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Information in Speech
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Voice Conversion (VC)
● Technique to convert the utterance of a source speaker to create the 

perception as if spoken by a specified target speaker.

● Only transform the speaker timbre (para-linguistic information) and keep 

the linguistic message in the utterance unchanged.
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Voice Conversion
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Applications

● Text-To-Speech (TTS) customization

● Film dubbing

● Design of speaking aids

● Education etc
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Statistical VC
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VC Training
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VC Conversion
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Timeline of VC Research
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Frame-based VC

● Source feature: x
● Target feature: y
● Converted feature: ŷ
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Vector Quantization-based VC [Abe et. al. 1990]
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Discontinuous to Continuous Conversion
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GMM based Conversion
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GMM based Conversion [Stylianou et. al. 1998]
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Sequence-based VC [Toda et. al. 2007]
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Sequence-based VC 



Sequence-based VC 
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Limitations of JD-GMM
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VC based on Deep Neural Networks
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Sequence‐based VC

[Kaneko et. al. 2017] 20



Sequence‐based VC

[Sun et. al. 2015] 21



Variational Autoencoder (VAE)-VC

[Hsu et al, 16]

● The core of VAE-VC is an encoder-decoder network. 

● During training, given an observed (source or target) spectral frame x, a 

speaker-independent encoder Eθ with parameter set θ encodes x into a 

latent code: 

● The speaker code y of the input frame is then concatenated with the 

latent code, and passed to a conditional decoder GΦ with parameter set 

Φ to reconstruct the input.
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VAE-VC
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VAE-VC

[Hsu et al, 16]
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● Conversion phase:

● The model parameters can be obtained by maximizing the variational lower bound:

: approximate posterior.

: data likelihood.

: prior distribution of the latent space.



Intuitions about Regularization
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Vector Quantization VAE (VQ-VAE)

[van den Oord; ’17]

● Directly encode speech waveform into a discrete symbol sequence capturing 
long‐term dependencies (including prosodic features!) by using a dilated 
convolution network
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VC based on VQ‐VAE
● Extract phoneme posteriorgram (PPG) as speaker‐independent contextual features.
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Phoneme Posteriogram VC

[Sun et. al. 16]

● Extract phoneme posteriorgram (PPG) as speaker‐independent contextual 
features and use them as input of the conversion network.
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VC based on Generative Adversarial Networks
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GAN Formulation
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Discriminator Training
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Generator Training
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Mathematical Notations
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Learning GANs
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GAN-based VC

[Saito et. al. 2018] 36



CycleGAN Voice Conversion
● A non-parallel voice-conversion (VC) method that can learn a mapping from 

source to target speech without relying on parallel data.

● In a CycleGAN, forward and inverse mappings are simultaneously learned 
using an adversarial loss and cycle-consistency loss.

● Two important losses are introduced:
○ Adversarial loss
○ cycle-consistency loss
○ identity-mapping loss
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CycleGAN losses

Adversarial loss Adversarial loss

[Kaneko et. al. 2018]
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● Two mapping function (Adversarial loss): G and F.

● Cycle-consistency loss:

○ Forward: 

○ Backward:

● Adversarial loss + cycle-consistency loss: 

CycleGAN losses
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● To encourage linguistic-information preservation, an identity-mapping 
loss is implemented.

● It encourages the generator to find the mapping that preserves 
composition between the input and output.

     Identity-mapping loss
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CycleGAN Architecture
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Sound Samples

http://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/cyclegan-vc/
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http://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/cyclegan-vc/


StarGAN Voice Conversion
● A non-parallel many-to-many voice conversion (VC) by using a variant of a 

genitive adversarial network called StarGAN.

● Generator (G) takes an acoustic feature with an attribute c as the inputs and 
generates an acoustic feature sequence y′ = G(x, c).

● Discriminator (D) is designed to produce a probability D(y, c) that an input y 
is a real speech feature.

●  A domain classifier (C) predicts classes of the input.
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StarGAN training

[Kameoka et. al. 2018]

CycleGAN StarGAN
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StarGAN training losses

● Adversarial losses for discriminator D and generator G, respectively, where y 
denotes a training example of an acoustic feature sequence of real speech 
with attribute c and x denotes that with an arbitrary attribute.
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StarGAN training losses

● Domain classification losses for classifier C and generator G is described.

46



StarGAN training losses

● To encourage G(x, c) to be a bijection, a cycle consistency loss is 
implemented, where x denotes an acoustic feature sequence of real speech 
with attribute c′.
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StarGAN training losses

● Ensure that an input into G will remain unchanged when the input already 
belongs to the target attribute c′.
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StarGAN Objective Function 

● The full objectives of StarGAN-VC to be minimized with respect to G, D and 
C are
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[Kameoka et. al. 2018]
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Modified StarGAN

[Kaneko et. al. 2019]
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Rethinking Conditional Methods

● source-and-target conditional adversarial loss defined as
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Rethinking Conditional Methods
● Given the feature f, conditional instance normalization (CIN) conducts the following 

procedure:

[Kaneko et. al. 2019]

where µ(f) and σ(f) are the average and standard deviation of f that are calculated over for each instance. 
γc' and βc' are domain-specific scale and bias parameters that allow the modulation to be transformed in a 
domain-specific manner.
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Sound Samples

http://www.kecl.ntt.co.jp/people/kameoka.hirokazu/Demos/stargan-vc/

http://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/stargan-vc2/index.html
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http://www.kecl.ntt.co.jp/people/kameoka.hirokazu/Demos/stargan-vc/
http://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/stargan-vc2/index.html


Style Conversion  (VoiceGAN)
● Voice style impersonation, where one person attempts to mimic the voice of 

another to sound like the other person, is a complex phenomenon.

Mathematical notations:

The original GAN model Style transfer by GAN
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Style Conversion  (VoiceGAN)
● DA and DB  discriminate 

between real and fake data.

● GAB transforms for style A to 
style B, where as GBA is the 
opposite.

● The discriminator Dstyle 
determines if the original and 
transformed signals match the 
desired style.
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Style Conversion  (VoiceGAN)
● Training objectives to be minimized for the generator and discriminator are represented 

by LG and LD respectively as follows:

● Reconstruction loss:

● The discriminator DS determines if the original and transformed signals match the 
desired style:
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MelGAN VC

58[Pasini 2020]
TraVeL (Transformation Vector 
Learning loss) loss 



Various Vocoders in VC
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 GMM   CNN

 GANs  VAEs

 WaveNet WaveRNN

MelGAN  WORLD

General Framework
Vocoders
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WaveNet Vocoder in VAE-VC

WaveNet

Converted waveform

A general framework of WaveNet vocoder in voice conversion.

[Huang et. al. 2019]
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Training Protocol
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Jointly Trained Conversion Model and Vocoder

63[Liu et. al. 2019]



WaveNet Auto-encoders
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● WaveNet is used as the decoder and to generate waveform data directly from the latent 
representation.

[Chen et. al. 2020]



One-shot Voice Conversion
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● The target speaker is unseen in training dataset or both source and target 

speakers are unseen in the training dataset.

● An universal embedding vector is used to represent speaker ID.

● The idea is to represent any arbitrary unseen speaker ID with an embedding 
vector. 

● Such embedding vector represents unseen speaker’s timbre would be a 
weighted combination of the timbres the speakers seen in the dataset.

One-shot VC
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One-shot StarGAN VC

[Wang et. al. 2020]



Representations Learning
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● An utterance can be factorized into a speaker plus a content representation.

● To disentangle speaker and content representation, three components is 

employed : a speaker encoder, a content encoder and a decoder

● The speaker encoder is trained to encode the speaker information.

● The content encoder is trained to encode only the linguistic information.

● The task of the decoder is to synthesize the voice back by combining these 

two representations.
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● Es is speaker encoder

● Ec is content encoder 

● D is decoder. 

● IN is instance normalization

● AdaIN represents adaptive

instance normalization layer.

[Chou et. al. 2019]

Representations Learning
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Representations Learning
● The objective function for VAE training

● The divergence term is given as in

● The reconstruction loss is given as
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Speech Intelligibility Enhancement
      From Casual to Clear Speech
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Clear and Conversational speech

● Clear speech is a speaking style adopted by speakers in an attempt to 

maximize the clarity of their speech.

● Conversational speech is produced under casual or typical circumstances 

when no special speaking effort is made.

● However, in the presence of a communication difficulty, humans adopt 

different speaking styles.
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● The speaking style they adopt depends mostly on the communication 
barrier they want to overcome in order to communicate.

Clear and Conversational speech
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System Design
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https://docs.google.com/file/d/122We8q2AfLC-8aSDvoO8l6hNuDkKkxhm/preview


Sound Samples

http://ixion.csd.uoc.gr/shifaspv/listest/index.php?n=Main.Icassp-
show-tell
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