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• The human speech production system  is a complicated system

• From an engineering point of view, it can be roughly divided into 
three parts [1]

• The vocal folds, which is the source of the system

• The vocal tract filter, which is the path from the vocal folds to the lips

• The lip radiation, which is the final bound before system output
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• Based on this simplification, voiced speech can be modeled as a linear 
filtering operation:

𝑠 𝑡 = 𝑔 𝑡 ∗ ℎ 𝑡 ∗ 𝑟 𝑡 ↔ 𝑆 𝑧 = 𝐺 𝑧 𝐻 𝑧 𝑅 𝑧

where ∗ denotes convolution and

 𝑔(𝑡) is the glottal airflow velocity waveform

 ℎ(𝑡) is the vocal tract filter

 𝑟(𝑡) is the lip radiation filter
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• What is Glottal Inverse Filtering (GIF)?

• GIF refers to techniques for obtaining the 
source of voiced speech, the glottal airflow 
velocity waveform, from voiced speech 
itself [10]

• How does this signal look like?

• Open phase: air flows through the glottis

• Return phase: vocal folds are snapping shut

• Closed phase: glottis is shut and airflow
velocity is zero
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• While radiation occurs after the vocal
tract filter, we often combine 𝐺(𝑧) and
𝑅(𝑧) into a single expression

• This applies the radiation effect to the
glottal source before it enters the vocal
tract

• Effect of differentiation on the source

• The resulting signal is the so-called
glottal flow derivative

• Very commonly used in literature
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• Why bother?

• Basic research of speech production

• Applications to speech analysis, synthesis, and modification 

• Environmental voice care

• Voice pathology detection 

• Analysis of the emotional content of speech

• Voice source modeling for TTS 
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• Basic idea:

• Form a computational model for the vocal tract filter, 𝐻(𝑧)

• Cancel its effect from the speech waveform by filtering the speech signal 

through the inverse of the model, 
1

𝐻 𝑧
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• Problem:

• The actual glottal flow waveform IS NOT AVAILABLE!

• …at least in a non-invasive manner [18]

• Approaches:

• “Visual” inspection of the resulting glottal flow waveform

• Use of synthetic speech signal produced by a known artificial excitation

• Compare the results of different GIF algorithms

• None of the previous approaches is truly objective



On the (Glottal) Inverse Filtering of Speech 
Signals

• One solution is to build a physical model of the speech production 
mechanism

• Generate waveforms from this model

• Time-varying waveforms are simulated

• Such waveforms are expected to provide a more firm and realistic 
test of GIF methods

• Both the speech output and the source are available

• A well known dataset of such signals is described in [2,6]
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• The model has a parametrized input such as

• Lung pressure

• Prephonatory glottal half-width (adduction)

• Vocal fold length and thickness

• Activation levels of the cricothyroid and thyroarytenoid muscles
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• Since we already know about Linear Prediction (LP), we will discuss GIF 
methods based only on that 

• You already know two methods for estimating LP coefficients

• Autocorrelation method: zero samples outside prediction error interval –minimize MSE 
everywhere

• Covariance method: non-zero samples outside prediction error interval – minimize MSE 
inside prediction error interval
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• LP is used to produce all-pole models of the vocal tract filter 

𝐻 𝑧 =
1

 
𝑘=1
𝑝

𝑎𝑘𝑧
−𝑘

where 𝑝 is the filter order and 𝑎𝑘 are the LP coefficients

• In general, LP minimizes the MSE over a region R

𝐸 =  

𝑅

𝑒2[𝑛]

where 𝑒 𝑛 = 𝑠 𝑛 −  𝑘=1
𝑝

𝑎𝑘𝑠[𝑛 − 𝑘]
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• How can we find the source excitation through LP analysis?

• If we consider speech as an AR process

𝑠 𝑛 = 𝐴𝑔 𝑛 + 

𝑘=1

𝑝

𝑎𝑘𝑠[𝑛 − 𝑘] ⇒ 𝐴𝑔 𝑛 = 𝑠 𝑛 − 

𝑘=1

𝑝

𝑎𝑘𝑠[𝑛 − 𝑘]

then minimization of the MSE leads to 𝑒 𝑛 ≈ 𝐴𝑔[𝑛]

• Thus, the prediction error (or residual) can be thought of an 
estimation of the source excitation

• But how are glottal source and residual related?
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• But how are glottal source and residual related?

• As you’ve seen, the two signals do not quite match

• The reason is that the Z transform of speech is a combined transfer function 

𝑌 𝑧 = 𝐺 𝑧 𝑅 𝑧 𝐻(𝑧)

• 𝐺(𝑧) can be further decomposed as an impulse sequence passed through a 
glottal filter:  𝐺 𝑧 = 𝐼 𝑧 𝑈 𝑧 , where 𝐼 𝑧 is the impulse sequence

• Thus 𝑌(𝑧) contains

Zeros from the glottal source and lip radiation

 Poles from the glottal filter and the vocal tract filter
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• LP analysis provides an overall transfer function  𝐻(𝑧) where all these 
contributions are combined! 

• …not to mention that we’re using an all-pole method for a pole-zero signal… 

• So what we are cancelling via simple LP-based GIF is this overall estimation

• …resulting into something that looks like a series of impulses!

• So how can we work this out?

• Identify instants where there is no interaction between the source and the 
filter!
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• Closed-phase analysis

• Identify regions where the vocal folds are closed

• No contribution from 𝐺(𝑧), the speech signal should contain vocal tract and radiation 
factors 𝐻 𝑧 𝑅(𝑧)

• 𝑅(𝑧) can be modeled as a differentiator (single-zero FIR filter), so it can be cancelled by a 
simple integrator

• Vocal tract estimation in the closed phase region leads to a more precise 
result

• Estimation in the closed phase  cancelling vocal tract via GIF over the whole 
pitch period

• Use of covariance-based LP on the closed-phase [9]



On the (Glottal) Inverse Filtering of Speech 
Signals

• Closed-phase 
analysis
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• However, standard closed-phase covariance LP suffers from certain 
shortcomings

 Short closed phase duration (especially for high pitched speakers)

• Too few samples to obtain a good estimation

 Sensitivity to the exact position of the covariance frame

• Small variation from the exact closed phase interval produces artifacts

Vocal tract filter instability

• Covariance-based LP does not guarantee a stable filter

• Inverse filter might not be minimum phase
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• Frame position
sensitivity
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• The effect of an inverse filter root which is located on the positive real axis has 
the properties of a first order differentiator, when the root approaches the 
unit circle

• A similar effect is also produced by a pair of complex conjugate roots at low 
frequencies

• This distortion is more apparent at the time instants where the glottal flow 
changes more rapidly, that is, near glottal closure

• The presence of such roots are in contrast to the source-filter suggested 
theory 

• The removal of such roots results in less dependency on the covariance frame 
location
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• Non-minimum phase
inverse filter
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• The inverse filter 1/𝐻(𝑧) might not be minimum phase

• As we know from basic DSP, it can become minimum phase by replacing each 
zero by its mirror image partner

• That leaves the magnitude spectrum unchanged

• The phase characteristics change, though 
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• Constrained Covariance-based Closed-Phase LP [3]

• Idea: modification of the conventional CP covariance analysis in order to 
provide more realistic root locations, in the acoustic sense

• How?

• Not allow mean square error to locate the roots freely on the z-plane

• Impose mathematical restrictions in a form of concise mathematical equations

• DC-constraint
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• Constrained Covariance-based Closed-Phase LP [3]

• DC-constraint: 

𝐻 𝑒𝑗0 =  

𝑘=0

𝑝

𝑎𝑘𝑒
−𝑗0𝑛 =  

𝑘=0

𝑝

𝑎𝑘 = 𝑙𝐷𝐶

• Why?

• Magnitude response of voiced sounds approaches unity at zero frequency [1]

• A short and misplaced covariance frame might lead to a response with higher gain at DC 
than at formants

• With such a constraint, one might expect a better match of the magnitude 
response to the source-filter theory
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• Constrained Covariance-based Closed-Phase LP [3]

• Constrained convex minimization problem

• Minimize 𝑎𝑇Φ𝑎 subject to Γ𝑇𝑎 = 𝑏

𝑎 = 1, 𝑎1, … , 𝑎𝑝
𝑇

Φ = Φ𝑖𝑗 , Φ𝑖𝑗 =  

𝑛=0

𝑁−1

𝑠 𝑛 − 𝑖 𝑠[𝑛 − 𝑗] , 1 ≤ 𝑖, 𝑗 ≤ 𝑝

𝑏 = 1, 𝑙𝐷𝐶
𝑇 Γ =

1 1
0 1
⋮
0

⋮
1

𝑇

𝑎 = Φ−1Γ Γ𝑇Φ−1Γ −1𝑏

Solution:
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• Still, the computational load of covariance-based LP along with its 
shortcomings (cases of very small CP, frame dependent, CP identification) 
might make the method not appropriate

• Idea: use autocorrelation method with “enhancements”

• Fast & stable

• Not optimal but good enough

• Try to introduce “enhancements”

• Try to approach performance of CP analysis without detecting CP
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• Iterative Adaptive Inverse Filtering [4]

• An iterative method for obtaining the
glottal source

• Motivation:

• A priori knowledge of the overall shape of the
vocal tract

• Cancel the tilting effect of the glottal source

• Estimate vocal tract filter
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• Iterative Adaptive Inverse Filtering [4]

• First iteration

• 1. LPC of order 1 to model the effect of 
the glottal source on the speech spectrum

• 2. Cancel 1.

• 3.LPC of high order to model the vocal 
tract

• 4&5. Cancel vocal tract and lip radiation
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• Iterative Adaptive Inverse Filtering [4]

• Second iteration

• 6. LPC of order 2-4 to more accurately
model the effect of the glottal source 
on the speech spectrum

• 7. Cancel 6.

• 8.LPC of high order to model the vocal 
tract

• 9&10. Cancel vocal tract and lip radiation
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• Stabilized Weighted Linear Prediction [5,7]

• An all-pole method based on Weighted Linear Prediction (WLP)

• Idea: use standard autocorrelation method but give more weight to some 
samples of the autocorrelation matrix compared to others 

• How to give more weight?
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• Stabilized Weighted Linear 
Prediction

• Compute the short time energy (STE)
of the signal

• High energy samples fall in the
closed phase region!
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• Stabilized Weighted Linear Prediction

• STE function emphasizes the speech samples of large amplitude, which 
typically occur during the closed phase interval

• By emphasizing on these samples that occur during the glottal closed phase, 
it is likely to yield more robust acoustical cues for the formants

• The method depends on a parameter 𝑀, the energy window length

• A high value of 𝑀 increases the sharpness of the resonances of the spectrum, 
whereas a low value of M increases the smoothness of the spectrum
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• Stabilized Weighted Linear Prediction

• STE:

𝑤𝑛 =  

𝑖=0

𝑀−1

𝑥2[𝑛 − 𝑖 − 1]

• Prediction error energy:

𝐸 =  

𝑛=1

𝑁+𝑝

𝑒2[𝑛]𝑤𝑛 = 𝑎𝑇  

𝑛=1

𝑁+𝑝

𝑤𝑛𝑥 𝑛 𝑥𝑇 𝑛 𝑎 = 𝑎𝑇𝑅𝑎

where 

𝑅 =  

𝑛=1

𝑁+𝑝

𝑤𝑛𝑥 𝑛 𝑥𝑇 𝑛



On the (Glottal) Inverse Filtering of Speech 
Signals

• Stabilized Weighted Linear Prediction

• Constrained minimization problem (again )

• Minimize 𝐸 subject to 𝑎𝑇𝑢 = 1, where 𝑢 = 1,0,0,… , 0 𝑇

• It can be shown that a satisfies the linear equation

𝑅𝑎 = 𝜎2𝑢

where 𝜎2 is the error energy

• Stability is ensured by a specific algorithm
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• Results
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• Performance metric

𝑆𝑅𝐸𝑅 = 20 log10
𝜎𝑠[𝑛]

𝜎𝑒[𝑛]

• 𝑠[𝑛]: original glottal source

• 𝑒[𝑛]: error between original and synthetic

• 𝜎𝑥[𝑛]: standard dev. of 𝑥[𝑛]

The bigger the better!

Signal to 
Reconstruction 

Error Ratio
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• Performance metric

𝐸𝑅 𝐻1 −𝐻2 = 𝑅𝑒𝑓 𝐻1 − 𝐻2 − 𝑆𝑦𝑛𝑡ℎ 𝐻1 − 𝐻2

• 𝑅𝑒𝑓: original glottal source spectrum

• 𝑆𝑦𝑛𝑡ℎ: synthetic glottal source spectrum

• 𝐻1 −𝐻2 is the difference between the first two glottal source harmonics

• This metric is an
indication of the spectral
tilt 

The smaller the better!
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• GIF has been around for more than five decades

• Attractive analysis method

• Non-invasive

• Using only speech signal

• Mostly automatic

• Applications in many speech technologies

• Still improving! (QCP Analysis [16])

• Software: OPENGlot, Aparat, etc
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• GIF has been around for more than five decades

• Shortcomings

• Recording should be made with caution

• Introducing non-linearities that distort GIF result

• “Ground truth” is very rarely available

• Synthetic speech or physiologically modeled data is used

• Unreliable analysis of certain voice types [11,12]

• High-pitch speech, low F1, vulnerability of best method (closed-phase CP)

• Based on all-pole methods  speech is pole-zero (nasal sounds)

• Fixed filter coefficients over successive periods 
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