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Human voice production
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Source-filter modeling
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Von Kempelen’s talking machine 1769-1804

• Mostly voiced synthesis 

• Kitchen bellows - “glottis” 

• Bagpipe reeds “glottis" 

• Constant pitch 

• Vowels formed by hands in front  

of rubber “mouth” 

• Video 

Mechanical synthesis

https://www.youtube.com/embed/k_YUB_S6Gpo?start=55&end=115&version=3
https://www.youtube.com/embed/k_YUB_S6Gpo?start=55&end=115&version=3


The Voder,  Dudley 1939

Electronic synthesis

• Full articulatory synthesis 

• Required highly trained operators 

~10 phonemes/s 

• Part of Bell Labs  “Vocoder”  

(channel vocoder) project 

• Both analysis and synthesis 
• Video

https://www.youtube.com/embed/5hyI_dM5cGo?start=34&end=111&version=3
https://www.youtube.com/embed/5hyI_dM5cGo?start=34&end=111&version=3


Source-filter modeling
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• Source-filter modeling for speech synthesis 
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• Noise-robust neural vocoding



Compression of speech for transmission and storage

Speech coding
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Very low bit rate of speech - lower limit

Speech 
Recognition

Text-To-Speech 
Input 

Speech
Output 
Speech

Text, Prosody,  
Speaker ID, Emotions, … 

• Early estimates (1950’s) 

Shannon’s lexical approach: ~50 bps

Fano’s noisy acoustical channel approach: ~1600 bps

• Recent estimate (2017) [1]: ~100 bps

[1] Van Kuyk, W. B. Kleijn, R. C. Hendricks, “On the information rate of speech communication,” ICASSP 2017

Theoretical limit estimates 
assume very long delay



Practical speech coding

Parametric codecs, vocoders

Waveform(-matching) coders

• Bit rates from ~300 bps to ~5 kbps 

• Quality limited to model 

• Mostly narrowband speech (8 kHz sampling)

• Bit rates from ~3 kbps to ~100 kbps 

• No limit in quality with increasing rate 

• Narrowband, wideband (16 kHz sampling) and fullband (>32 kHz sampling)

Parametric codecs

Waveform codecs

Quality

Bit rate



Codec 2
Source-filter vocoding in the frequency domain

• Open-source codec by David Rowe [2] 

• Bit rates from 450 bps to 3.2 kbps

[2] https://github.com/drowe67/codec2

https://github.com/drowe67/codec2
https://github.com/drowe67/codec2


• Source-filter modeling for speech synthesis 
• Speech coding 

• Linear predictive coding 
• Generative neural synthesis for coding 
• LPCNet 
• Noise-robust neural vocoding



Linear prediction analysis (LPC)

Polynomial coefficients

s(n) = u(n) +
N

∑
k=1

aks(n − k)

a = R−1
ss rss

rss( | i − j | ) = ∑
n

s[n − i]s[n − j ]

a = [1,a1, a2, . . . , aN]

All-pole filter modeling

Solution to the normal equation

1/A(z) s(n)

Excitation

Filter

Correlation matrix and vector containing

u(n)

Speech



LPC coding

Pulse generator

Noise generator

1/A(z)

LP analysis
Pitch and  

voicing analysis

LPC coefficients, pitch, voicing, gain
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MELP
Source-filter vocoding in the time domain

• Originally by McCree and Barnwell, 1995 [3] 

• US federal standard in 1996 

• Operates at 600, 1200, or 2400 bps 

[3] A. V. McCree and T. P. Barnwell, "A mixed excitation LPC vocoder model for low bit rate speech coding," in IEEE Trans. Speech and Audio Proc., 
vol. 3, no. 4, pp. 242-250, 1995



Linear predictive analysis-by-synthesis coding

Waveform-matching (“hybrid”) coding
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CELP

• Introduced by Schroeder and Atal, 1985 [4] 

• In most digital telephony standards 

• Bit rates from ~4 kbps to ~25 kbps

[4] M. R. Schroeder and B. S. Atal, "Code-excited linear prediction (CELP): high-quality speech at very low bit rates”, ICASSP 1985



Speech coding state for VoIP calls and conferencing around 2017

• Typical rates for internet calls and conferencing, 16 - 32 kbps (wideband) 

• Codecs in use are waveform-matching coders - poor at low rates.  

• Reducing bit rate becoming important for poor networks, e.g., emerging markets. 

• Parametric coders operate at lower than 5 kbps, but suffer from poor quality from the synthesis 
models.   

• Wait, parametric coders require a generative model at the decoder

Can we do better?



• Source-filter modeling for speech synthesis 
• Speech coding 
• Linear predictive coding 

• Generative neural synthesis for coding 
• LPCNet 
• Noise-robust neural vocoding



Generative models taxonomy

Neural Autoregressive 
(WaveNet, WaveRNN, 

SampleRNN), …

Variational 
Autoencoders, …

Generative Adversarial 
Networks, …

Maximum-Likelihood 
parametric models

Approximate 
distribution

Tractable distribution

Implicit distributionExplicit distribution



• Let data                              , and we’re given a finite set of samples from this distribution 

• We want to find a model such that  
• Man-made parametric models (mixtures of Gaussians, Laplacian, Weibull, Poisson, etc.) are limited in 

expressivity 
• Modern deep models remove this issue 

Modelling data distribution



• Again,                           , where  

• Since it’s a vector, we can factorize per dimension 

• For audio this means we can predict next sample given previous samples 

• Autoregressive models admit a tractable and explicit likelihood, and can 
• Draw a sample 
• Assign a probability to a sample    

Neural autoregressive models



What’s WaveNet?

[5] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, K Kavukcuoglu, “WaveNet: A 
Generative Model for Raw Audio,” ArXiv:1609.03499, 2016



WaveNet architecture

• Needs conditioning to avoid babble

Conditioning



A WaveNet-based parametric codec

[6] W. B. Kleijn, F. S. C. Lim, A. Luebs, J. Skoglund, F. Stimberg, Q. Wang, and T. C. Walters,  

“Wavenet based low rate speech coding,”  ICASSP 2018

[6]



Parametric WaveNet

Training

Clean 
speech

Conditioning 
features

Condition the generative model: 
p(x|𝜃)

Feature 
extraction

WaveNet



Parametric WaveNet

Training

Clean 
speech

Conditioning 
features

Codec parameter 
extraction

WaveNet

16 kHz Codec2, 8 kHz, 2.4 kbps 
Line spectral frequencies, pitch, 
signal power, voicing level



Parametric WaveNet coding

Codec operation

Clean 
speech

Codec parameter 
extraction

WaveNet

16 kHz Codec2, 8 kHz, 2.4 kbps 

Output 
speech

16 kHz



Experiment setup

• Vocoder params extracted with Codec2 @ 2.4 kbps 

• Input features: 8 kHz 

• Target output speech: 16 kHz 

• Dataset: WSJ0 

Training: 32580 utterances, 123 speakers 

Test: 2907 utterances, 8 speakers 

• Standard 8-bit μ-law WaveNet model used 

Conditional variables updated at 100 Hz 

Receptive field: ~300 ms



Bandwidth extension!



Quality

POLQA mean opinion scores 
(Rates are in kbps)

• Conventional objective quality measures are not useful 

• The parametric WaveNet coder generates a likely waveform, rather than reproduce the 
signal



Listening tests: Mushra-esque

2.4 kbps23.05 kbps256 kbps

42 kbps

Demo

Same encoders, 
different decoders

https://storage.googleapis.com/downloads.webmproject.org/icassp2018/index.html
https://storage.googleapis.com/downloads.webmproject.org/icassp2018/index.html


• Sufficiently low complexity  (original WaveNet infeasible) 
Parallel/distilled WaveNet [7] 
WaveRNN [8] 
SampleRNN [9] 

• Robustness to diverse conditions 
Background noise (examples) 
Recording chain (hardware, processing) 
Multiple talkers and languages

Practical speech coding requirements

[7] A. van der Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals, K. Kavukcuoglu, G. van der Driessche, E. Lockhart, L. C. Cobo, F. Stimberg, “Parallel 
WaveNet: Fast high-fidelity speech synthesis, ” preprint arXiv:1711.10433, 2017 

[8]  N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N. Casagrande, E. Lockhart, F. Stimberg, A. van der Oord, S. Dieleman, K. Kavukcuoglu, “Efficient 
neural audio synthesis”, preprint arXiv:1802.08435, 2018 

[9] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. Courville, Y. Bengio, “SampleRNN: An unconditional end-to-end neural audio generation 
model,” preprint arXiv:1612.07837, 2016 

https://flim.users.x20web.corp.google.com/wavenet/20171219_noise_demo/index.html
https://flim.users.x20web.corp.google.com/wavenet/20171219_noise_demo/index.html


SampleRNN for coding

[10] J. Klejsa, P. Hedelin, C. Zhou, R. Fejgin, L. Villemoes, “High-quality speech coding with SampleRNN,” ICASSP 2019 

• Lower complexity than WaveNet  

• 3-layer hierarchical GRUs at different time scales 

• Conditioned on LPC vocoder parameters

[10]



WaveRNN

xt = [st−1; f]
ut = σ (W(u)ht−1 + U(u)xt)
rt = σ (W(r)ht−1 + U(r)xt)
h̃t = tanh (rt ∘ (W(h)ht−1) + U(h)xt)
ht = ut ∘ ht−1 + (1 − ut) ∘ h̃t

P (st) = softmax (W2 relu (W1ht))

• Single layer RNN (GRU)  

• Sparse weight matrices  

• Coarse and fine parts for 16 bit resolution

Update equations, omitting fine resolution



• Source-filter modeling for speech synthesis 
• Speech coding 
• Linear predictive coding 
• Generative neural synthesis for coding 

• LPCNet 
• Noise-robust neural vocoding



LPCNet

[11] J.-M. Valin, J. Skoglund, “LPCNet: Improving neural speech synthesis through linear prediction,” ICASSP 2019

[11]

Let the network generate excitation



LPCNet

• Pre-emphasis 
Boost HF in input/training data  
Apply de-emphasis on synthesis 
Reduce perceived noise in wideband 

• Input embedding 
Rather than u-law values directly, consider as one-hot classifications  
Learning non-linear functions 
No extra cost by pre-computing matrix products

Other improvements



LPCNet synthesis
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dual_fc(x) = a1 ∘ τ (W1x) + a2 ∘ τ (W2x)

Update equations

xt = [st−1; f]



Speech features

LPCNet for coding

• Conditioning features: 10 ms 
Cepstrum 
Pitch period 
Pitch correlation 

• Packets: 40 ms 
Packing 4 frames

[12]

[12] J.-M. Valin, J. Skoglund, “A Real-Time Wideband Neural Vocoder at 1.6 kb/s Using LPCNet,” Interspeech 2019



Pitch

LPCNet for coding

• Detection 
Cross-correlation on LPC residual 
5 ms sub-rame 
Range 62.5 Hz to 500 Hz 

• Quantization 
Log-scale pitch over packet (6 bits) 
Linear pitch modulation (3 bits) 
Pitch correlation (2 bits)



LPCNet for coding

4k – 1 4k 4k + 1 4k + 2 4k + 3

current packet (k)previous packet

...

Cepstrum

• Cepstral coefficients over 18 Bark bands 
20-ms windows (50% overlap) 

• Quantization using two-way prediction 
Past sub-frame, future sub-frame, or average 

Independent 3-stage VQ (30 bits)

Prediction + VQ (13 bits)

Prediction, no VQ (3 bits for both vectors)



LPCNet for coding

Parameter Bits
Pitch period 6
Pitch modulation 3
Pitch correlation 2
Energy (C0) 7
Cepstrum VQ (40ms) 30
Cepstrum delta (20 ms) 13
Cepstrum interpolation (10 ms) 3

Total 64

Bit allocation



Training

• Add noise to input to reduce effects of teacher forcing 
• Two-step training 

Network trained with unquantized features 
Frame rate network adapted with quantized features (sample rate network frozen)



LPCNet complexity

CPU Clock % Core
*AMD 2990WX (Threadripper) 3.0 GHz 14%
*Xeon E5-2640 v4 (Broadwell) 2.4 GHz 20%
Snapdragon 855 (Galaxy S10) 2.8 GHz 31%
Snapdragon 845 (Pixel 3) 2.5 GHz 68%
Cortex-A72 (Raspberry Pi 4) 1.5 GHz 110%
*turbo enabled



LPCNet speech quality
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LPCNet as synthesis of Opus decoder

• Opus codec 
IETF-standardized speech and audio codec 
Supports narrowband to fullbandCombination of LPC-based SILK and transform-based CELT 
Focus on wideband speech in SILK 
Waveform-matching codec 

• Conditioning features from decoded Opus bit stream 
Spectral features from both bit stream and decoded audio 
Two pitch parameters, period and average gain 

• Comparing with WaveNet as generative synthesis 
As an unimplementable upper limit

[13] J. Skoglund, J.-M. Valin, “A Real-Time Wideband Neural Vocoder at 1.6 kb/s Using LPCNet,” Interspeech 2020

[13]



Speech quality of post processing 
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• Source-filter modeling for speech synthesis 
• Speech coding 
• Linear predictive coding 
• Generative neural synthesis for coding 
• LPCNet 

• Noise-robust neural speech coding



Addressing background noise in neural vocoding[14]

[14] F. S. C. Lim, W. B. Kleijn, M. Chinen, J. Skoglund, “Robust low rate speech coding based on cloned networks and WaveNet,” 

Interspeech 2020

• Focusing on robustness to noisy input 
• Disregarding complexity



Proposed system

• Hypothesis  

Generative models perform best when synthesizing signals from a single source 

• Proposed codec 

1. Extract speech features from a noisy input 

2. Quantize features for transmission 

3. Use as conditioning features to WaveNet to synthesize the clean output speech



Extract speech features: clone-based training

An input set of perceptually equivalent speech signals 

{ 

	 “The birch canoe slid on the smooth planks”, 

	 “The birch canoe slid on the smooth planks” + car noise, 

	 “The birch canoe slid on the smooth planks” + kitchen noise, 

}



Extract speech features: clone-based training

x(1) = “The birch canoe...” 

x(2) = “The birch canoe...” + car noise 

x(Q) = “The birch canoe ...” + kitchen noise



1. Equivalent input signals map to identical features 

2. Latent features are distributed as a factorized Laplacian distribution 

Encourages independence (disentanglement) of the features 

Use the maximum mean discrepancy loss over the batch, per feature 

3. Decoded features match the features from the clean input 

Extract speech features: clone-based training

TRAINING LOSSES



Extract speech features: clone-based training

(at training only) 

Gaussian noise



Extract speech features: clone-based training

ENCODER DECODER 

12 latent features

mirrors the encoder



Per-dimension entropy upper bound 

ENTROPY CODING

target bitrate 

feature variance

step size?

UNIFORM SCALAR QUANTIZER

Quantize speech features



Synthesize output speech

Quantized 
speech features

• Use the original WaveNet model  

• Replace 8-bit softmax output layer with 16-bit discretized logistic mixtures [15]

[15] Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “PixelCNN++: Improving the PixelCNN with discretized logistic mixture likelihood  
and other modifications,” in Proc. ICLR, 2017

Output 
speech

WaveNet



Experimental setup
Dataset 

● WSJ0 and LibriTTS @ 16 kHz 

● Training dataset: ~255 hours, ~1k speakers 

● Test dataset:  ~16 hours, 47 speakers 

● Additive noise from Freesound dataset and internal recordings (cafes, busy streets, offices etc.) 

Clone-based Feature Extractor 

● 8 clones: 1 clean speech and 7 noisy versions 

● SNR = 0 to 30 dB 

Quantizer 

● Total target bitrate: 2 kbps 

● Actual entropy computed: ~37 bits / frame = ~1.8 kbps



Reference system: MELP WaveNet

Target clean speech

Clean 
speech

Quantized MELP 
features

Codec parameter 
extraction

WaveNet

16 kHz MELP, 8 kHz 2.7 kbps



Inspecting the non-quantized latent features

Absolute Pearson corr coeffs



Listening test
MUSHRA-like listening tests with 100 crowd-sourced raters 



Listening test Clean 10 dB 0 dB



Listening test



Deep Generative Models for 
Speech Compression

Jan Skoglund - Chrome Media Audio

Thank you for listening!


