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Voice Conversion (VC)

e Technique to convert the utterance of a source speaker to create the

perception as if spoken by a specified target speaker.
Only transform the speaker timbre (para-linguistic information) and keep

the linguistic message in the utterance unchanged.
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Voice Conversion
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Applications
Text-To-Speech (TTS) customization
Film dubbing
Design of speaking aids

Education etc



Statistical VC
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VC Training
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VC Conversion
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Timeline of VC Research

=

Frame-based Exemplar / Sparsity  Unit selection [Jin; '16] S

discrete mapping : . NMF [Takashima; '13][Wu; ’14] g I

Bayesian formulation o o

VQ [Abe; '90] » GPR [Pilkington; "11][Xu; '14] ® 3

~+

. Nonlinear model o &

Soft clustering & » ANN [Narendranath; '95][Desai; '10] — o
linear regression

GMM (stylianou; '98] —— » RBM [Nakashika; '14] S

Distributed Deep generative 39

Sequence representation o L > o g

. -— T

WIORNE DNN [Chen; '14] «— =S

Sequence mapping
Trajectory conversion //7\

W/ MLPG [Toda; ’07] CNN [Kaneko; “17] RNN [Sun;’15] S2S [Zhang; '19] )
ot X R4

.

] Y YE
Mixture model Product model



Frame-based VC

Source feature: x
Target feature: y
Converted feature: y

Frame-based conversion function
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Discontinuous to Continuous Conversion

/ VQ-based conversion \
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GMM based Conversion

2 xt
Joint feature vector: 7 =
Vi

GMM:
Joint pdf: P(x,.3,12) = T, cuN (2311, 23)

Maximum likelihood training
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Likelihood for all joint vectors

Updated model parameters
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GMM based Conversion [Stylianou et. al. 1998]

Training of joint p.d.f. (modeled by a GMM) [Kain; ‘98]
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Sequence-based VC
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Sequence-based VC
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Sequence-based VC
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Limitations of JD-GMM

/Discontinuous transitions \
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VC based on Deep Neural Networks



Sequence-based VC

Source feature sequence
X, X, X, X
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[Kaneko et. al. 2017]
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Source feature

sequence
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Variational Autoencoder (VAE)-VC

e The core of VAE-VC is an encoder-decoder network.

e During training, given an observed (source or target) spectral frame x, a
speaker-independent encoder E, with parameter set 8 encodes x into a
latent code: zZ = Ey(x).

e The speaker code y of the input frame is then concatenated with the
latent code, and passed to a conditional decoder G, with parameter set
@ to reconstruct the input.

T =Gy(2,y) = Gy(Ep(x),y)

[Hsu et al, 16] -



VAE-V(
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VAE-V(

e The model parameters can be obtained by maximizing the variational lower bound:

Evae(07 ¢; €Z, y) - ‘Crecon (wa y) + ‘Clat(m)7
Lrecon(m, y) - ]Ezqug (z|x) [lng¢ (j|z7 y)] )
Liat(x) = =Dk r(q0(2|)||p(2)),

qe (2 |£U) approximate posterior.
py(Z|z, y): data likelihood.
p(z): prior distribution of the latent space.

e Conversion phase:
&= f(x,9) = Gy(2,9) = Gy(Ep(x), ) [Hsu et al, 16]
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Intuitions about Regularization
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what can happen without regularisation x

V what we want to obtain with regularisation
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Vector Quantization VAE (VO-VAE)

e Directly encode speech waveform into a discrete symbol sequence capturing
long-term dependencies (including prosodic features!) by using a dilated

convolution network

Latent feature sequence —

A

Vector
quantization

!

Encoder

Discrete symbol
sequence

Embedding

l Well corresponds to
linguistic information!
Decoder

vy

vectors

Speech waveform

Speaker

code

|

Generated speech
waveform

[van den Oord; ’17]27




VCbased on VO-VAE

e Extract phoneme posteriorgram (PPG) as speaker-independent contextual features.

Source speech
waveform

.]

N Y,
Y
Encoder (non-causal | Only contextual
dilated convolution) information is modeled
N A
. V3 ;
Discrete symbol my my, ms myp Embedding
sequence & "8 e vectors

Y
Target speaker’s Decoder
speaker code (WaveNet)
A

-

N

Converted
speech waveform

Not only segmental

features but also prosodic
features are converted!
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Phoneme Posteriogram VC

e Extract phoneme posteriorgram (PPG) as speaker-independent contextual
features and use them as input of the conversion network.

Source feature X1 X2 X3 X7
sequence N I I I Ij No longer need to use \
N parallel data!
Remove speaker- Ph )
dependencies! ol - il <l

s . N
e 11 11

Target
speech data

\pl Pz Ps pD Phone Conversion
N recognizer network
[ dAdd sgeakger-| } Target-dependent
I A conversion network -

A
Target feature (| I I I\ /

sequence
[Sun et. al. 16] g ¥ V2 V3 Yr




VC based on Generative Adversarial Networks



GAN Formulation
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Latent random variable

Discriminator Training

Realworld ——

images
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Discriminator .

Generator
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Backprop error to
update discriminator
weights
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Generator Training
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Mathematical Notations

Value of

|

Expectation

/

prob. of D(real)

prob. of D(fake)

/

minmax V(D, G) = Epn ()10 D(2)] + E. ), (2 log(1 — D(G(2)))]

g D

\

Minimize G Maximize D

X is sampled
from real data

Z is sampled
from N(O, I)

\

fake

34



Learning GANs

pp(data) Data distribution

l / Model distribution
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Poorly fit model After updating D After updating G~ Mixed strategy
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[Goodfellow et al., 2017]
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GAN-based VC

Source X Xy Xy Xr
features I I I I
ks P
Y
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N

: \

Converted I I I I

features i, ¥, ¥, Adversarial loss Lp(¥) «< p(0]y)
Conversion error » Discriminator |, 0:Converted
Le(yv,y) I »  network 1: Natural target
Target l l I l Trained by maximizing
features y, y, y3  ¥r 1=Lp() + Lp(®)

< p(1ly) +p(0[¥)
[Saito et. al. 2018] 36




CycleGAN Voice Conversion

A non-parallel voice-conversion (VC) method that can learn a mapping from
source to target speech without relying on parallel data.

In a CycleGAN, forward and inverse mappings are simultaneously learned
using an adversarial loss and cycle-consistency loss.

Two important losses are introduced:
o Adversarial loss
o cycle-consistency loss
o identity-mapping loss

37



CycleGAN losses

Adversarial loss Adversarial loss

Dy
G A G
X

Y o - ' # \—/ . J
Y

R
: = C\ cle-consistency
loss
cycle-consistency | ..«
loss

[Kaneko et. al. 2018]




CycleGAN losses

e Two mapping function (Adversarial loss): GandF. ¢ : X — Y and F : Y — X

e Cycle-consistency loss:
o Forward: = G(z) = F(G(z)) =z

o Backward: y— Fly) > G(F(y) =y

e Adversarial loss + cycle-consistency loss:

Ladv(Gx=y.Dy) + Ladv(Gy—x, Dx )+ AcyeLeye(Gx—y, Gy x)
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e To encourage linguistic-information preservation, an identity-mapping

|[dentity-mapping loss

loss is implemented.

e It encourages the generator to find the mapping that preserves

composition between the input and output.

Y

Gx_y
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<
< >

Y

Identity-mapping loss

Lz’d(GX—>Ya GY—)X) = EyNPData(y)[HGX—)Y(y) - yHl] + E:I:NPData(x) H |GY—>X (33) — .I'| |1]7
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X

Identity-mapping loss
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CycleGAN Architecture

h1 k1x15 k1x5 k1x5 k1x3 k1x3 k1x5 k1x5 k1x15 h1
wT ¢128 c256 c512 c512 c256 c512 c256 c24 wT
c24 s1x1 s1x2 s1x2 s1x1 s1x1 s1x1 s1x1 s1x1 c24

Generator
(1D CNN)

E 5 e
=] = S
= E =z
8 w8
s sl &
—-—— .5 =
= o

Downsample 6 residual blocks Upsample
h24 k3x3 k3x3 k3x3 k6x3
w128 c128 c256 c512 c1024
c1 s1x2 S2x2 $2x2 s1x2

Discriminator
(2D CNN)

Instance Norm
Fully Connected
Real/Fake

Downsample
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Sound Samples

http://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/cyclegan-vc/
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http://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/cyclegan-vc/

StarGAN Voice Conversion

A non-parallel many-to-many voice conversion (VC) by using a variant of a
genitive adversarial network called StarGAN.

Generator (G) takes an acoustic feature with an attribute c as the inputs and
generates an acoustic feature sequence y' = G(x, c).

Discriminator (D) is designed to produce a probability D(y, c) that an input y
is a real speech feature.

A domain classifier (C) predicts classes of the input.
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StarGAN training

CycleGAN

Real/Fake Fake
discriminator

Generator

Real/Fake

Real/Fake
discriminator

Training example
belonging to X

Generator Training example

belongingto Y

[Kameoka et. al. 2018]

StarGAN

Real/Fake

Training example discriminator

of attribute ¢

attribute ¢

Generator
Training example
of attribute ¢’

 attribute ¢
Ranqune | I aved4/|esy |

Domain
Classifier

2 @ihqune
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StarGAN training losses

Adversarial loss:

e Adversarial losses for discriminator D and generator G, respectively, where y
denotes a training example of an acoustic feature sequence of real speech
with attribute ¢ and x denotes that with an arbitrary attribute.

££iv (D) - = IE‘:"cr\/p(c),ywp(y|c) [log D(Y? C)]
- IE‘j’xrvp(x),crvp(c) [lOg(l _ D(G(X7 C)) C))]a
cG (G) - = IB:"xwp(x),crvp(c) [log D(G(Xa C)a C)],

adv
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StarGAN training losses

Domain Classification loss:

e Domain classification losses for classifier C and generator G is described.

L3s(C) = = Ecnp(e) y~p(yle) [l08 pe (c]y)];
Lgs(G) — = IF-‘:xwp(X),cwo(C) log pc(c|G(x,¢))],
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StarGAN training losses

Cycle Consistency Loss:

e To encourage G(x, c) to be a bijection, a cycle consistency loss is
implemented, where x denotes an acoustic feature sequence of real speech
with attribute ¢’

»Ccyc(G) — IEEc’fvp(c),xrvp(xlc’),Cfvp(c) [”G(G(Xv C)7 C,) - X”P]v
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StarGAN training losses

Identity mapping loss:

e Ensure that an input into G will remain unchanged when the input already
belongs to the target attribute c'.

Eid(G) — IE‘:‘4c’rvp(c),xrvp(X|C’) [”G(X7 C,) o X”P]?
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StarGAN Objective Function

Objective function :

e The full objectives of StarGAN-VC to be minimized with respect to G, D and
C are

I (G) Ladv(G) + )‘CISCCIS(G) + )\CYC[’C}’C(G) + )\id‘cid (G)

Ip(D) =L34.(D),
IC(C) ‘Ccls(c)
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Generator

Downsample Upsample

hie k 39 k dx8 k8 k 35 IS k UxS K 3«5 k 4«8 Kk A8 K3x0 hle
w512 ¢332 () ¢ 126 C 64 5 c 64 c 1z () c3 c1 w512
¢l s 1x] s 2x2 s 2x2 s Ix1 9x1 s 9x1 s Ixl s 2x2 s 2x2 sixl c1

Real/Fake Discriminator ' Domain Classifier
Downsample Downsample
h3 h8 K 4x4 K 4x4 K Ix4
wS12 wH12 c 16 c 32 c 16
c1 1 5 2x2

[Kameoka et. al. 2018]
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Modified StarGAN

h35 k5x15 k5x5 k5x5 h1  ki1x1 k1x5 k1x1 h9 k5x5 k5x5  kb5x15 h35
wT ¢128 c256 cb12  wT/4 c256 c512 c2304 wT/4  ¢1024 c512 ¢35 wT
c1 s1x1 $2x2 s2x2 c2304 s1x1 s1x1 s1x1 ¢256 s1x1 s1x1  s1x1 c1
Generator
(2-1-2D CNN)

Downsample (2D) 2D—1D Codes ¢ ¢ 9 Blocks (1D) 1D—2D Upsample (2D)

h35 k3x3 k3x3 k3x3  k3x3  ki1x5
w128 ¢c128 c256 c512  c104 c1024
ci1 s1x1 $2x2 s2x2  s2x2  six1
Q
- - - N
Discriminator =
(Projection) §

Downsample (2D) Codes Projection

[Kaneko et. al. 2019] 51




Rethinking Conditional Methods

source-and-target conditional adversarial loss defined as

Est-adv — E(m’C)NP(m’C)aC,NP(CI) [log D(m7 Cl) C)]
+ IE(:D,C)NP(:D,C),C’NP((:’) [log D(G(m7 C, Cl)) C7 Cl)]?
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Rethinking Conditional Methods

e Given the feature f, conditional instance normalization (CIN) conducts the following

procedure:
CIN(f;c) = 7o (f_—“(-f)> + B,
o(f)

where p(f) and o(f) are the average and standard deviation of fthat are calculated over for each instance.
yc' and Bc' are domain-specific scale and bias parameters that allow the modulation to be transformed in a
domain-specific manner.

[Previous] [Proposed]

/4 Modulate
/ g

g = 4 Z 7¢’ c'
M Select \ /
Expand //

—_ Domain code

Domain
code

(a) Channel-wise (b) Modulation-based

[Kaneko et. al. 2019] 53




Sound Samples

http://www.kecl.ntt.co.ip/people/kameoka.hirokazu/Demos/stargan-vc/

http://www.kecl.ntt.co.ip/people/kaneko.takuhiro/projects/stargan-vc2/index.html
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Style Conversion (VoiceGAN)

e \oice style impersonation, where one person attempts to mimic the voice of
another to sound like the other person, is a complex phenomenon.

G
{j AB
ol | lxgen XAI—’ q— ha
r —
Xreal IXB

The original GAN model Style transfer by GAN

Mathematical notations:

L =E;, ~p,|log(l — Dg(xar))]

Lp = ~Boppy[10g D (p)] — Expnrylog(l = Dp(wap)] 17000200
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Style Conversion (VoiceGAN)

DA and DB discriminate
between real and fake data.

G g transforms for style A to
style B, where as G, is the
opposite.

The discriminator DStyle
determines if the original and

transformed signals match the

desired style.
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Style Conversion (VoiceGAN)

e Training objectives to be minimized for the generator and discriminator are represented
by L, and L, respectively as follows:

Lg = Lgan,p + Lcang, = Leg + LeconsTy + L, + LeconsTg

Lp = LDA + LDB + LDSTYLE

e Reconstruction loss:

Leonst, = d(Gea(Gap(za)),za)

e The discriminator D determines if the original and transformed signals match the
desired style:

LDSTYLE — LDSTYLE—A + LDSTYLE—B

LDSTYLE—A :d(DS (IIJA), labelA) + d(DS (CUAB), labelB) + d(Ds(zaBa),labela) -



[Pasini 2020]

MelGAN VC

split concatenate

.o .o
- )
tig = I
TraVelL (Transformation Vector
Learning loss) loss
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Various Vocoders in VC



RUN-TIME CONVERSION PHASE

Analysis &
Source Speech _’[ Feature Extraction

General Framework

Vocoders

________________________________

________________________________

]—)[ Reconstruction ]—> Converted Speech
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WaveNet Vocoder in VAE-VC

input speaker code

h Z
input latent
feature code

target speaker code

y — reconstructed
G¢ | h feature
G = converted
y P _.E feature

WaveNet WMW

Converted waveform

A general framework of WaveNet vocoder in voice conversion.

[Huang et. al. 2019]
61




Training Protocol

VAE
h J VAE {5 S WaveNet
WaveNet vocoder
vocoder Target VAE-reconstructed
training data feature
Step 1: VAE and WaveNet
vocoder training phase Step 2: WaveNet vocoder training phase
Step 3: C i h
(= | p onversion phase
h > VAE * h > d —p .
yocoder : trained module
Input Converted Converted
feature feature waveform : frozen module
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Jointly Trained Conversion Model and Vocoder

2 ; »-
Mel-spectrograms i Converted speech ”.M‘ﬂ Bottle-neck features
T
WaveNet BN features WaveNet § Bottle-Neck
Vocoder ' Vocoder : la‘ er
4 ;
Encoder & Y
PPGs —— : PPGs |
) g | near 1 Mutti-head
SI-:dSIIR ; transform S"/LS? Attention
m :
# (=] mc:\ e : k t A }
Log FO (VUV] MFCC : Log FO| VUV MFCC : /
Features ; Features '
extraction ' extraction : et
”’Mﬂ} “M” Inputs
Target speech Source speech 5
(a) Training stage (b) Conversion stage (c) Encoder module

[Liu et. al. 2019]




WaveNet Auto-encoders

e WaveNet is used as the decoder and to generate waveform data directly from the latent

representation.
-
Content z; WaveNet
Encoder ‘ Decoder
A

[Chen et. al. 2020]
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One-shot Voice Conversion
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One-shot VC

The target speaker is unseen in training dataset or both source and target

speakers are unseen in the training dataset.
An universal embedding vector is used to represent speaker ID.

The idea is to represent any arbitrary unseen speaker ID with an embedding
vector.

Such embedding vector represents unseen speaker’s timbre would be a
weighted combination of the timbres the speakers seen in the dataset.
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One-shot StarGAN V(C
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Representations Learning

An utterance can be factorized into a speaker plus a content representation.
To disentangle speaker and content representation, three components is
employed : a speaker encoder, a content encoder and a decoder

The speaker encoder is trained to encode the speaker information.

The content encoder is trained to encode only the linguistic information.

The task of the decoder is to synthesize the voice back by combining these

two representations.
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B =

audio
segment x

- ————

audio
segment x
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Es is speaker encoder

Ec is content encoder

D is decoder.

IN is instance normalization
AdalN represents adaptive

instance normalization layer.

[Chou et. al. 2019]
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Representations Learning

e The objective function for VAE training

min  L(0g_,0g.,0p) = ArecLrec + Aki Lk

OES seEC seD
e The reconstruction loss is given as

Lyec(0g, Ox., 0p) = E (I D(Es(2), 2e) = |1]-

mNp(x)’chp(zCkc)

e The divergence term is given as in

Liu(e.) = E_[[Ec(2)|3]-

z~p(x)
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Speech Intelligibility Enhancement
From Casual to Clear Speech



Clear and Conversational speech

Clear speech is a speaking style adopted by speakers in an attempt to
maximize the clarity of their speech.

Conversational speech is produced under casual or typical circumstances

when no special speaking effort is made.

However, in the presence of a communication difficulty, humans adopt

different speaking styles.
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Clear and Conversational speech

e The speaking style they adopt depends mostly on the communication
barrier they want to overcome in order to communicate.

Clear
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System Design

Casual speech

P

Text

Speech Recognizer

-

Speaker Encoder Text-to-Speech Clear speech
Synthesizer
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https://docs.google.com/file/d/122We8q2AfLC-8aSDvoO8l6hNuDkKkxhm/preview

Sound Samples

http://ixion.csd.uoc.ar/shifaspv/listest/index.php?n=Main.lcassp-

show-tell
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