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VOICE FUNCTION ASSESSMENT

Use of:
@ Voice Production Models
@ Algorithms of Signal/Speech Processing
@ Special devices (i.e., high speed camera, EGG etc)

for assessing voice disorders and quality of voice in general.



LLIST OF DEVICES

Endoscopes
High-speed cameras
Videokymograps
Electroglottographs
Accelerator probes
Pneumotachographs
Contact microphones

Microphones

®© 6 6 66 66 6 o o o

Cameras (possibly)



INVASIVE: USING CAMERAS ...

video monitor

@ l*l video recorder |

sound
microphone

[} camera
light source
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HIGH-SPEED (invasive)

» Glottal surface
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VIDEOKYMOGRAPHY 2]
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NON-INVASIVE

e EGG [3] » Principle

high-frequency demodulation
generator EGG i Wit

closed glottis
\f\/ «— (high-pass filter
open glottis —
ne

o Contact microphone signals @

@ Speech



OUTLINE

© JITTER ESTIMATION
@ Spectral Jitter Estimator
@ Short time SJE



MEASURING JITTER (1/2)

@ Local jitter is the period-to-period variability of pitch (%)

N—-1

g S lu(n+1) = u(n)

@ Absolute jitter is the period-to-period variability of pitch in
time
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MEASURING JITTER (2/2)

o Relative Average Perturbation (RAP): 3 periods (%)

1 2 2u(n+1) — u(n) — u(n+2)|
TP 3

n=1

e Pitch Period Perturbation Quotient (PPQ): 5 periods (%)

1 = [4u(n+2) —u(n) —u(n+1) —u(n+3) — u(n+ 4)|
N—4n§::1 5

1N
N;U(”)



SPECTRAL JITTER MODEL

Jittered impulse train:
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SPECTRAL JITTER MODEL

Jittered impulse train:

+oo oo
glnl= > dln—(@2Kk)Pl+ > dln+e—(2k+1)P]

k:—oo k:—OO

and the corresponding magnitude spectrum:

G =B 5 (14cos[(P— K]} 5 (- k22)

k=—00



BEAT SPECTRUM

This representation leads to a beat spectrum:

1+ cos [(P —€) k%] = 1+ cos (k) cos (k%ﬂ)

with intersections at:



LoG MAGNITUDE SPECTRUM

20logyg |G(w)| =

10 log (‘*f (1+cos[(P —¢) w]))
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HARMONIC AND SUBHARMONIC SPECTRA

The magnitude spectrum can be split into a Harmonic spectrum:

2

H(e, lwo) = 10 logyq (‘”20 (1+ cos[(P —¢) /wo])>

and a Subharmonic spectrum:

S0 ) = 101 (3 (1 s = 00 1] )



HARMONIC-SUBHARMONIC EXAMPLES
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VOICE PATHOLOGY DETECTION

AUC (standard error) %

MEEI PdA

MDVP | 90.66 (1.42) | 70.65 (2.50)

(
Praat | 90.47 (1.44) | 62.94 (2.67)
SJE with enhancement | 94.82 (0.92) | 84.65 (1.92)




RUNNING SPEECH DATABASE

MEEI - Rainbow passage: MEEIRainbow

Recordings are limited to 12 seconds (2 first sentences)

53 signals from healthy voices and 660 signals from
pathological voices

Sampling frequency: 25 kHz (683 signals), 10 kHz (30
signals), 16 bits

@ Onset and offset effects in the voiced areas (2 frames)

@ Pitch period measured at a rate of 10ms

@ SJE used a window of 4 times the local pitch period



FEATUR
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normal reading text signal (Over = 13.17%)
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DISCRIMINATION POWER

AUC (standard error) % (MEEIRainbow, Thrsie)

Over

Max Over

Max Under

95.69 (0.80)

93.32 (1.10)

91.61 (1.30)




RUNNING AND LOCAL: Quer

o Local:
Feature is computed using a sliding analysis window of fixed

size

@ Running:
Feature is computed using gradually extended analysis
windows



ExAMPLE FROM MEEI: RUNNING Ower
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ExAaMPLE FROM MEEIL: LocAL Ower

local Over of a normal signal
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AFTER TREATMENT
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AFTER TREATMENT
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OUTLINE

© USING SINUSOIDAL MODELING
@ Jitter and shimmer estimation
@ Time-Frequency representation



SINUSOIDAL MODEL

K(t)

ZAk (t)cos[Ok(t)]

where
Ac(t) = pi(t) - Mi(t)
~—— ~——
excitation vocal track
and
Ok(t) = o(t) + Du(t)
—— ——

excitation  vocal track

t
o(t) = 27Tk/0 fo(T)dT + o



JITTER AND SHIMMER

Jitter:
fo(t) = fo — dsin(mfot + 1)

Shimmer:
pi(t) = prll + vk cos(mot + xk)]



JITTER AND SHIMMER

Jitter:
fo(t) = fo — dsin(mfot + 1)
Shimmer:
pi(t) = prll + vk cos(mot + xk)]
so then:

L
s(t) = Z Ak[1 + vk cos(mfot + x«)]
k=—L
ol [2mkfot+6) cos(mfyt-+1)y)+04] w(t)



JITTER AND SHIMMER

Jitter:
fo(t) = fo — dsin(mfot + 1)
Shimmer:
pi(t) = prll + vk cos(mot + xk)]
so then:

L
s(t) = Z Ak[1 + vk cos(mfot + x«)]
k=—L
ol [2mkfot+6) cos(mfyt-+1)y)+04] w(t)

L
s(t) =~ Z Ay e/ 2mkhot ()
k=—L
[1 4 (v cos(xk) cos(mfot) — vk sin(xk) sin(mfot))
+ j(0k cos(vpk) cos(mfot) — Ok sin(yk) sin(mft))]



MODELS OF SHIMMER AND JITTER
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PARAMETERS ESTIMATION

Suggesting:

L
x(t) = Z [ak + by sin(mfyt) + ci cos(mfyt)]e/2 ot w(t)
k=—L

and by letting
bk = p1kak + p2kjak
Ck = T1kak + T2 kjak



PARAMETERS ESTIMATION

Suggesting:

L
x(t) = Z [ak + by sin(mfyt) + ci cos(mfyt)]e/2 ot w(t)
k=—L

and by letting
bk = p1kak + p2kjak

Ck = T1kak + T2 kjak
then:
L .
x(t) = Z a2ty (1)
k=—L

[1+ (1, cos(mhot) + p1 i sin(mfyt))
+ j(mo i cos(mfot) + pa i sin(mfot))]



COMPARING MODELS

What we want, was:

L
s(t) =~ Z Ay e/ 2mkhot ()
k=—L
[1 4 (yk cos(xk) cos(mfot) — vk sin(xk) sin(mfot))
+ j(0k cos(vpk) cos(mfot) — Ok sin(yk) sin(mft))]



COMPARING MODELS

What we want, was:

L
s(t) =~ Z Ay e/ 2mkhot ()
k=—L
[1 4 (yk cos(xk) cos(mfot) — vk sin(xk) sin(mfot))
+ j(0k cos(vpk) cos(mfot) — Ok sin(yk) sin(mft))]

and what we suggest:

L

x(t) = Z a2kt (t)

k=—L
[1 4 (71,4 cos(mfyt) + p1 ksin(mfot))
+ j(mo i cos(mfyt) + pa i sin(mfot))]



FINAL ...

T1,k = Yk c0(Xk)
P1k = —Fksin(xk)
ok = Sk cos(vk)
pak = —Oksin(vx)

which leads to the final solution for the estimates

Ve =/ LR
Ok = 4/ W%,k + P%,k



VALIDATION

o Glottal airflow rate

+o0
rlnl =A1 > 6[n— (2k)Pl+

k=—00

+oo
Ao D dln+e—(2k+1)P]

k=—00
where A; = Ag+ A and Ay = Ap — A, with A to control the
shimmer value while € controls the jitter.

o Glottal airflow frequency response (maximum phase)

1

6(2) = A=y

@ Vocal tract, as an AR filter (using phoneme /a/ from real
speech - male speaker)



VALIDATION: MODELING

0.5

SHIMMER

Signal with shimmer
Standard Sinusoidal Model
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VALIDATION: MODELING JITTER

Signal with jitter n
Standard Sinusoidal model

I
5 10 15 20 25 30 35 40 45 50
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1 Signal with jitter n
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EVALUATION: VOICE PATHOLOGY DETECTION
(MEEI)

AUC: 92.06% (L = 20, FLD, 5000 Monte Carlo repetitions)

teristic (ROC) curve on MEEI
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QuAsi-HARMONIC MODEL, QHM

@ The model:

K
s(t) = ( Z (ak + tbk)e27rjfkt> w(t)

k=—K



QuAsi-HARMONIC MODEL, QHM

@ The model:

K
s(t) = ( Z (ak + tbk)e27rjfkt> w(t)

k=—K

@ Instantaneous parameters:

mi(t) = \/(a,’f + tbg)? + (af + t'by)?
I 1l
ok(t) = 2wt + atanj%ft:g
1 Rbl o IbR
fk(t) = fi+ 773k k2 Ik Ok

2 mi(t)



ITERATIVE QHM

Iteratively improve estimation of QHM parameters:



ITERATIVE QHM

Iteratively improve estimation of QHM parameters:
Let's assume that we know at n =0, f;(0):

© Compute the a , and by , through Least Squares using
fk(n — 1).



ITERATIVE QHM

Iteratively improve estimation of QHM parameters:
Let's assume that we know at n =0, f;(0):

© Compute the a , and by , through Least Squares using
fk(n — 1).
@ Compute instantaneous components, for k =1...K:
Ak(n) = mi(0)
®(n) = ox(0)
Fi(n) = fi(0)



ITERATIVE QHM

Iteratively improve estimation of QHM parameters:
Let's assume that we know at n =0, f;(0):
© Compute the a , and by , through Least Squares using
fk(n — 1).
@ Compute instantaneous components, for k =1...K:
Ak(n) = mi(0)
®y(n) = ¢ (0)
Fi(n) = (0)
© Move to the next time instant: n = n+ 1 and go to step 1.



VALIDATION: SIGNAL RECONSTRUCTION

L
s[n] =) _ Ax[n] cos (®[n])
k=1

0.05 0.1 0.15 0.2 0.25 03 0.35
Error
L
0.05 0.1 0.15 0.25 03 0.35




TIME-FREQUENCY EXAMPLE: NORMOPHONIC CASE
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TIME-FREQUENCY EXAMPLE: DYSPHONIC CASE
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HARMONICS AND SUB-HARMONICS: FREQUENCY

Left: Normophonic speaker, Right: Dysphonic speaker
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HARMONICS AND SUB-HARMONICS: TIME

Left: Normophonic speaker, Right: Dysphonic speaker

Ampliude
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DEFINE VOCAL TREMOR

@ Vocal Tremor: Involuntary modulations of frequency and/or
amplitude in sustained phonation.
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tremor, etc. = Strong motor synchronization.
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e Pathological Tremor: From diseases like Parkinson, essential
tremor, etc. = Strong motor synchronization.
o Physiological Tremor: Natural stochastic modulations in the
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DEFINE VOCAL TREMOR

@ Vocal Tremor: Involuntary modulations of frequency and/or
amplitude in sustained phonation.
@ Pathological & Physiological Vocal Tremor.
e Pathological Tremor: From diseases like Parkinson, essential
tremor, etc. = Strong motor synchronization.
o Physiological Tremor: Natural stochastic modulations in the
interval [2, 15]Hz with low amplitude.
@ Acoustic Vocal Tremor Attributes:

e Modulation Frequency: How fast are the modulations.
e Modulation Level: How strong are the modulations.



VocAL TREMOR ESTIMATION

Use of an AM-FM decomposition algorithm based on the adaptive
time-varying quasi-harmonic model for speech.
@ High resolution in Time-Frequency plane.

@ Estimation of Vocal Tremor for any sinusoidal component of
speech.
@ Time dependent Vocal Tremor estimations.



AM-FM DECOMPOSITION USING AQHM

@ Speech is modeled as a sum of AM-FM sinusoids:

X

s(t) =D ak(t)cos(¢(t))

k=1

K is the number of components,
ak(t) is the instantaneous amplitude of the k' sinusoid,
#x(t) is the instantaneous phase of the k' sinusoid, and

f(t) = i%t(t) is the instantaneous frequency of the k"

sinusoid.

[

@ AM-FM decomposition algorithm tries to estimate the
instantaneous components.



EXAMPLE OF AM-FM DECOMPOSITION ON SPEECH
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PREPROCESSING OF INST. COMPONENT

@ Downsample inst. component to f; = 1000Hz

@ Remove the very slow (< 2Hz) modulations of the
instantaneous component.
@ This is performed by Savinzky-Golay smoothing filter.

o 5-G smoothing filter performs a local polynomial regression.

o S-G filter parameters: 4th order polynomial & 1sec frame size.

o Advantage: Preserve features of the time-series such as
relative maxima, minima and width.
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COMPUTE MODULATION FREQUENCY & LEVEL

@ Assuming that the processed inst. component has a single but
time-varying modulation frequency and modulation level.

x(t) = m(t)cos(y(t))

@ Apply for second time the AM-FM dec. alg. to the processed
inst. component.
@ Thus,
e Modulation frequency, %dﬁgt),
component of AM-FM dec. alg.
o Modulation level, m(t), is estimated from the respective AM
component.

is estimated from the FM




COMPUTE MODULATION FREQUENCY & LEVEL
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COMPUTE MODULATION FREQUENCY & LEVEL
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PRINCIPLE

m

m+l

'vy

"

=

Base Transform

2™ Transform

k (frequency)

K (frequency)

EEREEREEY

m (time)

h (modulation frequency)



OUR WORK ON MODULATION SPECTRA
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