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Speech Recognition
• Speech recognition can be viewed as finding the best sequence of words (W) 

given the audio features (X).

𝑊∗ = argmax
𝑊

𝑝(𝑊|𝑋)

𝑋



Speech Recognition
• The HMM-based speech recognition can be divided into three parts, each of 

which is independent of each other and plays a different role: 

a) acoustic, 

b) pronunciation and 

c) language model. 

• The acoustic model is used to model the mapping between speech input and 
feature sequence (typically a phoneme or sub-phoneme sequence). 

• The pronunciation model, which is typically constructed by professional human 
linguists, is to achieve a mapping between phonemes (or sub-phonemes) to 
graphemes. 

• The language model maps the character sequence to fluent final transcription.



Speech Recognition
• Let 𝑋 denote the sequence of audio features, 𝑆 denote the sequence of HMM 

states and 𝑊 denote the sequence of words.

𝑊∗ = argmax
𝑊

𝑝(𝑊|𝑋) = argmax
𝑊

𝑝(𝑊, 𝑋)

𝑝(𝑋)
= argmax

𝑊
𝑝 𝑊,𝑋 =

argmax
𝑊


𝑆

𝑝(𝑊, 𝑆, 𝑋) = argmax
𝑊


𝑆

𝑝 𝑋 𝑊, 𝑆 𝑝(𝑊, 𝑆) =

argmax
𝑊


𝑆

𝑝 𝑋 𝑊,𝑆 𝑝 𝑆 𝑊 𝑝(𝑊) ≈

argmax
𝑊



𝑆

𝑝 𝑋 𝑆 𝑝 𝑆 𝑊 𝑝(𝑊)

• These three factors 𝑝(𝑋|𝑆), 𝑝(𝑆|𝑊), 𝑝(𝑊) in the above equation correspond to 
acoustic model, pronunciation model and language model.



Pronunciation Model
• Pronunciation model p(S|W): this is also called the dictionary or 

lexicon. 

• Its role is to achieve the connection between acoustic sequence 
and language sequence.

• The dictionary includes various levels of mapping, such as 
pronunciation to phone, phone to trip-hone. 

• The dictionary is not only used to achieve structural mapping, but 
also to map the probability calculation relationship.



Pronunciation Model 



Language Model
• Models likelihood of word given previous word(s)

• Language model is used to

• Guide the search algorithm (predict next word given history)

• Disambiguate between phrases which are acoustically similar

• Great wine vs Grey twine

• A language model calculates the likelihood of a sequence of words.

• In a bigram (a.k.a. 2-gram) language model, the current word depends on the 
last word only.

• For example,



Language Model

• To compute P(“zero”|”two”), we search the corpus (say from Wall Street Journal 
corpus that contains 23M words) and calculate

• If the language model depends on the last 2 words, it is called trigram.

• n-gram depends on the last n-1 words.

𝑃 𝑤𝑁 𝑤1, 𝑤2, ⋯ ,𝑤𝑁−1



Acoustic model
• Acoustic model P(X|S): It indicates the probability of observing X from hidden 

sequence S. According to the probability chain rule and the observation 
independence hypothesis in HMM (observations at any time depend only on 
the hidden state at that time), P(X|S) can be decomposed into the following 
form: 

𝑝 𝑋 𝑆 =ෑ

𝑡=1

𝑇

𝑝(𝑥𝑡|𝑥1,… , 𝑥𝑡−1, 𝑆) ≈ෑ

𝑡=1

𝑇

𝑝(𝑥𝑡|𝑠𝑡) ∝ෑ

𝑡=1

𝑇
𝑝(𝑠𝑡|𝑥𝑡)

𝑝(𝑠𝑡)



Acoustic model
• In the acoustic model, 𝑝(𝑥𝑡|𝑠𝑡) is the observation probability, which is 

generally represented by GMM. The posterior probability distribution of 
hidden state 𝑝(𝑠𝑡|𝑥𝑡) can be calculated by DNN method. These two different 
calculations of 𝑝(𝑋|𝑆) result into two different models, namely HMM-GMM 
and HMM-DNN. The role of DNN is to calculate the posterior probability of 
the HMM state, which may be transformed into likelihoods, replacing the 
conventional GMM observation probability.

𝑝 𝑋 𝑆 ≈ෑ

𝑡=1

𝑇

𝑝(𝑥𝑡|𝑠𝑡) ∝ෑ

𝑡=1

𝑇
𝑝(𝑠𝑡|𝑥𝑡)

𝑝(𝑠𝑡)



Acoustic model
• Given the features in an audio frame, we can use a deep network to predict 

p(s|x) and apply Bayes’ Theorem to estimate p(x|s) ∝ p(s|x) / p(s). 

• In addition, we can include the neighbour frames as input. This creates a 
better phone context for better predictions.



Feature extraction
• ML speech recognition, we extract MFCC features from the audio frames. It 

includes steps like an inverse discrete Fourier transform to make features less 
correlated with each other. Also, we only take the lower 12 coefficients.

• DL requires no or less pre-processing. It can handle a much larger number of 
input features and there is no particular need to un-correlate them first.



Classical Speech Recognition

• In the past, language models were typically N-gram models, which are 
essentially tables describing the probabilities of token sequences.

• The pronunciation models were simple lookup tables with probabilities 
associated with pronunciations.

• Acoustic models are built using Gaussian Mixture Models with very specific 
architectures associated with them.

• The speech processing was pre-defined.



Neural Network Speech Recognition

• Instead of the N-gram language models, we can build neural language models 
and feed them into a speech recognition system. 

• A neural network can infer pronunciation for a new sequence of characters that 
has never seen before.

• For acoustic models, we can build deep neural networks to get much better 
classification accuracy scores for the current frame.

• Even the speech pre-processing steps were found to be replaceable with 
convolutional neural networks on raw speech signals.



NN Acoustic models

• What neural networks are used as acoustic models?

• Fully connected network

• The input is the Mel filter bank. Some ASR FC models contain 3–8 hidden layers 
with 2048 hidden units in each layer. 

• This model can predict the distribution of the context-dependent states (say 
9304 CD triphones) from the audio frames.



NN Acoustic models

• Fully connected networks vs GMM-HMM



NN Acoustic models

• CNN/TDNN

• FC networks are computationally 
intense. 

• CNN takes advantage of locality and 
discovers local information 
hierarchically. CNN is more efficient 
if the information has a strong 
spatial relationship. 

• Audio speech is time-sequence data. 
Instead of applying a 2D convolution 
filter, we use a 1-D filter to extract 
features across multiple frames in 
time. This is the Time-delay neural 
networks (TDNN). 



NN Acoustic models

• Fully connected networks (DNN) vs TDNN



NN Acoustic models

• RNN (LSTM & GRU)

• RNNs are designed for time-sequence data. Each cell contains a cell state c 
and outputs h. The cell state is determined by the current input and the 
previous states including the previous cell state and the previous output.



NN Acoustic models

• RNN (LSTM & GRU)

• Classifying context dependent (CD) states.



NN Acoustic models

• Comparison of different acoustic models



End-to-end Speech Recognition

• In the above figure, there are neural networks in each component, but they’re 
trained independently with different objectives. 

• Train the entire model as one big component itself.

• These so-called end-to-end models encompass more and more components in 
the pipeline. The 2 most popular ones are: 

1. Connectionist Temporal Classification (CTC)

2. Sequence-To-Sequence (Seq-2-Seq)



Connectionist Temporal Classification

• Input sequence of frames of audio features 𝑋 = [𝑥1, 𝑥2… , 𝑥𝑇]

• Output sequence of phonemes 𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑈]

• 𝑇 > 𝑈

• We do not have an alignment

• Loss function: maximize the probability 𝑝(𝑌|𝑋)

• Inference: 𝑌∗ = argmax
𝑌

𝑝(𝑌|𝑋)



Connectionist Temporal Classification

• Alignment

• One way to align 𝑋 and 𝑌 is to assign an output character to each input step 
and collapse repeats.

• Introduce a blank token 𝜖

• The alignments allowed by CTC are the same length as the input. We allow any 
alignment which maps to 𝑌 after merging repeats and removing 𝜖 tokens:



Connectionist Temporal Classification
• Loss

• The CTC alignments give us a natural way to go from probabilities at each time-step 
to the probability of an output sequence.

• The CTC objective for a single 𝑋, 𝑌
pair is

𝑝 𝑌 𝑋 = 

𝐴∈𝐴𝑋,𝑌

ෑ

𝑡=1

𝑇

𝑝𝑡 𝑎𝑡|𝑋

The CTC 
conditional 
probability

Marginalizes 
over the set 
of valid 
alignments

The probability 
of a single 
alignment at 
time 𝑡 



Connectionist Temporal Classification

• Since we can have an 𝜖 before or after any token in 𝑌, it’s easier to describe 
the algorithm using a sequence which includes them. We’ll work with the 
sequence 𝑍 = 𝜖, 𝑦1, 𝜖, 𝑦2,… , 𝜖, 𝑦𝑈, 𝜖

• Let 𝑎𝑠,𝑡 be the CTC score of the subsequence 𝑍1:𝑠  after 𝑡 input steps. As we’ll 
see, we’ll compute the final CTC score, 𝑝(𝑌|𝑋), from the 𝑎’s at the last time-
step.



Connectionist Temporal Classification

• As long as we know the values of 𝑎 at the previous time-step, we can compute 
𝑎𝑠,𝑡 . 

• There are two cases.

• Case 1:

• In this case, we can’t jump over 𝑧𝑠−1, the previous token in 𝑍. The first reason 
is that the previous token can be an element of 𝑌, and we can’t skip elements 
of 𝑌. Since every element of 𝑌 in 𝑍 is followed by an 𝜖, we can identify this 
when 𝑧𝑠 = 𝜖. The second reason is that we must have an 𝜖 between repeat 
characters in 𝑌. We can identify this when 𝑧𝑠 = 𝑧𝑠−2 .

𝑎𝑠,𝑡 = (𝑎𝑠−1,𝑡−1+ 𝑎𝑠,𝑡−1) ∙ 𝑝𝑡(𝑧𝑠|𝑋)

ϵ h ϵ e ϵ l ϵ l ϵ o ϵ
Example of not 
allowed transitions



Connectionist Temporal Classification

• Case 2:

• In the second case, we’re allowed to skip the previous token in 𝑍. We have this 
case whenever 𝑧𝑠−1  is an 𝜖 between unique characters. As a result there are 
three positions we could have come from at the previous step.

𝑎𝑠,𝑡 = (𝑎𝑠−2,𝑡−1 + 𝑎𝑠−1,𝑡−1+ 𝑎𝑠,𝑡−1) ∙ 𝑝𝑡(𝑧𝑠|𝑋)

ϵ h ϵ e ϵ l ϵ l ϵ o ϵ
Example of allowed 
transitions



Connectionist Temporal Classification

• Example



Connectionist Temporal Classification
• Loss

• For a training set 𝐷, the model’s parameter are tuned to minimize the negative log-
likelihood



(𝑋,𝑌)∈𝐷

− log 𝑝(𝑌|𝑋)

• Inference

• After we’ve trained the model, we’d like to use it to find a likely output for a given 
input. More precisely, we need to solve:

𝑌∗ = argmax
𝑌

𝑝(𝑌|𝑋)

• Search for the best 𝑌, among all possible sequences 𝑌 with length less than 𝑋.

• One heuristic is to take the most likely output at each time-step. This gives us the 
alignment with the highest probability:

𝐴∗ = argmax
𝐴

ෑ

𝑡=1

𝑇

𝑝𝑡(𝑎𝑡|𝑋)

• A modified beam search is a better heuristic



Deep Speech 2



Simple audio recognition

• This tutorial will show you how to build a basic speech recognition network that 
recognizes ten different words from 1 sec audio.

• "down", "go", "left", "no", "right", "stop", "up" and "yes".
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