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FORMULAS AND DEFINITIONS

@ a Markov chain or process is a sequence of events, usually

called states, Q = {q1, - gk }), the probability of each of
which is dependent only on the event immediately preceding

it.
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called states, @ = {q1,- -~ qk}), the probability of each of
which is dependent only on the event immediately preceding

Hia@Markov Model (HMM) represents stochastic

cuences as Markov chains where the states are not directly
observed, but are associated with a probability density
function (pdf)
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@ The generation of a random sequence in HMM is the result of
a random walk in the chain (i.e. the browsing of a random
sequence of states Q = {q1,--- gk }) and of a draw (called an
emission) at each visit of a state.
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@ The generation of a random sequence in HMM is the result of
a random walk in the chain (i.e. the browsing of a random

sequence of states Q = {q1,--- gk }) and of a draw (called an
emission) at each visit of a state.

@ In pattern recognition (and speech recognition) with HMMs,
we are interested to associate a sequence of states

@ ={q1, - - gk} to a sequence of observations
X = {Xl, c -XK}).
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@ The generation of a random sequence |n MM s the result of
a random walk in the chain (i.e. the brow g of a random

sequence of states Q = {q1, -~ gk }) and of a draw (called an
esm_igigg) at each visit of a state.

@ In pattern recognition (and speech recognition) with HMMs,
we are interested to associate a sequence of states
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@ The true e sequence of states is therefore h/dden by a first layer
of stochastic processes.
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o Emission probabilities: are the pdfs (usually Gaussians) that
characterize each state g;, i.e. p(x|g;). To simplify the
notations, they will be denoted b;(x).

e Transition probabilities: are the probability to go from a state
i to a state j, i.e. P(qj|gi). They are stored in matrices where
each term aj; denotes a probability P(qj|qi).

o Non-emitting initial and final states: For a finite length
random sequence, two additional states are used in order to
model the “start” or “end” events. These states are not
associated with some emission probabilities.

e Initial state distribution P(l|q;): Transitions starting from the
initial state.
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o Emission probabilities: are the pdfs (usually Gaussians) that
characterize each state g;, i. eg x|\)> To simplify the
notations, they will be denote bi(x).

e Transition probabilities: are the probability to go from a state
i to a stateJ ie. P( q_]’ql They are stored in matrices where
each term enotes a probab|I|ty|P qj|q, -+ f

e Non- em/ttmg@nd final/states: For a flnlte length "~
random seque two additional states are used in o o)

model the “start” or “end” events. These states are not

associated with some emission probabilities. re ’]
o Initial state distribution P(I|q; Tran5|t|ons starting from the

nitial state.

inii p(d; 11

o Final-absorbent state: The final state usually has only one
non-null transition that loops onto itself with a probability of 1
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HMM TERMINOLOGY

o Ergodic HMM: an HMM allowing for transitions from any
emitting state to any other emitting state

o Left-right HMM: an HMM where the transitions only go from
one state to itself or to a unique follower.
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HMM EXAMPLES

Transition matrix

0.0 00 0.0 0.0

00 04 03 03| 00
00 (03 04 03| 00
00 403 03 0.3 )Di>
00 00 00 00 Q0>
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HMM2:

Transition matrix
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HMM MODEL: H
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In the case of HMMs with Gaussian emission probdhii
parameter set@com prises :

ies, the

o the transition probabilities|aj;;

o the parameters of the Gaussian densities characterizing each
state, i.e. the mean and the varianceg X ;.

The initial state distribution is sometimes modefed as an additional
parameter instead of being represented in the transition matrix.



S1ZzE OF AN HMM MODEL: ERGODIC AND (GAUSSIAN
CASE -

In the case of an ergodic HMM with ﬁmttlng states and
Gaussian emission probabilities, we ha

e (N —2) x (N — 2) transitions, plus (N — 2) initial state
probabilities and (N — 2) probabilities to go to the final state;

o (N — 2) emitting states where each pdf is characterized by a
D)iimensional mean and a D x D covariance matrix.

Hence, in this case—the | number of parameters is
((N-2)x (N+Dx(D+1)). —
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LIKELIHOOD OF A SEQUENCE GIVEN A HMM

Likelihood of a sequence given a HMM:
p(X[©),

i.e. the likelihood of an observation sequence given a model.



PROBABILITY OF A STATE SEQUENCE

@ Assume a state sequence Q@ = {q1, - , 97}



PROBABILITY OF A STATE SEQUENCE

1% % X
state sequence@ +{q1, - ,q91}

o Probability of a state - :

> Q\@ H At i1 @ a3---ar—1,T




LIKELIHOOD OF AN OBSERVATION SEQUENCE GIVEN A
STATE SEQUENCE

@ Assume an observation sequence X = {xq,x2, -+ ,x7} and a
state sequence Q = {q1, - ,qT7}



LIKELIHOOD OF AN OBSERVATION SEQUENCE GIVEN A

STATE SEQUENCE
P(Q /9)

@ Assume an observation sequence X = {xy,x2, -+ ,x7} and a
state sequence Q = {q1, - ,qT7}

o Likelihood of an observation sequence along a single path
for an HMM, ©:

.
[ r(xilai,©) = bz(Xz) -+ br(xT)
i=1




LIKELIHOODS

e Joint likelihood of an observation sequence X and a path @ :
it consists in the probability that X and Q@ occur
simultaneously, p(X, Q|©), and decomposes into a product of
the two quantities defined previously :

p(X;Q10) = p(X|Q,0)P(Q[O) (Bayes)



LIKELIHOODS

o Joint likelihood of an observation sequence X anath Q:
it consists in the probability that X and Q@ occur
simultaneously, p(X, Q|©), and decomposes into a product of
the two quantltles defined pyously

[ p(X. §|91| p(X|Q.©)P(Q0)  (Bayes)
° Like_liho;)d of a sequence with respect to a HMM : the
likelihood of an observation sequence X = {xy,x, -+ ,x7}

with respect to a Hidden Markov Model with parameters ©
expands as follows:




FORWARD RECURSION

@ There is a recursive way to compute p(X|©): Forward
Recursion (FR)



FORWARD RECURSION

T

o There is a fecursive way tp compute p(X|©): Forward
Recursion (FR

o In FR, we define a forward variable:
p(X17X27'.'Xf7 :‘1!’@)

i.e. pt(f) is the probability of having observed the partial
sequence {x1,x2,- -+, Xt} and being in the state / at time t,
given parameters O.



COMPUTATION OF THE FORWARD VARIABLE

Assume N states with N — 2 emitting states.
o Initialization:
p1(Jj) = a1jbj(x1)
with2 < ;< N-1
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Assume N states with N — 2 emitting states.
o Initialization:
p1(Jj) = a1jbj(x1)
with2 < ;< N-1
o Recursion:

N-1

> peali)- a,-j] bj(xt),

i=2

p:(j) =

with2<t<Tand2<j<N-1



COMPUTATION OF THE FORWARD VARIABLE

Assume N states with N — 2 emitting states.

o_Initialization: ;
p1(j) = 311\ (Xl)
with2<;<N-1

@ Recursion:

N—-1
p:(j) = Z pif_l.(i) : al'j] bj(Xt)7
i=2 —

with2<t<Tand2<;j<N-1
e Termination:

—1 .
pr(i) -(ain
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e Given the Iikelihoo@( |©;) computed using the forward
recursion algorithm, We can compute the probability of ©;,
using Bayes' rule: —



BAYESIAN CLASSIFICATION

@ Assume that there are many HMMs, ©;, i=1,--- M

@ Given the likelihood p(X|©;) computed using the forward
recursion algorithm, we can compute the probability of ©;,
using Bayes' rule:

_ pxle)P(e))
)

P(X|©)

= pX10)P(©))

o Other solution: Maximum likelihood.
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DEFINITIONS

o Highest likelihood &,(i) along a single path among all the
paths ending in state / at time t:

51‘(/): max p(q17q27'” aqt—laqt:qi7X17X27"'Xt|e)
41,92, ,qt—1



DEFINITIONS

o Highest likelihood &,(i) along a single path among all the
paths ending in state / at time t:

51‘(/): max P(CIl7CI2a"’ aqt—laqt:qi7X17X27"'Xt|e)
1,92, " ,qt—1

o Buffer 1+(i) which allows to keep track of the "best path”
ending in state / at time t:

wt(l) = argmax P(QL q,: -, qe-1, qt = qi, X1, X2, " Xt‘e)
a1,92,,qt—1



VITERBI ALGORITHM = =

el

Q Initialization : = _
51(i) = aij- b,'(Xl), 2<i < N—-1 |
(i) = 0 ' -

@ Recursion :

| Y~ max | 1<t<T-1
_._...:515-"-1(,’) — 2<r;[1<al\)l( 1 [Ot( ) ?U_]_' ? (Xt+1) ) SJ S N1
; 1<t<T-1
Jenl) = gmma ) a2 2y
© Termination :
p(X|O) = , max [67(i) - ain] |
: = gne @) end |

(3 Backtrackmg
- {q17 e 7qT} so that CI:: = ¢t+l(q:+1)7 t= T_17 T_27
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