AN INTRODUCTION

CS578-DIGITAL SPEECH SIGNAL PROCESSING INVITED LECTURE

- Introduction
- Inverse Filtering Techniques
- Conclusions

Introduction

• The human speech production system is a complicated system

- From an engineering point of view, it can be roughly divided into three parts [1]
 - The vocal folds, which is the source of the system
 - The vocal tract filter, which is the path from the vocal folds to the lips
 - The lip radiation, which is the final bound before system output

 Based on this simplification, voiced speech can be modeled as a linear filtering operation:

 $s(t) = g(t) * h(t) * r(t) \leftrightarrow S(z) = G(z)H(z)R(z)$

where * denotes convolution and

- g(t) is the glottal airflow velocity waveform
- h(t) is the vocal tract filter
- r(t) is the lip radiation filter

- What is Glottal Inverse Filtering (GIF)?
 - GIF refers to techniques for obtaining the source of voiced speech, the glottal airflow velocity waveform, from voiced speech itself [10]
 - How does this signal look like?
 - Open phase: air flows through the glottis
 - Return phase: vocal folds are snapping shut
 - Closed phase: glottis is shut and airflow velocity is zero

- While radiation occurs after the vocal tract filter, we often combine G(z) and R(z) into a single expression
 - This applies the radiation effect to the glottal source <u>before</u> it enters the vocal tract
 - Effect of differentiation on the source
- The resulting signal is the so-called glottal flow derivative
- Very commonly used in literature

- Why bother?
 - Basic research of speech production
 - Applications to speech analysis, synthesis, and modification
 - Environmental voice care
 - Voice pathology detection
 - Analysis of the emotional content of speech
 - Voice source modeling for TTS

• Basic idea:

• Form a computational model for the vocal tract filter, H(z)

• Cancel its effect from the speech waveform by filtering the speech signal through the inverse of the model, $\frac{1}{H(z)}$

• <u>Problem:</u>

- The actual glottal flow waveform IS NOT AVAILABLE!
- ...at least in a non-invasive manner [18]

• Approaches:

- "Visual" inspection of the resulting glottal flow waveform
- Use of synthetic speech signal produced by a known artificial excitation
- Compare the results of different GIF algorithms
- None of the previous approaches is truly objective

- One solution is to build a physical model of the speech production mechanism
 - Generate waveforms from this model
- Time-varying waveforms are simulated
- Such waveforms are expected to provide a more firm and realistic test of GIF methods
- **<u>Both</u>** the speech output **<u>and</u>** the source are available
- A well known dataset of such signals is described in [2,6]

In detail, self sustained vocal fold vibration was simulated with three masses coupled to one another through stiffness and damping elements.

- The model has a parametrized input such as
 - Lung pressure
 - Prephonatory glottal half-width (adduction)
 - Vocal fold length and thickness
 - Activation levels of the cricothyroid and thyroarytenoid muscles

Signals

GIF techniques

 Since we already know about Linear Prediction (LP), we will discuss GIF methods based only on that

• You already know two methods for estimating LP coefficients

- Autocorrelation method: zero samples outside prediction error interval –minimize MSE everywhere
- Covariance method: non-zero samples outside prediction error interval minimize MSE inside prediction error interval

• LP is used to produce all-pole models of the vocal tract filter

$$H(z) = \frac{1}{\sum_{k=1}^{p} a_k z^{-k}}$$

where p is the filter order and a_k are the LP coefficients

In general, LP minimizes the MSE over a region R

$$E = \sum_{R} e^{2}[n]$$

where $e[n] = s[n] - \sum_{k=1}^{p} a_k s[n-k]$

- How can we find the source excitation through LP analysis?
- If we consider speech as an AR process

$$s[n] = Ag[n] + \sum_{k=1}^{p} a_k s[n-k] \Rightarrow Ag[n] = s[n] - \sum_{k=1}^{p} a_k s[n-k]$$

then minimization of the MSE leads to $e[n] \approx Ag[n]$

- Thus, the prediction error (or residual) can be thought of an estimation of the source excitation
- But how are glottal source and residual related?

Signals

- But how are glottal source and residual **related**?
- As you've seen, the two signals do not quite match
- The reason is that the Z transform of speech is a combined transfer function

Y(z) = G(z)R(z)H(z)

- G(z) can be further decomposed as an impulse sequence passed through a glottal filter: G(z) = I(z)U(z), where I(z) is the impulse sequence
- Thus Y(z) contains

Zeros from the glottal source and lip radiation
Poles from the glottal filter and the vocal tract filter

- LP analysis provides an overall transfer function $\widehat{H}(z)$ where all these contributions are combined!
 - ...not to mention that we're using an all-pole method for a pole-zero signal...
- So what we are cancelling via simple LP-based GIF is this overall estimation
 - ...resulting into something that looks like a series of impulses!
- So how can we work this out?
- Identify instants where there is no interaction between the source and the filter!

- Closed-phase analysis
- Identify regions where the vocal folds are closed

- No contribution from G(z), the speech signal should contain vocal tract and radiation factors H(z)R(z)
- R(z) can be modeled as a differentiator (single-zero FIR filter), so it can be cancelled by a simple integrator
- Vocal tract estimation in the closed phase region leads to a more precise result
- Estimation in the closed phase → cancelling vocal tract via GIF over the whole pitch period
- Use of covariance-based LP on the closed-phase [9]

 Closed-phase analysis

 However, standard closed-phase covariance LP suffers from certain shortcomings

Short closed phase duration (especially for high pitched speakers)

• Too few samples to obtain a good estimation

Sensitivity to the exact position of the covariance frame

• Small variation from the exact closed phase interval produces artifacts

Vocal tract filter instability

- Covariance-based LP does not guarantee a stable filter
- Inverse filter might not be minimum phase

 Frame position sensitivity

- The effect of an inverse filter root which is located on the positive real axis has the properties of a first order differentiator, when the root approaches the unit circle
- A similar effect is also produced by a pair of complex conjugate roots at low frequencies
- This distortion is more apparent at the time instants where the glottal flow changes more rapidly, that is, near glottal closure
- The presence of such roots are in contrast to the source-filter suggested theory
- The removal of such roots results in less dependency on the covariance frame location

 Non-minimum phase inverse filter

• The inverse filter 1/H(z) might **not** be minimum phase

 As we know from basic DSP, it can become minimum phase by replacing each zero by its mirror image partner

That leaves the magnitude spectrum unchanged

• The phase characteristics change, though

Constrained Covariance-based Closed-Phase LP [3]

 Idea: modification of the conventional CP covariance analysis in order to provide more realistic root locations, in the acoustic sense

• How?

- Not allow mean square error to locate the roots freely on the z-plane
- Impose mathematical restrictions in a form of concise mathematical equations
- DC-constraint

- Constrained Covariance-based Closed-Phase LP [3]
- DC-constraint:

$$H(e^{j0}) = \sum_{k=0}^{p} a_k e^{-j0n} = \sum_{k=0}^{p} a_k = l_{DC}$$

• Why?

- Magnitude response of voiced sounds approaches unity at zero frequency [1]
- A short and misplaced covariance frame might lead to a response with higher gain at DC than at formants
- With such a constraint, one might expect a better match of the magnitude response to the source-filter theory

- Constrained Covariance-based Closed-Phase LP [3]
- Constrained convex minimization problem
- Minimize $a^T \Phi a$ subject to $\Gamma^T a = b$

$$a = \begin{bmatrix} 1, a_1, \dots, a_p \end{bmatrix}^T \qquad \Phi = \begin{bmatrix} \Phi_{ij} \end{bmatrix}, \Phi_{ij} = \sum_{n=0}^{N-1} s[n-i]s[n-j], \qquad 1 \le i, j \le p$$
$$b = \begin{bmatrix} 1, l_{DC} \end{bmatrix}^T \qquad \Gamma = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{bmatrix}^T \qquad \text{Solution:} \\ a = \Phi^{-1} \Gamma (\Gamma^T \Phi^{-1} \Gamma)^{-1} b$$

 Still, the computational load of covariance-based LP along with its shortcomings (cases of very small CP, frame dependent, CP identification) might make the method not appropriate

- Idea: use autocorrelation method with "enhancements"
 - Fast & stable
 - Not optimal but good enough
 - Try to introduce "enhancements"
 - Try to approach performance of CP analysis without detecting CP

- Iterative Adaptive Inverse Filtering [4]
- An iterative method for obtaining the glottal source
- Motivation:
 - A priori knowledge of the overall shape of the vocal tract
 - Cancel the tilting effect of the glottal source
 - Estimate vocal tract filter

- Iterative Adaptive Inverse Filtering [4]
- First iteration
- 1. LPC of order 1 to model the effect of the glottal source on the speech spectrum
- 2. Cancel 1.
- 3.LPC of high order to model the vocal tract
- 4&5. Cancel vocal tract and lip radiation

- Iterative Adaptive Inverse Filtering [4]
- Second iteration
- 6. LPC of order 2-4 to more accurately model the effect of the glottal source on the speech spectrum
- 7. Cancel 6.
- 8.LPC of high order to model the vocal tract
- 9&10. Cancel vocal tract and lip radiation

• Stabilized Weighted Linear Prediction [5,7]

• An all-pole method based on Weighted Linear Prediction (WLP)

 Idea: use standard autocorrelation method but give more weight to some samples of the autocorrelation matrix compared to others

• How to give more weight?

 Stabilized Weighted Linear Prediction

Compute the short time energy (STE) of the signal

 High energy samples fall in the closed phase region!

- Stabilized Weighted Linear Prediction
- STE function emphasizes the speech samples of large amplitude, which typically occur during the closed phase interval
- By emphasizing on these samples that occur during the glottal closed phase, it is likely to yield more robust acoustical cues for the formants
- The method depends on a parameter *M*, the energy window length
- A high value of *M* increases the sharpness of the resonances of the spectrum, whereas a low value of M increases the smoothness of the spectrum

- Stabilized Weighted Linear Prediction
- STE:

$$w_n = \sum_{i=0}^{M-1} x^2 [n-i-1]$$

• Prediction error energy:

$$E = \sum_{n=1}^{N+p} e^{2}[n] w_{n} = a^{T} \left(\sum_{n=1}^{N+p} w_{n} x[n] x^{T}[n] \right) a = a^{T} R a$$

where

$$R = \sum_{n=1}^{N+p} w_n x[n] x^T[n]$$

- Stabilized Weighted Linear Prediction
- Constrained minimization problem (again ^(c))
- Minimize E subject to $a^T u = 1$, where $u = [1,0,0,...,0]^T$
- It can be shown that a satisfies the linear equation

$$Ra = \sigma^2 u$$

where σ^2 is the error energy

Stability is ensured by a specific algorithm

Results

On the (Glottal) Inverse Filtering of Speech Signals Actual glottal flow – vowel /eh/ – 235Hz

Results

Performance metric

$$SRER = 20 \log_{10} \left(\frac{\sigma_s [n]}{\sigma_e [n]} \right)$$

The bigger the better!

Signal to Reconstruction Error Ratio

- *s*[*n*]: original glottal source
- e[n]: error between original and synthetic
- $\sigma_x[n]$: standard dev. of x[n]

SRER						
Vowel	$SWLP_8$	$SWLP_{24}$	LPC	CovLPC		
/aa/	33.5 (±2.0)	39.7 (±4.5)	36.2 (±5.7)	$41.9(\pm 6.3)$		
/ae/	32.7 (±4.4)	35.2 (±2.9)	37.8 (±3.0)	$40.4 (\pm 6.4)$		
/eh/	34.0 (±1.9)	38.4 (±4.2)	33.9 (±4.0)	$40.5 (\pm 5.2)$		
/ih/	32.3 (±1.5)	37.6 (±3.1)	35.3 (±4.6)	39.2 (±5.6)		

Performance metric

The smaller the better!

$$ER(H_1 - H_2) = |Ref(H_1 - H_2) - Synth(H_1 - H_2)|$$

- *Ref*: original glottal source spectrum
- *Synth*: synthetic glottal source spectrum
- $H_1 H_2$ is the difference between the first two glottal source harmonics
- This metric is an indication of the spectra tilt

ER_{H1H2}						
Vowel	$SWLP_8$	$SWLP_{24}$	LPC	CovLPC		
/aa/	0.68 (±0.10)	$0.23 (\pm 0.09)$	$0.75 (\pm 0.09)$	$0.20 (\pm 0.20)$		
/ae/	0.15 (±0.12)	$0.15 (\pm 0.05)$	$0.55 (\pm 0.05)$	0.18 (±0.13)		
/eh/	$0.34 (\pm 0.09)$	$0.30 (\pm 0.07)$	$0.54 (\pm 0.08)$	0.38 (±0.17)		
/ih/	$0.72 (\pm 0.14)$	$0.39(\pm 0.11)$	0.85 (±0.12)	$0.35 (\pm 0.24)$		

Conclusions

• GIF has been around for more than five decades

- Attractive analysis method
 - Non-invasive
 - Using only speech signal
 - Mostly automatic
 - Applications in many speech technologies
 - Still improving! (QCP Analysis [16])
- Software: OPENGlot, Aparat, etc

• GIF has been around for more than five decades

Shortcomings

- Recording should be made with caution
 - Introducing non-linearities that distort GIF result
- "Ground truth" is very rarely available
 - Synthetic speech or physiologically modeled data is used
- Unreliable analysis of certain voice types [11,12]
 - High-pitch speech, low F1, vulnerability of best method (closed-phase CP)
- Based on all-pole methods → speech is pole-zero (nasal sounds)
- Fixed filter coefficients over successive periods

References

- [1] Fant G., Acoustic Theory of Speech Production (Mouton, The Hague).
- [2] Story, B. and Titze, I. Voice simulation with a body-cover model of the vocal folds," J. Acoust. Soc. Am., 97, 1249–1260, 1995.
- [3] Alku, P., Magi, C., Santeri, Y., Backstrom, T., Story, B., Closed phase covariance analysis on constrained linear prediction for glottal inverse filtering, Journal of Acoustical Society of America, 125(5):3289-3305, 2009.
- [4] Alku, P., Glottal wave analysis with Pitch Synchronous Iterative Adaptive Inverse Filtering. Speech Communication, 11(2-3), 109–118, 1992.
- [5] Magi, C. , Pohjalainen, J., Backstrom, T., Alku, P., Stabilised Weighted Linear Prediction, Speech Communication, 51:401-411, 2009.
- [6] Alku P., Story B., Airas M., Estimation of the voice source from speech pressure signals: Evaluation of an inverse filtering technique using physical modelling of voice production, Folia Phoniatr. Logo. 58(1): 102–113, 2006.

References

- [7] Kafentzis, G., Stylianou, Y. and Alku, P., International Conference on Acoustics, Speech, and Signal Processing, Prague, Czech Republic, May 22-27, 2011. p. 5408-5411, 2011.
- [8] Airaksinen, M., Raitio, T., Story, B., & Alku, P., Quasi Closed Phase Glottal Inverse Filtering Analysis With Weighted Linear Prediction. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(3), 596-607, 2014.
- [9] M. Plumpe, T. Quatieri, and D. Reynolds, Modeling of the glottal flow derivative waveform with application to speaker identification, IEEE Transactions on Speech and Audio Processing, 7:569-586, 1999.
- [10] Wong D., Markel J., Gray A., Least squares glottal inverse filtering from the acoustic speech waveform, IEEE Trans. Acoust. Speech Signal Process. 27: 350–355, 1979.

Other references

- [11] Childers D., Ahn C., Modeling the glottal volume-velocity waveform for three voice types, J. Acoust. Soc. Am. 97(1): 505–519, 1995.
- [12] Childers D., Lee C., Vocal quality factors: Analysis, synthesis, and perception. J. Acoust. Soc. Am. 90(5): 2394–2410, 1991.
- [13] Milenkovic P., Glottal inverse filtering by joint estimation of an AR system with a linear input model, IEEE Trans. Acoust. Speech Signal Process. 34(1): 28–42, 1986.
- [14] Raitio T., Suni A., Yamagishi Y., Pulakka H., Nurminen J., Vainio M., Alku P., HMM-based speech synthesis utilizing glottal inverse filtering, IEEE Trans. Audio Speech Lang. Process. 19(1): 153–165, 2011.
- [15] Shiga Y., King S., Estimation of voice source and vocal tract characteristics based on multi-frame analysis. CD Proc. Eurospeech, 1749–1752, 2003.

Other references

- [16] J. Pohjalainen, R. Saeidi, T. Kinnunen, and P. Alku, Extended weighted linear prediction (XLP) analysis of speech and its application to speaker verification in adverse conditions, in Proc. Interspeech, 2010, pp. 1477–1480.
- [17] T. Drugman, B. Bozkurt, and T. Dutoit, A comparative study of glottal source estimation techniques, Comp. Speech & Lang., vol. 26, no. 1, pp. 20– 34, 2012.
- [18] Kitzing, P., & Löfqvist, A., Subglottal and oral air pressures during phonation—preliminary investigation using a miniature transducer system. Medical & Biological Engineering, 13(5), 644–648, 1975.