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Axon Terminals

Node of Ranvier
Schwann’s Cells
)

Myelin Sheath
Cell Body

Information passing

F1cURE: The biological structure of a neuron
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Activation
Function

—~

Y

FIGURE: Mathematical equivalent of a neuron

y (x(k)) =¢(zi)=¢ (w;rx(k) + bi) =9 J_ilw,-j J-( )4+ b
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MATHEMATICAL EQUIVALENT OF A NEURON

b

Activation
Function

74’ — VX W)

FIGURE: Mathematical equivalent of a neuron
y (x9) =6 (z) = ¢ (wix® ;) = o | S wix + by
j=1
(1)

@ Output is a function of the input (data) and the weights.
o Training: optimize the weights such that to reach to the

desired output.
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FIGURE: Neural network
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input hidden output

¥ =o(W,*h)
h=o(W*X) =o(W,*o(W X))

FIGURE: Neural network

o Intuition: any complex function can be approximated as
a series of simple non-linear functions. -
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MATHAMATICAL INSIGHT

X1
h Wip Wil Wi wis o
h=1| h | =®| wop wa wx w a (2)
hs W30 W31 W3 Ws3
X4
y wip wip W M
1 10 Wi w2
y = =¢ ho (3)
y2 Woo W21 W22
h3
X1
Wig W11 Wi2 w3
y=¢9 Wio L W2 Wog Wo1 Wap W03 2
Wog Wo1 W2 X3
W3g w31 Wi w33 a
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WHICH FUNCTION ARE WE LOOKING FOR 7

@ Assumtion: there is a statistics, hidden in our data

@ The statistics to model depends on the task: Speaker
identification, emotion detection, enhancement

MODEL INPUT DIMENSION

o Traditional approach: manually extracts the features and feed
into the network.

@ Advance models: feed the raw samples as it is into the models,
letting the network to extracts the task relevant features.

shifaspv@csd.uoc.gr Neural Models 9/32



0000000e000000

[e]e]e}

Basics of neural networks Fully Connected Neural Network Convolutional Neural Network Recurrent Neural Network Thanks
000000

[e]e]e}

TRAINING THE MODEL: TEACHING

Traditional Machine Learning approach

 Manual Feature Extraction ~ Classffication Dog v )
.. . » Machine Boy '
@ Training:Teaching the ; ') Learing C
model by exploring to the | & Bicycle®
already know data pair
. . Jeep Leaming approach
- Supervised: data (InPUt. Convolutonal Neural Network (CNN) DOQT
output) . . Leamed features s;::, Boy
- Unsupervised: data \ aﬂ . \
input, P [
(I pu ) Bicycle X
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TRAINING THE MODEL: WEIGHT TUNING

~ hl
y:<{1>:¢(W1o w11 w12> h )
y2 Woog Wo1 Woo h3
@ Loss: the measure of deviation of network prediction y from
the true training set label y = ( })jl >
2

@ Penalize each wrong prediction (tune the weight) so that it to
be a good predictor at the end.
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PARAMETER OPTIMIZATION: GRADIENT DESCENT

Given a set of training input and output pairs

{{x1,t1} o {xn, ta}} (6)

compute the loss function for each prediction

n K
== %ZZ (yi (xp) — tpi)z (7)

p=1i=1
OE OE 0z
ow; (82) <(9W,-> (8)
with sigmoid as the activation function ¢, y(z) = m

E
SW,. = (y(x) = t)y(x)(1 = y(x))xi (9)
Walk on the direction to which gradient descend
OE
Witl1 = Wi — 5 (10)
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THE LOGISTIC LOSS FUNCTION (CLASSIFIER)

Image #1 Image #2 Image #3

Dog -0.39 -4.61 1.03

Cat 1.49 3.28 2.37

Horse 4.21 1.46 -2.27
SVM loss: Minimize the objective

L(y,9) = max(0,9; — Jc + A) (11)
i#c
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PROBABILISTIC LOSS FUNCTION

LOGITS
SCORES SOFTMAX PROBABILITIES

2. ==¥

eyz
TR i Eeyi —> =i

1B ; — p=01

The cross entropy loss:

Ly,9) == (vilog(pi) + (1 — yi)log(1— pi))  (12)

i
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Linear Linear

No linear relationship
L]

Copyright 2014. Laerd Statistics.

The target to be predicted is a continues value function: eg.
speech enhancement.
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Linear Linear

No linear relationship

Copyright 2014. Laerd Statistics.

The target to be predicted is a continues value function: eg.
speech enhancement.

The final layer of regression model:

h
y=(n hy

h3

)= (wio wii w2 )

(13)
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Mean square error:

L 0.)2
MSE: Z l(yl yl)
Mean absolute error:

MAE _ Zi:l |yl _yll

n = Total data points
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input hidden output

¥y =o(W,*h)
h=o(W,<X) oW, oW X))

F1GURE: Fully Connected Network

@ All nodes from the previous layer is connected to the next
layer. P
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MATHEMATICAL INSIGHT

~ X].
A ht Wig Wil Wi wig o
h=1| hy | = woo wo wx w3 o (16)
h3 W30 W31 W32 W33
X4
N h
~ i wio Wi1 Wi2 ~
y=1 " | = ho (17)
y2 Woo W21 W22 IS
3

The number of parameters are linear with input/ hidden layer size
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WHY DOES A NEW NETWORK?

The fully connected network has some draw backs:

o It always gives a merged representation of the previous
input/hidden layer

o Failed to capture the local information in the input signal.

@ The complexity of the model increases rapidly as we build
deeper networks.
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FIGURE: Convolution Network

Y[n] = (X« k)[n] = > X(n)k(n — m) (18)
i=1
T difenedoseg 00 |
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FIGURE: Convolution Network

n
Yiln] = (X ki)[n] = > _ X(n)ki(n — m) (19)
i=1
Number of kernels = number of channels
~ shifaspv@csd.uoc.gr
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CONVOLUTION CHANNELS: 2D
@ Number of

parameters are

independent of the

input size.

o Network parameter is
independent of the
input dimension.

@ The kernel size is

customizable.

FiGUre: 2D Convolution
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Y, |y, |y, |y, |y
x x x
: K3

| K1 Io

x1 X1 x1 X1 X1 x1 x1

FIGURE: Dilated convolution Network
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Recurrent Neural Network
0000

WHY RECURRENCY?

speech articulations are a highly correlated over time.

o Estimation of the current input phoneme can tell something
about the phonemes follows.

-eg. We will meet ....

o We must store and pass the information at the current instant
to be consulted in the future predictions.

Adding the Markove structure into the neural network
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FI1GURE: Fully connected Recurrent Network

40> «F»r 4«
Neural Models

it
-

Dae
28/32



00000000000000

000000

Iy = ¢( Wii Xy + Whihy + Wejoc—1 + b,')
fi = O(Wir Xt + Whehe + Weroci—1 + by)
ot = froct_1 + irotanh(Wie Xi + Whehe—1 + bo)
Yt = ¢( Wio Xt + Whoht + Weooc—1 + by)

(20)
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Thank for your attention!!
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