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Vocoders

➢ General Definition: A vocoder (short for “voice encoder”) is an audio processor (e.g., device, 
program, etc.) that encodes, analyses and synthesizes human voice signals. 

➢ Application Examples: 
• Radio (e.g., Digital Mobile Radio).
• Telephone networks (e.g., Voice over Internet Protocol).
• Musical and other artistic effects (e.g., feeding 

synthesizer outputs to a vocoder filter bank).
• Audio codecs (e.g., FLAC, MPEG-4).
• Encryption systems (e.g., NSA).
• Medical applications (e.g., cochlear implants).
• Text-To-Speech synthesis (e.g., voice assistants).
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➢ Definition: A Text-To-Speech (TTS) synthesis system converts normal language text into audible speech output. 

➢ We can break this problem into two separate tasks 1 : 
1) Speech feature extraction (most commonly spectrograms) from the text.
2) Synthesizing the artificial voice given these speech features (i.e., vocoder’s task – our topic).

➢ Example Vocoder Techniques: 
• Linear Predictive Coding (LPC).
• Griffin-Lin algorithm.
• Waveform-interpolative.
• Concatenative synthesis. 
• Sinusoidal representations.
• Neural-Based.
• Combinations of the above etc.

our topic

1 Models that do it in one pass, are called End-To-End (E2E).



The First Sinusoidal Vocoder

Speech Analysis/Synthesis Based on a Sinusoidal Representation ROBERT J. McAULAY, THOMAS F. QUATIERI, 
IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-34, NO. 4, AUGUST 1986.
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➢ Estimating speech using sums of linear AM sinusoids within short frames:



Redefining the Problem: Phase and Amplitude

➢ Any generic AM-FM sinusoidal discrete-time wave can be written as:

➢ Therefore, a speech wave 𝑠[𝑛] can be approximated with AM-FM sinusoids as: 

𝑓𝑠 = Sampling rate 
𝑠[𝑛] = Input speech wave
Ƹ𝑠 𝑛 = Predicted output speech wave

𝑀 = Total number of sinusoid pairs
𝑓𝑚 = Frequency of the 𝑚-th sinusoid pair
𝛼𝑚 𝑛 = Amplitudes of the 𝑚-th cosine wave
𝛽𝑚 𝑛 = Amplitudes of the 𝑚-th sine wave



Redefining the Problem: Frequencies

➢ In fact, we can represent any arbitrary signal using sums of AM sinusoids:

➢ In any case, this proves that we can work with constant frequencies over longer frames.

Let ℎ 𝑛  be an arbitrary discrete-time signal. Choose frequencies 𝑓1, 𝑓2 s.t. LCM 𝑓1, 𝑓2 < 𝑓𝑠/2. We can write ℎ 𝑛  as:

Indicator function

➢ Not a actual scenario we want in practice, i.e., directly synthesize a speech wave using two AM signals.
• Ideally, many sinusoids should cooperate to make this an easier synthesis task (breaking it down).
• This just shows the limitless representation capabilities from a theoretical point of view.



Redefining the Problem: Input

Spectrogram Mel-Spectrogram

An increasing and decreasing tone from 20Hz to 22kHz and back:

(Common conversion function from hertz to mel scale.)

(Common conversion function from mel to hertz scale.)

Plot of frequencies in Mel versus Hertz scale:

Speech Communications: Human and Machine by Douglas O'Shaughnessy Wiley-IEEE Press; 2nd edition (November 30, 1999) 

➢ Speech is non-stationary, therefore cannot be analyzed with a single DFT for long enough frames.
Discrete Short-Time Fourier Transform (DSTFT) → Spectrogram

➢ A linear spectrogram gives “equal importance” to all frequencies and requires a lot of space.
Mel-Spectrogram scales the frequencies logarithmically and unites them into frequency bands.



Redefining the Problem: Input and Frequencies

Then, to obtain the Mel-Spectrogram, we filter the 
linear spectrogram with 𝑀 overlapping triangular 
filters whose centres are the 𝑓 m𝑓 frequencies: 

We create 𝑀 equally spaced frequencies m𝑓 = 𝑚(𝑓min , … , 𝑚 𝑓max ) and then convert them back into Hz scale 𝑓 m𝑓 .

Example

… …

These central band frequencies are the choice 
for our constant frequencies 𝑓𝑚 of the model.

……

So, the number of AM sinusoid pairs in our 
model will be equal to the number of mel 

bands 𝑀 that we choose for our input 
spectrogram.



Redefining the Problem: Summary

1) Not constructing small frames with sums of AM sinusoids:
 → longer frames with sums of AM-FM sinusoids.
2) No alternating frequency estimation methods:

→ constant frequencies instead.
3) No separate phase or amplitude interpolation:

→ ෝ𝜶[𝒏], ෡𝜷[𝒏] amplitude modulators compensate for them.
4) No DFT or linear spectrogram as input:

→ Mel-Spectrogram instead.
5) No analytical parameter estimation from the input:
 → optimization approach instead.

➢ Main assumption differences:

➢ Original Sinusoidal Representation:

➢ Proposed Sinusoidal Representation:



Redefining the Problem: Solution

➢Distance = loss function ℒ
• Numeric estimation of how close its inputs are.
• E.g., Mean Squared Error (MSE):

➢Goal = approximate 𝑠 𝑛  with Ƹ𝑠 𝑛 as closely as possible.

Treat it as an optimization problem: Minimize the distance between Ƹ𝑠 𝑛  and 𝑠 𝑛 . 

➢ Parametric model 𝐹 with parameters 𝜃
• Input = Mel-Spectrogram 𝑆

• Output = ො𝛼, መ𝛽 that minimize ℒ 



Optimization Approach: Artificial Neural Networks

• There exist many optimization methods depending on the problem’s complexity/hardness, 
for instance, Linear, Convex, Message Passing, Belief Propagation, etc.

• From literature, we know that the hardness of our speech synthesis problem has shown the 
need for Artificial Neural Networks (ANNs), or Neural Networks (NNs) for short.

➢ Our function 𝐹 will be an artificial neural network (or neural network, for short) 
• Neural networks are comprised of layers.
• Each layer is made of weights, or neurons (i.e., the trainable parameters 𝜃).
• Each type of layer applies a different operation on its input to give its output.

➢ The main layer of interest for this lecture will be the 1D Convolutional Layer.



Neural Networks: 1D Convolutional Layer, 1D Input Case

• Here, the kernel values 𝑤𝑘 and the bias term 𝑏 are trainable parameters (∈ 𝜃).

One input channel One output channel

One kernel

➢ Equation for discrete 1D convolution (actually cross-correlation):
• Input sequence 𝑥, Output sequence 𝑦, One kernel 𝑤:

• One can think of convolving as sliding a window over the input: 



Neural Networks: 1D Convolutional Layer, 2D Input Case

Many 
input 
channels Many 

output 
channels

➢ Processing a 2D array, e.g., a Mel-Spectrogram with a 1D convolutional layer is possible:
• We can treat each input row, e.g., frequency band, as an input channel.

➢ Getting a 2D output from a 1D convolutional layer is possible:
• We can have multiple kernels operating over one input, thus resulting in a different 

output sequence, i.e., output channel, per set of kernels 1 :

1 The entire set of all kernels is known as the filter of the convolution.

Sets of  
kernels



Neural Networks: Transposed 1D Convolutional Layer

Padded input 
channel

Kernel

Upsampled output 
channel

➢ Upsampling along the x-axis (time axis in our case) is also necessary.
• It normally convolves the input sequence,
• after introducing padding among the input’s consecutive values:

• There are more hyperparameters normally in a convolutional layer (e.g., dilation, initialization, etc.). 



Neural Networks: Optimizer
➢ The algorithm for updating the trainable parameters (e.g., convolution kernels).

• Iteratively registers updates to minimize our loss function (by trying to find the critical points).

➢ Improved versions of the above optimizer are actually used, but the core idea remains.
• Examples: Mini-Batch SGD, RMSprop, AdaGrad, Adam, etc. 



Neural Networks: Backpropagation

➢ Backpropagation is the algorithm for computing the gradient: 
• The outputs of the neural network are given during the forward pass.
• Creating the neural network’s computational graph is needed.
• Then, the backward pass calculates the gradient of the computational graph.
• This is done by applying the chain rule over and over:

➢ It always works for any neural network, because in its core: 
• It is a combination of matrix multiplications,
• and differentiable 1 function compositions :

1 Non-differentiable models, e.g., Boltzmann Machines are beyond our scope.



Backpropagation: Toy Example

• Derive 𝑓 analytically for sanity check: ✓ 
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𝑠

1 × 𝑁

ො𝛼1[𝑛]
⋮

ො𝛼𝑀[𝑛] 𝑀 × 𝑁

ො𝛼1[𝑛]
⋮

መ𝛽𝑀[𝑛] 𝑀 × 𝑁

𝑀 × 𝑁

sin(2𝜋𝑓1𝑛/𝑓𝑠)
⋮

sin(2𝜋𝑓𝑀𝑛/𝑓𝑠) 𝑀 × 𝑁

cos(2𝜋𝑓1𝑛/𝑓𝑠)
⋮

cos(2𝜋𝑓𝑀𝑛/𝑓𝑠) 𝑀 × 𝑁

Ƹ𝑠

1 × 𝑁

𝑠 = Ground truth speech wave 
𝑁 = Total number of samples
𝑺 = Mel-Spectrogram of 𝑠
𝑀 = Total number of mel bins or sinusoids pairs
ො𝛼𝑚 𝑛 = Estimated amplitudes of the 𝑚-th AM-FM sine
෠𝛽𝑚 𝑛 = Estimated amplitudes of the 𝑚-th AM-FM cosine
𝑓𝑚 = Central frequency of the 𝑚-th mel band
𝑓𝑠 = sampling rate
Ƹ𝑠 = Estimated output speech wave

෍

𝑚=1

𝑀

 

Analysis



Adversarial Training Scheme
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Adversarial Loss Functions: Discriminator’s Perspective

➢ Discriminator’s output score: 
• Positive score 𝐷𝑘 𝑦 > 0 ⇒ 𝑦 is real. 
• Negative score 𝐷𝑘 𝑦 < 0 ⇒ 𝑦 is fake. 
• Higher score in magnitude ⇒ stronger belief about 𝑦 (and vice versa). 

➢ Discriminator’s objective: 
• Maximize 𝐷𝑘 𝑦  (or minimize −𝐷𝑘 𝑦 ) for all 𝑘 when 𝑦 is indeed real.
• Minimize 𝐷𝑘 𝑦  for all 𝑘 when 𝑦 is indeed fake.

Hinge loss with Δ = 1:

𝑦 = A speech wave (either real or generated)
𝑠 = A ground truth (real) speech wave 
𝑺 = A ground truth Mel-Spectrogram 
𝐺 = Generator neural network
𝐷𝑘 = 𝑘-th discriminator block



Base Generator Loss: Feature Map Generator Loss 1 :

Total Generator Loss:

Adversarial Loss Functions: Generator’s Perspective

➢ Discriminator’s output score: 
• Positive score 𝐷𝑘 𝑦 > 0 ⇒ 𝑦 is real.
• Negative score 𝐷𝑘 𝑦 < 0 ⇒ 𝑦 is fake.
• Higher score in magnitude ⇒ stronger belief about 𝑦 (and vice versa). 

➢ Generator’s objective: 
• Maximize 𝐷𝑘 𝑦  (or minimize −𝐷𝑘 𝑦 ) for all 𝑘 when 𝑦 is indeed generated.
• Minimize the distance between real and generated audio feature maps.

𝑦 = A speech wave
𝑠 = A ground truth speech wave 
𝑺 = The Mel-Spectrogram of 𝑠
𝐺 = Generator neural network
𝐷𝑘 = 𝑘-th discriminator block
𝑁𝑖 = Number of units of the 𝑖-th layer
𝑇 = Number of feature maps 
𝜆 = 10, Regularization strength 

1 Similar to the perceptual loss in image processing.



1D Conv. Layer

1D Transposed 
Conv. Layer

Residual Stack

𝑺

× 4

Generator
Network

MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis, 
Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen 
Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, Aaron Courville.

Neural Network Architecture: 
Extending MelGAN’s Generator

2D Transposed 
Convolution [x3]

𝑀 × 𝐿

𝑺

𝑠
1 × 𝑁

1D Conv. Layer

tanh(⋅)

Ƹ𝑠
1 × 𝑁

Ƹ𝑠

× 3

1D Conv. Layer

+

1D Conv. Layer

𝑀 × 𝐿

1 × 𝑁

➢ Depth is needed to capture 
long dependencies.



1D Conv. Layer

1D Transposed 
Conv. Layer

Residual Stack

𝑺

× 4
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1D Conv. Layer 1D Conv. Layer

Generator
Network

ො𝛼1[𝑛]
⋮

ො𝛼𝑀[𝑛]

መ𝛽1[𝑛]
⋮

መ𝛽𝑀[𝑛]

Neural Network Architecture: 
Extending MelGAN’s Generator

2D Transposed 
Convolution [x3]

𝑀 × 𝐿

𝑺

𝑠
1 × 𝑁

Ƹ𝑠
1 × 𝑁

… …

Ƹ𝑠

MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis, 
Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen 
Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, Aaron Courville.

× 3

𝑀 × 𝑁𝑀 × 𝑁

𝑀 × 𝐿

1 × 𝑁

➢ Depth is needed to capture 
long dependencies.



1D Conv. Layer

1D Transposed 
Conv. Layer (x5)

Residual Stack

1D Transposed 
Conv. Layer (x2)

Residual Stack

𝑺

× 2

× 2

Example Through the Network 

𝑀 = 100 × 𝐿 = 80

𝑺

1D Conv. Layer 
(x420)

𝟒𝟐𝟎 × 80

𝑺1

1D Transposed Conv. 
Layer (x5, x220)

𝟐𝟐𝟎 × 400

𝑺2

Residual Stack
(x220)

220 × 400

𝑺3

1D Transposed Conv. 
Layer (x5, x160)

𝟏𝟔𝟎 × 2k

𝑺4

…

1D Conv. Layer 1D Conv. Layer

መ𝛽1[𝑛]
⋮

መ𝛽𝑀[𝑛]

ො𝛼1[𝑛]
⋮

ො𝛼𝑀[𝑛] 𝑀 × 𝑁 𝑀 × 𝑁

filters

420

220

160

140

𝑀 = 100

ො𝛼1[𝑛]
⋮

ො𝛼𝑀[𝑛]

መ𝛽1[𝑛]
⋮

መ𝛽𝑀[𝑛]

𝑀 = 100 × 𝑁 = 8192

𝑀 = 100 × 𝑁 = 8192



Neural Network Architecture: 
MelGAN’s Discriminator

Discriminator
Block

Discriminator
Block

Discriminator
Block

Average
Pooling [2x]

Average
Pooling [4x]

Raw
Waveform

Feature Maps + 
Output

Feature Maps + 
Output

Feature Maps + 
Output

1D Conv. Layer

1D Conv. Layer

1D Conv. Layer

1D Conv. Layer

Raw
Waveform

(downsampled)
Feature Map

x4 Feature Maps

Feature Map

Output MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis, 
Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen 
Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, Aaron Courville.

➢ Multi-scale discriminator: 
• Various scales with different downsampling ratios.
• Each scale focuses in different frequency ranges.
• Output = real number (score).
• Feature Map = layer output (the “why”).

➢ Discriminator’s Goal: Learn to differentiate between 
real (ground-truth) and fake (generated) samples.

➢ Disadvantages:
 Space efficiency (~16.9 MM trainable 

parameters).
 Training time overhead (× 2).

➢ Advantages:
✓ Qualitative signals for training the generator.
✓ Discarded after the generator is trained.

× 4



No GAN Approach: 
Spectral Loss Function Components

➢ Assumption: 𝑠 𝑛 ≈ Ƹ𝑠 𝑛 ⇔ 𝑿 𝑘, 𝑚 ≈ ෡𝑿[𝑘, 𝑚]

𝑠 = The ground truth speech wave 
Ƹ𝑠 = The estimated speech wave 

𝑿 𝑘, 𝑚 = The DSTFT of 𝑠
෡𝑿 𝑘, 𝑚 = The DSTFT of Ƹ𝑠
𝐾 = Number of DSTFT frequencies
𝑁 = Length of 𝑠 or Ƹ𝑠 in samples
𝜖 = 2, Regularization strength

Spectral Convergence: Logarithmic DSTFT Magnitude:

• Accounts for the more significant differences.
• More important in the early stages of the training.
• Frobenius/Hilbert-Schmidt norm:

• Focuses more on details.
• More important in the later stages of the training.
• 𝐿1 norm:

Sercan O Arık, Heewoo Jun, and Gregory Diamos. Fast spectrogram inversion using multi-head 
convolutional neural networks. IEEE Signal Processing Letters, 26(1):94–98, 2018



Spectral Loss Function

Entire Spectral Loss Function:
DFT 
Size 
(𝑲𝒊)

Window 
Size 
(𝑳𝒊)

Hop
Size 
(𝑼𝒊)

2048 1200 240

1024 1024 256

512 240 50

Summing over different DSTFT parameters:

Difference in time acts like a high-pass filter:

𝑠 = The ground truth speech wave 
Ƹ𝑠 = The estimated speech wave 

𝑿 𝑘, 𝑚 = The DSTFT of 𝑠
෡𝑿 𝑘, 𝑚 = The DSTFT of Ƹ𝑠
𝜆 = 9, Regularization strength

➢ Speech spectrograms reveal different information when analyzed in different resolutions:
• Wideband (small analysis window) gives more information about the formants, bursts, excitation pulses, etc.
• Narrowband (long analysis window) gives more information about the 𝑭𝟎, harmonics, pitch, etc. 
• We want our loss function to capture all these characteristics, so we use a multi-resolution loss.



Four Trained Vocoder Models

➢ Training Hyperparameters: 
• 3000 epochs on the LJ speech dataset.
• 1 Epoch = all files have been sampled once. 
• 1 sample = window taken from a file uniformly at random.
• 22.8 hours of speech for training, 1.2 hours for testing, 8 files excluded for validation purposes.
• More training details and hyperparameters on the thesis document.

Generative Adversarial Network

MelGAN

~21.16 MM total trainable 
parameters

Generator
~4.26 MM 
trainable 

parameters

Discriminator
~16.9 MM 
trainable 

parameters

SinGAN

~21.04 MM total trainable 
parameters

Generator
~4.14 MM 
trainable 

parameters

Discriminator
~16.9 MM 
trainable 

parameters

Spectral Loss Function, no Discriminator

MelNoGAN

~4.26 MM total 
trainable parameters

SinNoGAN

~4.14 MM total 
trainable parameters



Quality & Speed Assessment 

Average MOS Score MelGAN Sinusoidal Ground Truth

GAN 3.53 (±0.83) 3.27 (±0.83) 4.90 (±0.29)

No GAN 1.76 ±0.80 2.01 (±0.83) 4.90 (±0.29)

Average Training Speed MelGAN Sinusoidal

GAN 236.67 ms/batch 515.10 ms/batch

No GAN 105.45 ms/batch 258.78 ms/batch

Average Inference Speed 2.34 min of speech/sec 1.52 min of speech/sec

➢ Mean Opinion Score (MOS) Experiment 1 : 
• 15 random samples inferred from all models + ground truth.
• 5-second long each + ground truth as the ideal reference sample.
• 1-5 integer evaluation score.
• 43 candidates in total.

➢ MOS Results: 
• Sinusoidal slightly worse on 

the GAN experiment.
• Sinusoidal slightly better on 

the non-GAN experiment.

➢ Speed Results: 
• Discriminator adds a × 2 

computational overhead.
• Sinusoidal extension adds 

an additional × 2 overhead.

1 No established objective measures for speech quality assessment exist (still an open problem).



Audio Samples
Ground Truth MelGAN SinGAN MelNoGAN SinNoGAN Text

“…dissimilarity of its protective functions to most 
activities of the department of the treasure…” 

“…the vice presidential vehicle, although not specially 
designed for that…”

“…the service has experimented with the use of agents 
borrowed for short periods from…”

“…which provides, quote, liquor, use of…”

Once can notice the 
GAN approaches 
producing very 

similar audio with 
few similar artifacts 

present.

Approaches without a 
discriminator are lower 
in quality due to similar 
artifacts plus a buzzing 

effect that is being 
generated throughout 

the waveform.



Amplitude
Modulators

➢ SinGAN’s ො𝛼𝑚 𝑛  on 
random speech inputs: 
• Very few (~3-4) sinusoids 

used predominantly.
• Many sinusoids (~15-20) 

with very small amplitude.



➢ SinGAN’s መ𝛽𝑚 𝑛  on 
random speech inputs: 
• Very few (~3-4) sinusoids 

used predominantly.
• Many sinusoids (~15-20) 

with very small amplitude
• Phase is indeed 

compensated using the 
sinusoid pairs.

Amplitude
Modulators



Amplitude
Modulators

➢ SinNoGAN’s ො𝛼𝑚 𝑛  on 
random speech inputs: 
• Many more (~20) 

sinusoids used 
predominantly.

• Almost all frequencies are 
used to an extent, with 
lower ones used more as 
expected.



Amplitude
Modulators

➢ SinNoGAN’s መ𝛽𝑚 𝑛  on 
random speech inputs: 
• Same frequencies used as 

in the previous figure.
• Slightly lower in amplitude 

than ො𝛼𝑚 𝑛 .
• Betas modulators are 

omitted for the following 
figures.



Amplitude
Modulators

➢ SinGAN’s ො𝛼𝑚 𝑛  on a plain 
/a/ vowel signal: 
• Only two frequencies used.
• Lower one being higher in 

amplitude because of /a/. 



Amplitude
Modulators

➢ SinNoGAN’s ො𝛼𝑚 𝑛  on a 
plain /a/ vowel signal: 
• Less frequencies used 

(~10) as well.
• Lower ones are higher in 

amplitude as well.
• Still way more than 

SinGAN.



Amplitude
Modulators

➢ SinGAN’s ො𝛼𝑚 𝑛  on a plain 
/s/ consonant signal: 
• The same two-three 

frequencies mostly used.
• Higher ones are higher in 

amplitude due to /s/.



Amplitude
Modulators

➢ SinNoGAN’s ො𝛼𝑚 𝑛  on a 
plain /s/ consonant signal: 
• Less sinusoids needed 

compared to more 
complicated signals.

• Still a lot more than 
SinGAN.

• Higher frequencies are also 
higher in amplitude due to 
/s/.



Main Issues

➢Number of sinusoids & quality:

 SinGAN does not take advantage of the sinusoidal approach to a satisfactory degree: 
Most sinusoids are very low in amplitude, essentially not utilized.

 SinNoGAN needs a boost quality-wise.

✓ Non-GAN approach utilizes a lot more sinusoids in general.
✓ Spectral-based loss rewards the use of more frequencies more easily.

Add spectral loss components in the GAN approach.
Change the way the network learns to produce AM-FM waves.

Can we somehow compute the ground truth amplitude  
modulators α, β?



Getting the Ground Truth α, β

But we also need to separate 
the α from the β (Step 2).



Getting the Ground Truth α, β

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.hilbert.html

We can use these AM-FM 
signals at the loss function 
now to train our estimated 

ones.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.hilbert.html


×

+

×

Neural
Network
Model

Synthesis

𝑀 × 𝐿

𝑺

A Neural-Based Sinusoidal 
Speech Synthesis Scheme

𝑠

1 × 𝑁

ො𝛼1[𝑛]
⋮

ො𝛼𝑀[𝑛] 𝑀 × 𝑁

መ𝛽1[𝑛]
⋮

መ𝛽𝑀[𝑛] 𝑀 × 𝑁

𝑀 × 𝑁

sin(2𝜋𝑓1𝑛/𝑓𝑠)
⋮

sin(2𝜋𝑓𝑀𝑛/𝑓𝑠) 𝑀 × 𝑁

cos(2𝜋𝑓1𝑛/𝑓𝑠)
⋮

cos(2𝜋𝑓𝑀𝑛/𝑓𝑠) 𝑀 × 𝑁
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𝑀 = Total number of mel bins or sinusoids pairs
ො𝛼𝑚 𝑛 = Estimated amplitudes of the 𝑚-th AM-FM sine
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Spectral Loss Function

Entire Loss Function:

DFT 
Size 
(𝑲𝒊)

Window 
Size 
(𝑳𝒊)

Hop
Size 
(𝑼𝒊)

2048 1200 240

1024 1024 256

512 240 50

𝑠 = The ground truth speech wave 
Ƹ𝑠 = The estimated speech wave 

𝛼, 𝛽 = Ground truth AM-FM signals 
computed via Butterworth & Hilbert

෢𝛼, 𝛽 = Estimated AM-FM signals
𝐾 = Number of DSTFT frequencies
𝑁 = Length of 𝑠 or Ƹ𝑠 in samples
𝜖 = 2, 𝜆 = 9, Regularization strength

➢ Same parameters, but also for the α, β, and no derivative-based extra loss.



Results in Short 

➢ Training with no Discriminator network (like SinNoGAN):

✓Our Butterworth & Hilbert technique for AM-FM speech synthesis is a 
novel approach.

✓No degradation in output speech quality (compared to SinNoGAN).
✓ All AM-FM signals now are always used.
✓We now know exactly what our AM-FM signals represent and what the 

network tries to calculate (increased interpretability).

 Slower training due to increased overhead for computing the ground truth 
α, β spectra from the ground truth speech signal (i.e., using Butterworth & 
Hilbert) for the loss.



New Estimated 
AM-FM Signals

➢ Butterworth & Hilbert 
approach, no GAN, 
random speech signal, 
first 16 AM-FM waves: 
• Goal achieved: All 

frequencies are used.



Remaining Issue

➢AM-FM waves are now utilized, but quality needs improvement:

 To justify complete removal of the discriminator, just gaining training speed & 
interpretability is not enough to compensate for much worse quality.

 Quality begs improving, but no established known loss function from literature 
can beat the strength of a Discriminator-based loss as of now. That is why 
GANs for speech synthesis are still a thing.

One idea is to somehow involve a Discriminator with our new approach. We 
can have the Discriminator operate on the speech waves and our new spectral 
Butterworth & Hilbert loss operate on the alphas and betas. But, that will more 
than double the space and computations required during training.
Perhaps, we can even somehow avoid the use of a Discriminator with yet 
another idea, named Generalized Energy Distance (GED). It has recently shown 
very promising results for the training of neural networks.



A New Hope: Generalized Energy Distance

➢Rapid literature development on the GED, both theory and practice-
wise. Needs many lectures to fully cover, but the core idea is:

Neural
Network
Model

Neural
Network
Model

Get two different inferences from the model, then use a loss function with the following form:



First Experiment: MelNoGAN with GED loss

MelGAN’s 
Generator 
Network

𝑀 + 𝟏 × 𝐿

𝑺𝟏

𝑠

1 × 𝑁

Ƹ𝑠1

1 × 𝑁

Add a channel of 
Gaussian noise

𝑀 + 𝟏 × 𝐿

𝑺𝟐
Ƹ𝑠2

1 × 𝑁

MelGAN’s 
Generator 
Network

Add a channel of 
different Gaussian noise



Results in Short 

➢ Training with no Discriminator network (like SinNoGAN), GED loss, no AM-FM 
approach yet:

✓ Tremendous quality upgrade, on par with the original MelGAN model.
✓ Very fast training, lower resources needed, faster convergence.

Validation Samples
Ground Truth MelGAN - 

Original
MelNoGAN – 

GED L1
Text

“…Marguerite Oswald and Robert Oswald, were interviewed…” 

“…on individuals or groups, threatening to cause harm…”

“…sources of danger to the president, in time…”

“…under existing procedures, and did not know of his 
application.”



Future Work

➢ Loss functions:
Use both a Discriminator and a GED loss to train the previous model for even better quality.
Use a GED loss and/or a Discriminator to train the new AM-FM approach.
Include more terms in the loss, e.g., a logarithmic spectral term like LM loss.
Approach theoretically/analytically what features does the discriminator learn (future work 
in neural network research in general) to design better loss functions and models.

➢ Phase is neglected:
• Most neural networks used for speech processing learn phase information “from scratch”, 

since spectrograms inherently do not contain any information about the phase.
Including some information about the phase in the input (or the loss function) might yield 
improvements. This is not an easy task, because, for instance, the phase spectrum is very 
noisy and sensitive to even tiny displacements in the time domain. 



Conclusion
➢Neural-based sinusoidal representations of speech are feasible:

✓ New solutions proposed for the problem of speech synthesis.

✓ Theoretically unlimited representation capabilities. 

✓ Produced speech quality is on par with state-of-the-art models.

✓ Easily attachable extension to almost any architecture.

✓ Monitoring amplitude modulators offers very useful information about the model.

✓ More qualitative results with spectral-based loss functions.

✓ New idea of including the signal derivative in spectral losses can improve quality.

✓ Plenty of open room for future ideas for further improvements.
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