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Modelling biological neuron

Figure: The biological structure of a neuron
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Mathematical equivalent of a neuron
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Figure: Mathematical equivalent of a neuron
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Output is a function of the input (data) and the weights.
Training: optimize the weights such that to reach to the
desired output.
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Neural Network: Network of Neurons
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Figure: Neural network

Higlight

Intuition: any complex function can be approximated as
a series of simple non-linear functions.
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Mathamatical Insight
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Non-linear activation functions: Φ

Figure: Commonly used activation functions
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Which function are we looking for ?

Assumtion: there is a statistics, hidden in our data

The statistics to model depends on the task: Speaker
identification, emotion detection, enhancement

model input dimension

Traditional approach: manually extracts the features and feed
into the network.

Advance models: feed the raw samples as it is into the models,
letting the network to extracts the task relevant features.
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Training the Model: Teaching

Training:Teaching the
model by exploring to the
already know data pair

- Supervised: data (input,
output)

- Unsupervised: data
(input,)
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Training the Model: Weight tuning
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Loss: the measure of deviation of network prediction ŷ from

the true training set label y =

(
y1
y2

)
Penalize each wrong prediction (tune the weight) so that it to
be a good predictor at the end.
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Parameter optimization: Gradient descent

Given a set of training input and output pairs

{{x1, t1} . . . , {xn, tn}} (6)

compute the loss function for each prediction

E = =
1

2

n∑
p=1

K∑
i=1

(yi (xp)− tpi )
2 (7)
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(
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)(
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with sigmoid as the activation function φ, y(z) = 1
1+exp(−z)

∂E

∂wi
= (y(x)− t)y(x)(1− y(x))xi (9)

Walk on the direction to which gradient descend

wi+1 = wi − γ
∂E

∂wi
(10)
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The logistic loss function (classifier)

SVM loss: Minimize the objective

L(y , ŷ) =
∑
i 6=c

max(0, ŷi − ŷc + ∆) (11)
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Probabilistic Loss function

The cross entropy loss:

L(y , ŷ) = −
∑
i

(yi log(p̂i ) + (1− yi )log(1− p̂i )) (12)
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The Regression loss

The target to be predicted is a continues value function: eg.
speech enhancement.
The final layer of regression model:
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Regression loss

Mean square error:

MSE =

∑n
i=1(yi − ŷi )

2

n
(14)

Mean absolute error:

MAE =

∑n
i=1 |yi − ŷi |

n
(15)

n = Total data points
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Fully Connected Neural Network
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Figure: Fully Connected Network

Network identity

All nodes from the previous layer is connected to the next
layer.
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Mathematical Insight
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The number of parameters are linear with input/ hidden layer size
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Why does a new network?

The fully connected network has some draw backs:

It always gives a merged representation of the previous
input/hidden layer

Failed to capture the local information in the input signal.

The complexity of the model increases rapidly as we build
deeper networks.
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Convolutional Neural Network
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Figure: Convolution Network

Y [n] = (X ∗ k)[n] =
n∑

i=1

X (n)k(n −m) (18)
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Convolution with multiple kernels

 k32   

 
   X1

  
   X1

    
   X1

  
   X1  X1

 
   X1

  
   X1

 
         

      
    

         
      

   

 k22   

 
         

      
   

 k12  k11  k13

k23

k33

Y1

Y2
Y3

k31

k21

Figure: Convolution Network

Yi [n] = (X ∗ ki )[n] =
n∑

i=1

X (n)ki (n −m) (19)

Number of kernels = number of channels
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Convolution channels: 2D

noisy input

convolution output

conv filter

Figure: 2D Convolution

Number of
parameters are
independent of the
input size.

Network parameter is
independent of the
input dimension.

The kernel size is
customizable.
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Dilated convolution
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Figure: Dilated convolution Network
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Why Recurrency?

speech articulations are a highly correlated over time.

Estimation of the current input phoneme can tell something
about the phonemes follows.

-eg. We will meet ....

We must store and pass the information at the current instant
to be consulted in the future predictions.

Adding the Markove structure into the neural network
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Recurrency in Fully Connected Network
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Figure: Fully connected Recurrent Network
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Fully Connected Long Short-Term Memory
(FC-LSTM)

it = Φ(WxiXt + Whiht + Wcioct−1 + bi )
ft = Φ(Wxf Xt + Whf ht + Wcf oct−1 + bf )

ot = ftoct−1 + itotanh(WxcXt + Whcht−1 + b0)
yt = Φ(WxoXt + Whoht + Wcooct−1 + by )

(20)
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Thank for your attention!!
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