Decoder

Phoneme

Positional 
Encoding

Positional 
Encoding Conv1D + ReLU

LN + Dropout

Conv1D + ReLU
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Duration/pitch/energy 
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Variance Adaptor

Duration Predictor

Pitch Predictor

Energy Predictor

LR

Energy

Pitch

Duration

Frame level energy and pitch 
prediction

Pitch Predictor

Energy Predictor

Duration Predictor

Duration

Energy

Pitch

Phoneme level energy and pitch 
prediction

LR

Phoneme level energy and pitch prediction instead of frame level results in better prosody
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Mel-spectrogram vocoders



Neural Vocoders

• Sequential generation of samples
• Autoregressive 

• Parallel generation of samples
• GAN-based 

• VAE-based 

• Flow-based  

• Diffusion-based 

Autoregressive



Autoregressive Neural Vocoders

• Speech:

• The chain rule of probability

𝑃 𝑥0𝑥1𝑥2𝑥3 … 𝑥𝑇−1 = 𝑃 𝑥0 ෑ

𝑡=1

𝑇−1

𝑃 𝑥𝑡 𝑥0 … 𝑥𝑡−1 = 𝑃 𝑥0 ෑ

𝑡=1

𝑇−1

𝑃 𝑥𝑡 𝑥<𝑡

• Autoregressive neural vocoders model the conditional probability

𝑃 𝑥𝑡 𝑥<𝑡

• And in order to generate speech the conditions include linguistic or acoustic information

𝑃 𝑥𝑡 𝑥<𝑡, 𝐿𝑡

𝑥0 𝑥1 𝑥2 𝑥4𝑥3 𝑥𝑇−1

Synthesis from this distribution

Synthesis from this distribution



WaveNet

• WaveNets is an autoregressive model, which achieve state-of the art results in audio synthesis.

Dilated convolution Dilated convolution
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WaveRNN
• WaveNets achieves state-of the art results in audio synthesis.

• However, sampling from Wavenet is sequential and impractical.

• To increase the efficiency of sampling from these models, Kalchbrenner et al., proposed to substitute the layers of dilated 
convolutions of WaveNet with a single GRU layer

Softmax

d×d

h×d

ReLU

Post-processing

Output

G
R

U
 C

el
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Input-to-hidden

Hidden-to-hidden

𝑧−1
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WaveRNN output
• WaveRNN assigns to an input vector 𝑥𝑡 a probability distribution using the softmax function.

ℎ(𝑧)𝑗 =
𝑒

𝑧𝑗

σ𝑐=1
256 𝑒𝑧𝑐

,    𝑗 = 1, … , 256 .6
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WaveRNN training

𝑂1 𝑂2

𝑥𝑡−1

𝐿𝑡

𝑅

ℎ

𝑃(𝑥𝑡) 𝐶𝐸𝑙𝑜𝑠𝑠(𝑜𝑛𝑒ℎ𝑜𝑡 𝑥𝑡 , 𝑃 𝑥𝑡 )



WaveRNN generation

𝑂1 𝑂2

𝑥𝑡−1

𝐿𝑡

𝑅

𝐼

ℎ

𝑃(𝑥𝑡) sample 𝑥𝑡

𝑧−1



WaveRNN - Samples



Efficient WaveRNN

• Weight pruning
• Progressively removes the weakest connections.

1. Randomly initialize a neural network.

2. Train the network until it converges.

3. Prune a fraction of the network (the weights with the smallest absolute values).

4. Repeat steps 2 and 3

• Use of block or other structured sparsity for efficiency.

Example 2:3 sparsity 
Start the training from a dense matrix and a mask that has all values equal to 1. 

After begin_pruning_step training steps start to put zeros in mask.  

Suppose that the current training step (iteration) is global_step. Then the number of zeros in 

mask is calculated according to 

p = (global_step – begin_pruning_step)/(end_pruning_step – begin_pruning_step) 

st = target_sparsity*max(0, (1 – max(0, (1 –p)**3))) 

num_zero_elements = floor(st*num_elements_in_weight_matrix) 

Example 

targer_sparsity = 2/3=0.66666 

begin_pruning_step = 50 

end_pruning_step = 500 

global_step = 291 

 

st(291) = 0.6 

Training iterations

Sp
ar
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 p
er
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n

ta
ge



Parallel Vocoders
• During synthesis , parallel vocoders convert noise and conditioning acoustic features to speech.

Speech 𝑥 = [𝑥0, … 𝑥𝑇−1] ∈ 𝑋 follows a probability distribution 𝑝𝑋 𝑥

Sample 𝑧 = [𝑧1 , … , 𝑧𝑇] ∈ 𝑍 follows a simple probability distribution 𝑝𝑍 𝑧  .
E.g., samples 𝑧𝑡 are independent of each other and they are drawn from a Logistic or a Gaussian distribution.



Samples from Parallel WaveNet

awb_a0001

bdl_a0001

clb_a0001

jmk_a0001

ksp_a0001

rms_a0001

slt_a0001

Kullback-Leibler 1/B*powerLoss

awb_a0001

bdl_a0001

clb_a0001

jmk_a0001

ksp_a0001

rms_a0001

slt_a0001

Kullback-Leibler 400/B*powerLoss



Known problems with two stage acoustic models 

• Neural network-based TTS systems with two-stage pipelines, usually use mel-scale spectrograms as 
intermediate representation.  

• The neural vocoder is trained separately using ground truth mel spectrograms.

• The distribution of Tacotron or FastSpeech mel-spectrograms differs from the distribution of the 
ground truth mel-spectrograms.

• This mismatch has no significant effect when the vocoder is autoregressive (WaveNet, WaveRNN).

• However, this mismatch triggers phase artifacts in parallel vocoders.
• Tested with GAN, flow and diffusion vocoders (MelGAN, HifiGAN, DiffWave, WaveGrad, WaveGlow, WaveFlow).

• Similar problem in image generation

• Solutions:
a) Use end-to-end models

b) Use more robust intermediate representations 

Image taken from Karras et al., Analyzing and Improving the Image Quality of StyleGAN 



End-to-end systems

• WaveGrad 2 is a non-autoregressive generative model for text-to-speech synthesis. 

• The model takes an input phoneme sequence, and through an iterative refinement process, 
generates an audio waveform. 

• WaveGrad 2 significantly reduces the phase artifacts.



Using high level linguistic features

• WavThruVec is a two-stage architecture that uses high-dimensional WAV2VEC 2.0 embeddings as 
intermediate speech representation. 

• Since these hidden activations provide high-level linguistic features, they are more robust to noise.

• Also, their distribution do not change from train to synthesis time.



SoundStream: Neural audio codec

• During training, the encoder, quantizer and decoder parameters are optimized using a combination 
of reconstruction and adversarial losses, computed by a discriminator, which is trained to 
distinguish between the original input audio and the reconstructed audio. 

• During inference, the encoder and quantizer on a transmitter client send the compressed bitstream 
to a receiver client that can then decode the audio signal.



SoundStorm: Efficient parallel audio generation
• Resent generative models often rely on the fact that raw data is first converted to a compressed 

format as a sequence of tokens. 

• In the case of audio, neural audio codecs (e.g., SoundStream) can efficiently compress waveforms to 
a compact representation, which can be inverted to reconstruct an approximation of the original 
audio signal. 

• Such a representation consists of a sequence of discrete audio tokens, capturing the local 
properties of sounds (e.g., phonemes) and their temporal structure (e.g., prosody). 



Language models for audio generation
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Appendix: The Griffin-Lim algorithm
• The Griffin and Lim's algorithm recovers an audio signal given only the magnitude of its Short-

Time Fourier Transform (STFT), also known as the spectrogram. 

• It is an iterative algorithm that attempts to find the signal having an STFT such that the 
magnitude part is as close as possible to the modified spectrogram.

• Algotithm:

• Input: 𝑠 # spectrogram

• 𝑥 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠) # initialize the reconstructed audio

• for 𝑖 = 1: 𝑛_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

• 𝑐1 = STFT(𝑥)

• 𝑎 = 𝑎𝑛𝑔𝑙𝑒(𝑐1)

• 𝑐2 = 𝑠 ∙ 𝑒𝑗𝑎

• 𝑥 = ISFTF(𝑐2) # reconstructed audio

• The Griffin-Lim algorithm converges after 30 to 50 iterations.

• The Griffin-Lim produces characteristic artifacts and lower audio quality than WaveNet.

• Nevertheless, the Griffin-Lim spectrogram inversion is efficient and allows back propagation of 
derivatives since it is differentiable.

• Therefore, it could be the initial choice when debugging a new end-to-end system.



Scaled Dot-Product Multi-Head Attention

Layer input

Keys Queries Values

𝑊𝐾 𝑊𝑄 𝑊𝑉

MatMul

Scale 
1

𝑑𝐾

Mask (opt)

Softmax

Probabilities

Context

MatMul

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑𝑘

𝑉

Multi-Head 
Attention

Add & Norm

Conv1D

Add & Norm
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