
Deep Learning for
Speech Recognition

Vassilis Tsiaras

November 2023

Speech Recognition
• Speech recognition can be viewed as finding the best sequence of words (W)

given the audio features (X).

𝑊∗ = argmax
𝑊

𝑝(𝑊|𝑋)

𝑋

Speech Recognition
• The HMM-based speech recognition can be divided into three parts, each of

which is independent of each other and plays a different role:

a) acoustic,

b) pronunciation and

c) language model.

• The acoustic model is used to model the mapping between speech input and
feature sequence (typically a phoneme or sub-phoneme sequence).

• The pronunciation model, which is typically constructed by professional human
linguists, is to achieve a mapping between phonemes (or sub-phonemes) to
graphemes.

• The language model maps the character sequence to fluent final transcription.

Speech Recognition
• Let 𝑋 denote the sequence of audio features, 𝑆 denote the sequence of HMM

states and 𝑊 denote the sequence of words.

𝑊∗ = argmax
𝑊

𝑝(𝑊|𝑋) = argmax
𝑊

𝑝(𝑊, 𝑋)

𝑝(𝑋)
= argmax

𝑊
𝑝 𝑊,𝑋 =

argmax
𝑊

𝑆

𝑝(𝑊, 𝑆, 𝑋) = argmax
𝑊

𝑆

𝑝 𝑋 𝑊, 𝑆 𝑝(𝑊, 𝑆) =

argmax
𝑊

𝑆

𝑝 𝑋 𝑊,𝑆 𝑝 𝑆 𝑊 𝑝(𝑊) ≈

argmax
𝑊

𝑆

𝑝 𝑋 𝑆 𝑝 𝑆 𝑊 𝑝(𝑊)

• These three factors 𝑝(𝑋|𝑆), 𝑝(𝑆|𝑊), 𝑝(𝑊) in the above equation correspond to
acoustic model, pronunciation model and language model.

Pronunciation Model
• Pronunciation model p(S|W): this is also called the dictionary or

lexicon.

• Its role is to achieve the connection between acoustic sequence
and language sequence.

• The dictionary includes various levels of mapping, such as
pronunciation to phone, phone to trip-hone.

• The dictionary is not only used to achieve structural mapping, but
also to map the probability calculation relationship.

Pronunciation Model

Language Model
• Models likelihood of word given previous word(s)

• Language model is used to

• Guide the search algorithm (predict next word given history)

• Disambiguate between phrases which are acoustically similar

• Great wine vs Grey twine

• A language model calculates the likelihood of a sequence of words.

• In a bigram (a.k.a. 2-gram) language model, the current word depends on the
last word only.

• For example,

Language Model

• To compute P(“zero”|”two”), we search the corpus (say from Wall Street Journal
corpus that contains 23M words) and calculate

• If the language model depends on the last 2 words, it is called trigram.

• n-gram depends on the last n-1 words.

𝑃 𝑤𝑁 𝑤1, 𝑤2, ⋯ ,𝑤𝑁−1

Acoustic model
• Acoustic model P(X|S): It indicates the probability of observing X from hidden

sequence S. According to the probability chain rule and the observation
independence hypothesis in HMM (observations at any time depend only on
the hidden state at that time), P(X|S) can be decomposed into the following
form:

𝑝 𝑋 𝑆 =ෑ

𝑡=1

𝑇

𝑝(𝑥𝑡|𝑥1,… , 𝑥𝑡−1, 𝑆) ≈ෑ

𝑡=1

𝑇

𝑝(𝑥𝑡|𝑠𝑡) ∝ෑ

𝑡=1

𝑇
𝑝(𝑠𝑡|𝑥𝑡)

𝑝(𝑠𝑡)

Acoustic model
• In the acoustic model, 𝑝(𝑥𝑡|𝑠𝑡) is the observation probability, which is

generally represented by GMM. The posterior probability distribution of
hidden state 𝑝(𝑠𝑡|𝑥𝑡) can be calculated by DNN method. These two different
calculations of 𝑝(𝑋|𝑆) result into two different models, namely HMM-GMM
and HMM-DNN. The role of DNN is to calculate the posterior probability of
the HMM state, which may be transformed into likelihoods, replacing the
conventional GMM observation probability.

𝑝 𝑋 𝑆 ≈ෑ

𝑡=1

𝑇

𝑝(𝑥𝑡|𝑠𝑡) ∝ෑ

𝑡=1

𝑇
𝑝(𝑠𝑡|𝑥𝑡)

𝑝(𝑠𝑡)

Acoustic model
• Given the features in an audio frame, we can use a deep network to predict

p(s|x) and apply Bayes’ Theorem to estimate p(x|s) ∝ p(s|x) / p(s).

• In addition, we can include the neighbour frames as input. This creates a
better phone context for better predictions.

Feature extraction
• ML speech recognition, we extract MFCC features from the audio frames. It

includes steps like an inverse discrete Fourier transform to make features less
correlated with each other. Also, we only take the lower 12 coefficients.

• DL requires no or less pre-processing. It can handle a much larger number of
input features and there is no particular need to un-correlate them first.

Classical Speech Recognition

• In the past, language models were typically N-gram models, which are
essentially tables describing the probabilities of token sequences.

• The pronunciation models were simple lookup tables with probabilities
associated with pronunciations.

• Acoustic models are built using Gaussian Mixture Models with very specific
architectures associated with them.

• The speech processing was pre-defined.

Neural Network Speech Recognition

• Instead of the N-gram language models, we can build neural language models
and feed them into a speech recognition system.

• A neural network can infer pronunciation for a new sequence of characters that
has never seen before.

• For acoustic models, we can build deep neural networks to get much better
classification accuracy scores for the current frame.

• Even the speech pre-processing steps were found to be replaceable with
convolutional neural networks on raw speech signals.

NN Acoustic models

• What neural networks are used as acoustic models?

• Fully connected network

• The input is the Mel filter bank. Some ASR FC models contain 3–8 hidden layers
with 2048 hidden units in each layer.

• This model can predict the distribution of the context-dependent states (say
9304 CD triphones) from the audio frames.

NN Acoustic models

• Fully connected networks vs GMM-HMM

NN Acoustic models

• CNN/TDNN

• FC networks are computationally
intense.

• CNN takes advantage of locality and
discovers local information
hierarchically. CNN is more efficient
if the information has a strong
spatial relationship.

• Audio speech is time-sequence data.
Instead of applying a 2D convolution
filter, we use a 1-D filter to extract
features across multiple frames in
time. This is the Time-delay neural
networks (TDNN).

NN Acoustic models

• Fully connected networks (DNN) vs TDNN

NN Acoustic models

• RNN (LSTM & GRU)

• RNNs are designed for time-sequence data. Each cell contains a cell state c
and outputs h. The cell state is determined by the current input and the
previous states including the previous cell state and the previous output.

NN Acoustic models

• RNN (LSTM & GRU)

• Classifying context dependent (CD) states.

NN Acoustic models

• Comparison of different acoustic models

End-to-end Speech Recognition

• In the above figure, there are neural networks in each component, but they’re
trained independently with different objectives.

• Train the entire model as one big component itself.

• These so-called end-to-end models encompass more and more components in
the pipeline. The 2 most popular ones are:

1. Connectionist Temporal Classification (CTC)

2. Sequence-To-Sequence (Seq-2-Seq)

Connectionist Temporal Classification

• Input sequence of frames of audio features 𝑋 = [𝑥1, 𝑥2… , 𝑥𝑇]

• Output sequence of phonemes 𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑈]

• 𝑇 > 𝑈

• We do not have an alignment

• Loss function: maximize the probability 𝑝(𝑌|𝑋)

• Inference: 𝑌∗ = argmax
𝑌

𝑝(𝑌|𝑋)

Connectionist Temporal Classification

• Alignment

• One way to align 𝑋 and 𝑌 is to assign an output character to each input step
and collapse repeats.

• Introduce a blank token 𝜖

• The alignments allowed by CTC are the same length as the input. We allow any
alignment which maps to 𝑌 after merging repeats and removing 𝜖 tokens:

Connectionist Temporal Classification
• Loss

• The CTC alignments give us a natural way to go from probabilities at each time-step
to the probability of an output sequence.

• The CTC objective for a single 𝑋, 𝑌
pair is

𝑝 𝑌 𝑋 =

𝐴∈𝐴𝑋,𝑌

ෑ

𝑡=1

𝑇

𝑝𝑡 𝑎𝑡|𝑋

The CTC
conditional
probability

Marginalizes
over the set
of valid
alignments

The probability
of a single
alignment at
time 𝑡

Connectionist Temporal Classification

• Since we can have an 𝜖 before or after any token in 𝑌, it’s easier to describe
the algorithm using a sequence which includes them. We’ll work with the
sequence 𝑍 = 𝜖, 𝑦1, 𝜖, 𝑦2,… , 𝜖, 𝑦𝑈, 𝜖

• Let 𝑎𝑠,𝑡 be the CTC score of the subsequence 𝑍1:𝑠 after 𝑡 input steps. As we’ll
see, we’ll compute the final CTC score, 𝑝(𝑌|𝑋), from the 𝑎’s at the last time-
step.

Connectionist Temporal Classification

• As long as we know the values of 𝑎 at the previous time-step, we can compute
𝑎𝑠,𝑡 .

• There are two cases.

• Case 1:

• In this case, we can’t jump over 𝑧𝑠−1, the previous token in 𝑍. The first reason
is that the previous token can be an element of 𝑌, and we can’t skip elements
of 𝑌. Since every element of 𝑌 in 𝑍 is followed by an 𝜖, we can identify this
when 𝑧𝑠 = 𝜖. The second reason is that we must have an 𝜖 between repeat
characters in 𝑌. We can identify this when 𝑧𝑠 = 𝑧𝑠−2 .

𝑎𝑠,𝑡 = (𝑎𝑠−1,𝑡−1+ 𝑎𝑠,𝑡−1) ∙ 𝑝𝑡(𝑧𝑠|𝑋)

ϵ h ϵ e ϵ l ϵ l ϵ o ϵ
Example of not
allowed transitions

Connectionist Temporal Classification

• Case 2:

• In the second case, we’re allowed to skip the previous token in 𝑍. We have this
case whenever 𝑧𝑠−1 is an 𝜖 between unique characters. As a result there are
three positions we could have come from at the previous step.

𝑎𝑠,𝑡 = (𝑎𝑠−2,𝑡−1 + 𝑎𝑠−1,𝑡−1+ 𝑎𝑠,𝑡−1) ∙ 𝑝𝑡(𝑧𝑠|𝑋)

ϵ h ϵ e ϵ l ϵ l ϵ o ϵ
Example of allowed
transitions

Connectionist Temporal Classification

• Example

Connectionist Temporal Classification
• Loss

• For a training set 𝐷, the model’s parameter are tuned to minimize the negative log-
likelihood

(𝑋,𝑌)∈𝐷

− log 𝑝(𝑌|𝑋)

• Inference

• After we’ve trained the model, we’d like to use it to find a likely output for a given
input. More precisely, we need to solve:

𝑌∗ = argmax
𝑌

𝑝(𝑌|𝑋)

• Search for the best 𝑌, among all possible sequences 𝑌 with length less than 𝑋.

• One heuristic is to take the most likely output at each time-step. This gives us the
alignment with the highest probability:

𝐴∗ = argmax
𝐴

ෑ

𝑡=1

𝑇

𝑝𝑡(𝑎𝑡|𝑋)

• A modified beam search is a better heuristic

Deep Speech 2

Simple audio recognition

• This tutorial will show you how to build a basic speech recognition network that
recognizes ten different words from 1 sec audio.

• "down", "go", "left", "no", "right", "stop", "up" and "yes".

	Slide 1: Deep Learning for Speech Recognition
	Slide 2: Speech Recognition
	Slide 3: Speech Recognition
	Slide 4: Speech Recognition
	Slide 5: Pronunciation Model
	Slide 6: Pronunciation Model
	Slide 7: Language Model
	Slide 8: Language Model
	Slide 9: Acoustic model
	Slide 10: Acoustic model
	Slide 11: Acoustic model
	Slide 12: Feature extraction
	Slide 13: Classical Speech Recognition
	Slide 14: Neural Network Speech Recognition
	Slide 15: NN Acoustic models
	Slide 16: NN Acoustic models
	Slide 17: NN Acoustic models
	Slide 18: NN Acoustic models
	Slide 19: NN Acoustic models
	Slide 20: NN Acoustic models
	Slide 21: NN Acoustic models
	Slide 22: End-to-end Speech Recognition
	Slide 23: Connectionist Temporal Classification
	Slide 24: Connectionist Temporal Classification
	Slide 25: Connectionist Temporal Classification
	Slide 26: Connectionist Temporal Classification
	Slide 27: Connectionist Temporal Classification
	Slide 28: Connectionist Temporal Classification
	Slide 29: Connectionist Temporal Classification
	Slide 30: Connectionist Temporal Classification
	Slide 31: Deep Speech 2
	Slide 32: Simple audio recognition

