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Introduction: Speech Synthesis

Artificial production of human speech

Applications

Screen readers for people with visual
impairment or dyslexia

Speech synthesizers

Games, animations entertainment
production

Educational tools for foreign languages
Natural language processing interfaces

Personal Assistants
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Introduction: Text-To-Speech

Text-To-Speech (TTS) synthesis is called the automatic ~ A TTS system is divided into two parts.

conversion of written to spoken language. ) ) .
P guag * the front end converts text in to a linguistic

specification and

Disciplines: acoustics, linguistics, digital signal processing, * the back end uses the specification to generate a

o , waveform.
Statistics, deep learning

One-to-many mapping problem

/ ™ N
Input —_( OUtpUt_. The quality of the
' ' ] synthesized speech is
Text L ) Control Information || ) Speech o asured by
Phoneme-level tags Intelligibility and
Specifying pronunciation naturalness

and prosody



History:

Concatenative Speech Synthesis

Recordings of short audio sequences are combined

to create speech.

Advantages
. Clean and clear speech

Problems

. Very large data requirements.

. Unnatural speech (No emotional
and intonation components)
Long development time.

. Language specific
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General unit-selection synthesis scheme

~— Whole speech unit database ——
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Target cost is measured
1 by a heuristic distance
between contexts

Selected speech units

=

— Target cost
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History:

Statistical Parametric Speech Synthesis

DATABASE

Speech J Speech Statistical
* Linguistic features (phonemes, duration, etc) are Analysis Parameters | Modeling
extracted from the text. |
Y
» Speech parameters (cepstrum, frequency, Mel TRAINING SPS
Spectrogram, linear spectrogram) are extracted from  ~ " CSYNTHESIS Synthesizer
the corresponding speech signal.

* Avocoder (a system that generates wave-form) encodes = p— i
them. m ’ Speech Speech | Statistical

Processing | Parameters | Generation
Advantages Problems « Hello I» I
Transforming voice characteristics,  Artifacts lead to J Hello!
speaking styles and emotions production
of muffled speech
Less hard work than concatenative  and buziness. 2015 Bachelor Thesis:

“Parameter Estimation
of LDMs for speech
synthesis”

Less data requirements.

Multilingual support
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TTS in the era of Deep Learning

End-to-end neural networks have
Eroved the quality of

dramatically im
synthetic speec

An end-to-end TTS system can be trained on

<text, audio> pairs.

Text |::>

End-to-End
system

E:> Waveform

Advantages

Rich conditioning on various attributes such as
speaker, language, sentiment, etc.

More robust than a multi-component system.

Potential for transfer learning and it can adapt to
new data.

It may be trained on huge amount of often noisy
data found in the real world.



TTS in the era of Deep Learning

* Deep Voice 1 (Arik et al., 2017)

* Deep Voice2 (Ariketal.,2017)

* DeepVoice3 (Pingetal.,2018)

* Tacotron (Wang et al., 2017)

e Tacotron 2 (Shen et al., 2018)

e Char2Wav (Sotelo et al., 2017)

* VoicelLoop (Taigman et al., 2018)
e ClariNet (Ping et al., 2018)

* FastSpeech (2020), FastSpeech 2 (2021)
* ParaNet (2020)

* Glow-TTS (2020)

* WaveGrad 2 (2021)

Vocoders:

* Parallel WaveNet (2017)

« WaveRNN (2018)

« MelGAN (2019)

* Parallel WaveGAN (2019), WaveGAN(2020)
« GAN-TTS (2019)

* LPCNet (2019)

* HiFi-GAN (2020)

* WaveGlow (2018), WaveFlow (2019)

* FloWaveNet (2020)

* WaveGrad (2020), DiffWave (2020)



Basic Components in TTS

a text analysis
module,

converts a text sequence
into linguistic features

an acoustic model

generates acoustic
features from linguistic

features

a vocoder

synthesizes waveform from

acoustic features.

— Linguistic ,
Text -'l Text Analysis I_'lFeatures Acoustic Model

Text Decoding (Word Tokenization

and Normalization)

Texts include non-standard word
sequences from a variety of different
semiotic classes.
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Acoustic

Features

Waveform

FO, V/UV, energy, Mel-scale Frequency Cepstral
Coefficients (MFCC), Bark-Frequency Cepstral
Coefficients (BFCC), Linear prediction coefficient

(LPC),

Linear-spectrogram, Mel-spectrogram
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VOCODERS (neural)

* Sequential generation of samples
* Autoregressive

* Parallel generation of samples
* Flow-based
* GAN-based
e VAE-based
* Diffusion-based

More applications: Speech enhancement, Denoising,

Voice conversion, Source separation
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Autoregressive

GAN: Adversarial /
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse

i | Alx) | X
¥
z-1
Discriminator Generator
X Z
D(x) G(z)
x Encoder Z @ o
q4(2[x) po(x|2)
% Flow - Inverse
f(x) ) .
xO:_—_‘_':xl‘___ x2__ ______________ A
Fig. 1. Overview of different types of generative models.
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Autoregressive Models: WaveNet e -IIr@ion

Directly predict waveform instead of mel-spectrogram

WaveNet : linguistic features, FO, duration >waveform Key Components

* Causal dilated convolution

0 00000060000 0 0 0,0 ot * Gated activation + re.5|dual f-.sku:.): powerful non-Imearlt.y
e e e e e S ST l Diation - 8 . Softmax at output: classification rather than regression.
Q | O | O | O | O | O | O | O O O O 00 Hidden Layer * MolL(Mixture of Logistics) in Parallel WaveNet
i PO R ey l Dilation = 4 * Asingle Gaussian in ClariNet
Q O O O O O O ‘ ‘ < Hidden Layer Achievements
P e L e Dilation = 2

" Iy TN A o * High-fidelity speech (SOTA)
0 0 0 0 0 O 0O 0O + Efficient training on parallel hardware

A

Visualization of a stack of dilated causal convolutional layers

] ‘ T Hidden Layer . . .
. /o - . . Dilation = 1 * Trained maximizing likelihood
e ‘ ‘ Q { & ¢ Input Limitations

* Generating waveform one sample at a time
* |ll-suited for development on GPU, TPU



Flow-based Models
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Fig. 2. lllustration of a normalizing flow model, transforming a simple distribution py(Zg) to a

complex one px (zx ) step by step.
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Parallel WaveNet

WaveNet Teacher

Linguistic features -----+

WaveNet Student

Linguistic features ----+
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Teacher Output
P(z;|z«;)

Qenerated Samples
zi = 9(2il2<i)

Student Output
P(zilz<i)

Input noise
Zi

TLN, 8 = F(z1.8, c1.0)

I Parallel Feed-forward Neural Network
Ty waveform samples

z1.y White noise

¢; conditional features

i location, s  scale

Characteristics

* Non-autoregressive (parallel generation)
* Minimize the KL divergence

Cauchy Schwarz divergence or other
divergence between student and teacher
e Or train with Generalized Energy Distance

Limitations

e Regularization and
e Auxiliary losses for the student models to
converge

Probability Density Distillation loss
Dro. (Ps[Pr) = H(Ps, Pr) = H(Fs)
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Towards end-to-end TTS

Simplify/remove text analysis, and simplify acoustic features

Waveform samples

[
[ WaveNet MoL ]

Tacotron 2
(2018)

mel spectrogram

o = Flor.n-1, Encoder(cy.y))

F' Recurrent seq-to-seq feature prediction NN
0, waveform samples

¢y conditional features

5 Conv Layer Post-Net ]

[
t
. . . *
[ Bi-directional LSTM Linear Projection
[ e ’L ] Location .
onv Layers Sensitive 2 LSTM Layers >
Attention 4
[ Character Embedding ] [ 2 Layer Pre-Net

AEOEREE00 -
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Fully end-to-end, direct text to waveform synthesis

ClariNet (2018): autoregressive acoustic model and non-autoregressive vocoder

Waveform .
Convolution Block
Sample-level OLN = F (ET"(:(M{”'({:I!M ))
(Vocoder (distill) F Text-to-Wave Fully Convolutional NN
f/BIidge—net N
_ 0p  waveform samples
Bridge-net Linear Output x N .
[ Transpose Conv.| ¢y conditional features
Decoder Mel Output
@ Linear Output
[ Convolution Block l
\ )
Text Frame-level Input
(a) Text-to-wave architecture (b) Bridge-net (c) Convolution block

(a) Text-to-wave model converts textual features into waveform. All components feed their hidden
representation to others directly. (b) Bridge-net maps frame-level hidden representation to sample-level
through several convolution blocks and transposed convolution layers interleaved with soft sign non-
linearities. (c) Convolution block is based on gated linear unit
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Fully end-to-end
o1.ny = F(Duration, Pitch, Enerqgy, Encoder(cy.p))

FastSpeech 2s (2021): fully parallel text to wave model I Fully-end-to-end parallel model

o, waveform samples
¢y phonemes

-------------------------

iFastSpeech 2s;
e I 4
E A I ¢ 9‘ ) ~ 1 ) . ? .
Mel-spectrogram Waveform ... Predictor — = ConvlD
Decoder i(_Decoder ): yeEnee r L Y S
bosi ]* e Energy Predictor L =Dt ] Conv 1x1
Os1110na) 5
Encoding @_6 E Pitch *— f : f
- D . ConvlD + ReLU d Activation E
Variance Adaptor Pitch Predictor * ; Gated Activation N
T . I
Encoder @9% = [;ropout 1 Dilated ConviD
Positional B Duration Predictor - R E Az et # .............. :
Encoding @ E 4 | Convl D“i‘ RelLU TI'aIlSp{JSCd ConvlD
o - \ y
Phoneme Embedding I . T /
'y
Phoneme (C)
(a) FastSpeech 2 (b) Variance adaptor Duration/pitch/energy (d) Wavetorm decoder
predictor
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Tacotron 2

The proposed system consists of
two components

Waveform samples
]
WaveNet MoL

—
—

1. arecurrent sequence-to-
sequence feature prediction
network with attention
which predicts a sequence
of mel spectrogram frames
from an input character

mel spectrogram

5 Conv Layer Post-Net ]

sequence, and [ Bidirectional LSTM T ptojection
. pe . [ Sibonytayers ] ;grﬁ:ittii(\)/z 2 LSTM4 Layers p
2. a modified version of Attention 1
WaveNet which generates [ CrcoBETD | [ 2uayerPretet |

time-domain waveform E][]DE]@E]E]DE]

samples conditioned on the
predicted mel-spectrogram
frames.
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Experiments:
Spanish Greek language adaptation

Greek+Spanish Greek 2154 gr+11133sp 3.0+18.0 \/
Greek+Spanish Greek+Spanish  2154gr+11133sp 3.0+18.0 \/ improved

The Spanish Dataset was obtained from M-Ailabs, book="don_quijote’, multi-speaker.

Synthesized =
\ | \"' R | \"" b | \'-.
Real recording
‘ \\ ‘ \\ ‘ \\ ‘ \.,.
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Experiments: Listening Test

Mean Opinion Scores Evaluation

30 volunteers

16 sentences from the test set of our internal dataset as
the evaluation set

each sentence appears in two samples (Original recording
and synthesized{)

Naturality, intelligibility (and quality of sound, artifacts)

sbcadlse from 1 to 5 (Perfect, very good, good, bad, very
a

Two speakers (male — female), s027, s023

16/5/2022

Original Recordings

Tacotron-2
Spanish/Greek

MOS
(Mean Opinion Score)

3.82+0.19

3.15+0.20

21



Experiments: Speaker Adaptation

Training with Greek Harvard Database.
From step 145000 to 150000 the training needs almost 3h.

George Anna
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Stable Training of Parallel WaveNet

* Problem definition and analysis
* Type |l and Il artifacts of WaveNet
* The loss function as the source of instabilities

1 1 1 I I T 1
05}
Type | artifacts
1 W -
0.5}
-1 1 1 1 1 1 L
1 1.5 2 2.5 3 3.5

0 0.5

Type | artifacts usually occur in the WaveNet that predicts the parameters
of a distribution.

A WW Wmmwmmmw s
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1

Type Il artifacts

v\m.rr\mm.mrm [

-1

A

Noise at the end (CS-Divergence)

LAY
Noisy (CS-Divergence)
LAY

Noisy (KL-Divergence)

Related Work

ClariNet 2018, Wu et al.,
FloWaveNet 2019,

Parallel WaveGAN 2019

have trained Parallel WaveNet

with a set of losses

24



Stable Training of Parallel WaveNet

The Kullback-Leibler divergence Loss function
Student distribution

02 — 02+ (p — Ig)? q(z) = N(uq, 0q)

)
Dk r(q|lp) = log £ + -2 52
O'q (Tp

Teacher distribution

p(x) = N(pp,0op)
The Cauchy-Schwarz divergence Loss function

1 2 2y, (p +pg)?
Deg = 5 (lﬂg((}'p +o,)+ 07§ o3 — log(20,0,)
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Training with Generalized Energy Distance

Training procedure
Input Waveform  Spectrogram Loss

z_’tnodelfgéy/\/—’TTT?nlu

C

* For each training example we generate two
independent batches of audio samples from

our model, conditioned on the same features, = model fp — y’ /\/ SYYYYY
which are then used to compute our training v v vV v attractive

loss. 2 > /\/ i

A. Gritsenko, 2020, “A spectral energy distance for parallel
speech synthesis”

repulsive
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A Generalized Energy Distance based on
spectrograms

The minibatch loss: unbiased estimator of GED
L&ep(q) Z 2d(x;. Vi, Vi)

where ¥ = folci,z), = folei, 2)

The performance of the energy score strongly depends on the choice of metric d(, -).

We thus have to select a distance function that emphasizes those features of the generated audio that
are most important to the human ear.

d(xi,x;) = Z Znat ) — st (x;)[1 + el | log s (x;) — log 7 (3|2
ke[28,...,

*  We combine multiple frame-lengths k into a single multi-scale spectrogram loss (k frame-length, t
time-slice).



Experiments — ReSultsS  (stabie raining of arallel wavenet

KL_Divergence+
GED

16/5/2022

CS_Divergence+
GED

GED

real

Experiment MOS
GED + KL-Divergence  3.04 1. 0.16

l.

2. GED + CS-Divergence  3.04 1. 0.16
3. CS - Divergence 221 £0.14
4. KL- Divergence 300 £0.15
5. GED 4031019
6. Original Speech 4.99 £0.01

Table 1. Mean Opinion Score (MOS) oblained by Listening
Test with 10 participants.

KL : Kullback-Leibler Divergence
CS : Cauchy Schwarz Divergence
GED: Generalized Energy Distance
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Challenging Research Topics

Robustness

Expressiveness

Controllability

Technigues for low-resource TTS

Reducing the cost of TTS

Future Goals

Speech Synthesis for the Greek language and
other low resource languages, in combination
with:
1. Work on specific problems
of the existing vocoders (stability,
quality, speed).
2. Use of improved database
(having cleaned the previous
noisy database, and added Greek
Harvard database with two
speakers, 1 male and 1 female)
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summary

TTS technology evolves from concatenative synthesis, statistical parametric synthesis, and neural based end-to-
end synthesis.

Mainstream TTS model uses separate acoustic model and vocoder, but fully end-to-end TTS model is on the
way.

Improving the quality while reducing the cost is always the goal of TTS
Quality: Intelligibility, naturalness, robustness, expressiveness and controllability
Cost: Engineering cost (end-to-end), serving cost (inference speedup), data cost (low resource)



Thank you for your time!
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