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Formulas and definitions

a Markov chain or process is a sequence of events, usually
called states, Q = {q1, · · · qK}), the probability of each of
which is dependent only on the event immediately preceding
it.

a Hidden Markov Model (HMM) represents stochastic
sequences as Markov chains where the states are not directly
observed, but are associated with a probability density
function (pdf)
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Formulas and definitions

The generation of a random sequence in HMM is the result of
a random walk in the chain (i.e. the browsing of a random
sequence of states Q = {q1, · · · qK}) and of a draw (called an
emission) at each visit of a state.

In pattern recognition (and speech recognition) with HMMs,
we are interested to associate a sequence of states
Q = {q1, · · · qK} to a sequence of observations
X = {x1, · · · xK}).

The true sequence of states is therefore hidden by a first layer
of stochastic processes.
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HMM terminology

Emission probabilities : are the pdfs (usually Gaussians) that
characterize each state qi , i.e. p(x |qi ). To simplify the
notations, they will be denoted bi (x).

Transition probabilities : are the probability to go from a state
i to a state j , i.e. P(qj |qi ). They are stored in matrices where
each term aij denotes a probability P(qj |qi ).

Non-emitting initial and final states : For a finite length
random sequence, two additional states are used in order to
model the “start” or “end” events. These states are not
associated with some emission probabilities.

Initial state distribution P(I |qj) : Transitions starting from the
initial state.

Final-absorbent state : The final state usually has only one
non-null transition that loops onto itself with a probability of 1
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Ergodic HMM : an HMM allowing for transitions from any
emitting state to any other emitting state

Left-right HMM : an HMM where the transitions only go from
one state to itself or to a unique follower.
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HMM examples

HMM1:

N/a/

N/y/

N/i/

0.3

0.30.3
0.3 0.3

0.3

0.3

0.40.4

1.0

0.1

I

F

Transition matrix 
0.0 1.0 0.0 0.0 0.0
0.0 0.4 0.3 0.3 0.0
0.0 0.3 0.4 0.3 0.0
0.0 0.3 0.3 0.3 0.1
0.0 0.0 0.0 0.0 1.0





HMM examples

HMM2:

N/a/

0.5

0.5

N/i/

0.5

I

1.0 0.5

N/y/

0.5

0.5

F

Transition matrix 
0.0 1.0 0.0 0.0 0.0
0.0 0.5 0.5 0.0 0.0
0.0 0.0 0.5 0.5 0.0
0.0 0.0 0.0 0.5 0.5
0.0 0.0 0.0 0.0 1.0





HMM examples

HMM3:

N/a/

0.95

0.05

N/i/

0.95

I

1.0 0.05

N/y/

0.95

0.05

F

Transition matrix
0.0 1.0 0.0 0.0 0.0
0.0 0.95 0.05 0.0 0.0
0.0 0.0 0.95 0.05 0.0
0.0 0.0 0.0 0.95 0.05
0.0 0.0 0.0 0.0 1.0





HMM model: Θ

In the case of HMMs with Gaussian emission probabilities, the
parameter set Θ comprises :

the transition probabilities aij ;

the parameters of the Gaussian densities characterizing each
state, i.e. the means µi and the variances Σi .

The initial state distribution is sometimes modeled as an additional
parameter instead of being represented in the transition matrix.



Size of an HMM model: Ergodic and Gaussian
case

In the case of an ergodic HMM with N emitting states and
Gaussian emission probabilities, we have :

(N − 2)× (N − 2) transitions, plus (N − 2) initial state
probabilities and (N − 2) probabilities to go to the final state;

(N − 2) emitting states where each pdf is characterized by a
D dimensional mean and a D × D covariance matrix.

Hence, in this case, the total number of parameters is
(N − 2)× (N + D × (D + 1)).
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Likelihood of a sequence given a HMM

Likelihood of a sequence given a HMM:

p(X |Θ),

i.e. the likelihood of an observation sequence given a model.



Probability of a state sequence

Assume a state sequence Q = {q1, · · · , qT}
Probability of a state sequence :

P(Q|Θ) =
T−1∏
t=1

at,t+1 = a1,2 · a2,3 · · · aT−1,T
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Likelihood of an observation sequence given a
state sequence

Assume an observation sequence X = {x1, x2, · · · , xT} and a
state sequence Q = {q1, · · · , qT}
Likelihood of an observation sequence along a single path, Q,
for an HMM, Θ:

p(X |Q,Θ) =
T∏

i=1

p(xi |qi ,Θ) = b1(x1) · b2(x2) · · · bT (xT )
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Likelihoods

Joint likelihood of an observation sequence X and a path Q :
it consists in the probability that X and Q occur
simultaneously, p(X ,Q|Θ), and decomposes into a product of
the two quantities defined previously :

p(X ,Q|Θ) = p(X |Q,Θ)P(Q|Θ) (Bayes)

Likelihood of a sequence with respect to a HMM : the
likelihood of an observation sequence X = {x1, x2, · · · , xT}
with respect to a Hidden Markov Model with parameters Θ
expands as follows :

p(X |Θ) =
∑

every possible Q

p(X ,Q|Θ)
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Forward Recursion

There is a recursive way to compute p(X |Θ): Forward
Recursion (FR)

In FR, we define a forward variable:

pt(i) = p(x1, x2, · · · xt , q
t = qi |Θ)

i.e. pt(i) is the probability of having observed the partial
sequence {x1, x2, · · · , xt} and being in the state i at time t,
given parameters Θ.
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Computation of the forward variable

Assume N states with N − 2 emitting states.

Initialization:
p1(j) = a1jbj(x1)

with 2 ≤ j ≤ N − 1

Recursion:

pt(j) =

[
N−1∑
i=2

pt−1(i) · aij

]
bj(xt),

with 2 ≤ t ≤ T and 2 ≤ j ≤ N − 1

Termination:

p(X |Θ) =

[
N−1∑
i=2

pT (i) · aiN

]
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Bayesian classification

Assume that there are many HMMs, Θi , i = 1, · · · ,M
Given the likelihood p(X |Θi ) computed using the forward
recursion algorithm, we can compute the probability of Θi ,
using Bayes’ rule:

P(Θi |X ) =
p(X |Θi )P(Θi )

P(X |Θ)

∝ p(X |Θi )P(Θi )

Other solution: Maximum likelihood.



Bayesian classification

Assume that there are many HMMs, Θi , i = 1, · · · ,M
Given the likelihood p(X |Θi ) computed using the forward
recursion algorithm, we can compute the probability of Θi ,
using Bayes’ rule:

P(Θi |X ) =
p(X |Θi )P(Θi )

P(X |Θ)

∝ p(X |Θi )P(Θi )

Other solution: Maximum likelihood.



Bayesian classification

Assume that there are many HMMs, Θi , i = 1, · · · ,M
Given the likelihood p(X |Θi ) computed using the forward
recursion algorithm, we can compute the probability of Θi ,
using Bayes’ rule:

P(Θi |X ) =
p(X |Θi )P(Θi )

P(X |Θ)

∝ p(X |Θi )P(Θi )

Other solution: Maximum likelihood.



Outline

1 Introduction

2 Pattern recognition with HMMs
Likelihood of a sequence given a HMM
Bayesian classification

3 Optimal State Sequence
Viterbi Algorithm

4 Acknowledgments



Definitions

Highest likelihood δt(i) along a single path among all the
paths ending in state i at time t :

δt(i) = max
q1,q2,··· ,qt−1

p(q1, q2, · · · , qt−1, q
t = qi , x1, x2, · · · xt |Θ)

Buffer ψt(i) which allows to keep track of the “best path”
ending in state i at time t :

ψt(i) = argmax
q1,q2,··· ,qt−1

p(q1, q2, · · · , qt−1, q
t = qi , x1, x2, · · · xt |Θ)
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Viterbi Algorithm

1 Initialization :

δ1(i) = a1i · bi (x1), 2 ≤ i ≤ N − 1

ψ1(i) = 0

2 Recursion :

δt+1(j) = max
2≤i≤N−1

[δt(i) · aij ] · bj(xt+1),
1 ≤ t ≤ T − 1
2 ≤ j ≤ N − 1

ψt+1(j) = arg max
2≤i≤N−1

[δt(i) · aij ] ,
1 ≤ t ≤ T − 1
2 ≤ j ≤ N − 1

3 Termination :

p∗(X |Θ) = max
2≤i≤N−1

[δT (i) · aiN ]

q∗T = arg max
2≤i≤N−1

[δT (i) · aiN ]

4 Backtracking :

Q∗ = {q∗1 , · · · , q∗T} so that q∗t = ψt+1(q∗t+1), t = T−1,T−2, · · · , 1
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