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* The human speech production system is a complicated system

* From an engineering point of view, it can be roughly divided into
three parts [1]

* The vocal folds, which is the source of the system
* The vocal tract filter, which is the path from the vocal folds to the lips

* The lip radiation, which is the final bound before system output
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* Based on this simplification, voiced speech can be modeled as a linear
filtering operation:

s(t) = g(t) * h(t) xr(t) < S(z) = G(2)H(2)R(2)

where * denotes convolution and

= g(t)is the glottal airflow velocity waveform
= h(t) is the vocal tract filter
= r(t) is the lip radiation filter
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* While radiation occurs after the vocal
tract filter, we often combine G (z) and
R(z) into a single expression

* This applies the radiation effect to the
glottal source before it enters the vocal

tract
» Effect of differentiation on the source
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* The resulting signal is the so-called
glottal flow derivative

* Very commonly used in literature
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* Why bother?

* Basic research of speech production

Applications to speech analysis, synthesis, and modification

Environmental voice care

Voice pathology detection

Analysis of the emotional content of speech

Voice source modeling for TTS
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* Basic idea:
* Form a computational model for the vocal tract filter, H(z)

* Cancel its effect from the speech waveform by filtering the speech signal

through the inverse of the model, -
H(z)
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* Problem:
* The actual glottal flow waveform IS NOT AVAILABLE!

e ...atleastin a non-invasive manner [18]

* Approaches:
* “Visual” inspection of the resulting glottal flow waveform
* Use of synthetic speech signal produced by a known artificial excitation

* Compare the results of different GIF algorithms

* None of the previous approaches is truly objective
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* One solution is to build a physical model of the speech production
mechanism

* Generate waveforms from this model
 Time-varying waveforms are simulated

* Such waveforms are expected to provide a more firm and realistic
test of GIF methods

* Both the speech output and the source are available

* A well known dataset of such signals is described in [2,6]
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P |n detail, self sustained vocal fold vibration was simulated with three masses coupled to one another
through stiffness and damping elements.
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* The model has a parametrized input such as

* Lung pressure

Prephonatory glottal half-width (adduction)

Vocal fold length and thickness

Activation levels of the cricothyroid and thyroarytenoid muscles
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GIF techniques
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* Since we already know about Linear Prediction (LP), we will discuss GIF
methods based only on that

* You already know two methods for estimating LP coefficients

* Autocorrelation method: zero samples outside prediction error interval —minimize MSE
everywhere

* Covariance method: non-zero samples outside prediction error interval — minimize MSE
inside prediction error interval
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* LPis used to produce all-pole models of the vocal tract filter
H(z) =

where p is the filter order and a;, are the LP coefficients

* In general, LP minimizes the MSE over a region R

E = Eez[n]
R

where e[n]| = s[n] — £=1 a,s[n — k]
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* How can we find the source excitation through LP analysis?

* If we consider speech as an AR process
p

p
s[n] = Ag[n] + Z ais[n — k] = Ag|n] = s|n] — z a,s[n — k]

k=1 k=1

then minimization of the MSE leads to e[n] = Ag[n]

* Thus, the prediction error (or residual) can be thought of an
estimation of the source excitation

* But how are glottal source and residual related?
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* But how are glottal source and residual related?

* As you've seen, the two signals do not quite match

* The reason is that the Z transform of speech is a combined transfer function
Y(z) = G(z)R(z)H(2)

* G(z) can be further decomposed as an impulse sequence passed through a
glottal filter: G(z) = I1(z)U(z), where I(z) is the impulse sequence

* Thus Y(z) contains
J Zeros from the glottal source and lip radiation

- Poles from the glottal filter and the vocal tract filter
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» LP analysis provides an overall transfer function H(z) where all these
contributions are combined!

* ...not to mention that we're using an all-pole method for a pole-zero signal...

* So what we are cancelling via simple LP-based GIF is this overall estimation

* ...resulting into something that looks like a series of impulses!
* So how can we work this out?

» |dentify instants where there is no interaction between the source and the
filter!
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* Closed-phase analysis
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* Identify regions where the vocal folds are closed rime [

* No contribution from G (2), the speech signal should contain vocal tract and radiation
factors H(z)R(2)

* R(z) can be modeled as a differentiator (single-zero FIR filter), so it can be cancelled by a
simple integrator

* Vocal tract estimation in the closed phase region leads to a more precise
result

* Estimation in the closed phase = cancelling vocal tract via GIF over the whole
pitch period

* Use of covariance-based LP on the closed-phase [9]
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* However, standard closed-phase covariance LP suffers from certain
shortcomings

 Short closed phase duration (especially for high pitched speakers)

* Too few samples to obtain a good estimation

 Sensitivity to the exact position of the covariance frame

» Small variation from the exact closed phase interval produces artifacts

J Vocal tract filter instability

* Covariance-based LP does not guarantee a stable filter

* Inverse filter might not be minimum phase
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sensitivity

Imaginary part —

200
Samples

Sl

Imaginary part

=
©
a
=
©
£
=)
©
E

200
Samples Real part




On the (Glottal) Inverse Filtering of Speech
Signals

* The effect of an inverse filter root which is located on the positive real axis has
the properties of a first order differentiator, when the root approaches the
unit circle

* A similar effect is also produced by a pair of complex conjugate roots at low
frequencies

* This distortion is more apparent at the time instants where the glottal flow
changes more rapidly, that is, near glottal closure

* The presence of such roots are in contrast to the source-filter suggested
theory

* The removal of such roots results in less dependency on the covariance frame
location
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* Non-minimum phase
inverse filter
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* The inverse filter 1/H(z) might not be minimum phase

* As we know from basic DSP, it can become minimum phase by replacing each
zero by its mirror image partner

* That leaves the magnitude spectrum unchanged

* The phase characteristics change, though
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* Constrained Covariance-based Closed-Phase LP [3]

* ldea: modification of the conventional CP covariance analysis in order to
provide more realistic root locations, in the acoustic sense

° How?

* Not allow mean square error to locate the roots freely on the z-plane
* Impose mathematical restrictions in a form of concise mathematical equations

 DC-constraint
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* Constrained Covariance-based Closed-Phase LP [3]

 DC-constraint:

a, = lpc

=

[4
H(el%) = z ae /0" =
k=0 k=0
* Why?
* Magnitude response of voiced sounds approaches unity at zero frequency [1]

* A short and misplaced covariance frame might lead to a response with higher gain at DC
than at formants

» With such a constraint, one might expect a better match of the magnitude
response to the source-filter theory
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* Constrained Covariance-based Closed-Phase LP [3]
* Constrained convex minimization problem

* Minimize a’ ®a subjecttoI'a = b

N-—1
a=[1,a1,...,ap]T b = Zs —ils[n—j], 1<ij
n=0
1 11"
0 1
b = [1; lDC]T I'= : : Solution:
0 1 a=o I(TTd N 1p
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* Still, the computational load of covariance-based LP along with its
shortcomings (cases of very small CP, frame dependent, CP identification)
might make the method not appropriate

* |dea: use autocorrelation method with “"enhancements”
* Fast & stable
* Not optimal but good enough
* Try to introduce “enhancements”

* Try to approach performance of CP analysis without detecting CP
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Si gna s s,(0) [1. LPC-analysis
of order 1
* Iterative Adaptive Inverse Filtering [4] P H._,n(z)
1

: : . filtering of order t]
* An iterative method for obtaining the

4, 1 :
glottal source I 5. Integration

* Motivation: 6. LPC-analysis

* A priori knowledge of the overall shape of the of order g2

vocal tract

7. Inverse 8. LPC-analysis
filtering of order 12
' : 9. Inverse ] &)
* Estimate vocal tract filter P 10. Integration

Where: e
Hgl{z) =]+azl ng(z) =1+ E c(k)zk
k=1

 Cancel the tilting effect of the glottal source

tl t2
Hea(z)= 1+ Y b)z* Hyaz) =1+ Y dk)z*

k=1 k=1
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Si gna s s,(0) [1. LPC-analysis
of order 1
Iterative Adaptive Inverse Filtering [4] 2. — 3. LPC-amalysis
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* Stabilized Weighted Linear Prediction [5,7]

* An all-pole method based on Weighted Linear Prediction (WLP)

* ldea: use standard autocorrelation method but give more weight to some
samples of the autocorrelation matrix compared to others

* How to give more weight?
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STE Weight function and Signal withp=10and M =8

* Stabilized Weighted Linear
Prediction

STE Weight Function

* Compute the short time energy (STE) , o
of the signal 3 0005 001 0015 002 0025 003 0035 0.04

Time (sec)

STE Weight function and Glottal Flow withp=10and M =8

* High energy samples fall in the
closed phase region!

STE Weight Function
Glottal Flow
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* Stabilized Weighted Linear Prediction

* STE function emphasizes the speech samples of large amplitude, which
typically occur during the closed phase interval

* By emphasizing on these samples that occur during the glottal closed phase,
it is likely to yield more robust acoustical cues for the formants

* The method depends on a parameter M, the energy window length

* A high value of M increases the sharpness of the resonances of the spectrum,
whereas a low value of M increases the smoothness of the spectrum
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* Stabilized Weighted Linear Prediction
* STE:

where
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* Stabilized Weighted Linear Prediction
* Constrained minimization problem (again ©)
* Minimize E subjectto a’u = 1, where u = [1,0,0, ..., 0]7
* It can be shown that a satisfies the linear equation
Ra = o%u
where o2 is the error energy

» Stability is ensured by a specific algorithm
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* Results
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* Results

Actual glottal flow — vowel /eh/ — 235Hz
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' The bigger the better!
* Performance metric
%l Signal t
SRER — 2010810 Ignal to
O [n] Reconstruction
Error Ratio

* s|n]: original glottal source
* e[n]: error between original and synthetic

* 0, [n]: standard dev. of x[n]

39.7 (£4.5) | 36.2 (£5.7)

35.2 (+2.9) | 37.8 (£3.0)
38.4 (+4.2) ;ﬁ 9 {i-l m
37.6 (£3.1)
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The smaller the better!
* Performance metric

ER(H, — H;) = |Ref (H; — Hy) — Synth(H; — H,)|
* Ref: original glottal source spectrum
* Synth: synthetic glottal source spectrum
* H; — H, is the difference between the first two glottal source harmonics

* This metricis an
indication of the spectral
tilt




Conclusions
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* GIF has been around for more than five decades

* Attractive analysis method
* Non-invasive
* Using only speech signal
* Mostly automatic
* Applications in many speech technologies

* Still improving! (QCP Analysis [16])

» Software: OPENGIot, Aparat, etc
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* GIF has been around for more than five decades

* Shortcomings

* Recording should be made with caution
* Introducing non-linearities that distort GIF result

* “Ground truth” is very rarely available
* Synthetic speech or physiologically modeled data is used

* Unreliable analysis of certain voice types [11,12]
* High-pitch speech, low F1, vulnerability of best method (closed-phase CP)

* Based on all-pole methods > speech is pole-zero (nasal sounds)

* Fixed filter coefficients over successive periods
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