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FORMULAS AND DEFINITIONS

o A d-dimensional random variable follows a Gaussian, or
Normal, probability law: x — N (p, X)
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where 1 is the mean vector and X is the variance-covariance
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matrix.

o If x = N(0,1) and if y = VI x + p, then y — N (i, X).
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o Al d -dimensional random variable follows a Gaussian, or
Normal probablllty law: ( x] N(M, Y) | —_—
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where (1 is the mean vector and | Z is the variance-covariance
matrix. I(L. o —
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o If x —>N(O I) and |fry/— VI 1, then 'y —»./\/'(u, )
° \/> Y defines the standard deviation of the random varlable X.
Note this square root is meant in the matrix sense.
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FORMULAS AND DEFINITIONS

@ Mean estimator: )

@ Unbiased covariance estimator :
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FORMULAS AND DEFINITIONS

o Likelihood:

p(Xl|0) = ,D(X,'|M, Z) = g(u,):)(xi)
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for X = {x1,x2,--- ,xn} heing a set of independent
identically distributed ,g.i.d.) points
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FORMULAS AND DEFINITIONS
o Log likelihood:

N

p(X10) = [[ p(xil0) & logp(X|0) = Zlogpx,|9
i=1

o In the Gaussian case:

p(x|0) = ;e%(#uff‘l(xw)
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FORMULAS AND DEFINITIONS
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" Log \likelihood : .
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@ In the Gaussian case:

( p(x|0) ~= = el Z:JQF#)
SV R
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o Property:

@l@bp(xl@y) & (Togb(x|61) > log p(x|6)
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o Bayes’ decision rule:
X € qi if P(qilX,©) > P(qj|X,©), Vj # k

with P(qk| X, ©) being a posteriori probability (while P(qx|©)
is the a priori probability) for classes gx. Note © represents
the set of all 4.
@ A posteriori probability :
p(X|qk, ©)P(qk|O)
p(X|©)

P(qk|X,0©) =

(Bayes' law)
o For speech:

Vk, P(qk|X,0) o p(X|qk, ©)P(qx|©)



FORMULAS AND DEFINITIONS

o Bayes’ decision rule

X € qk) if P(qk|X'®\ > P(qj|X,©), ’vj 75 k

AN
with P(qk|X ©) being a posteriori probability (whlle P(qk|@)
is the a pr/Or/ probability) for classes qx. Note © represents
the set qrau 6.0

o A posteriori probablllty = /__gz_' .
/(q X @)\_ p(X\qk, ©)P(qkl®)) ,
[P )| T P(g, 16)
(Bayes' law) B £7) e

e For speech :

Vk/(qk\X e bch!qk, Clk|>

@ or in log doma|n

log P(qx| X, ©) ~ log p(X|qk, ©) + log P(qx|©)
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PRELIMINARIES

All unsupervised training algorithm assume:

@ a set of models qD(not necessarily Gaussian), defined by some
parameters’ @ (means variances, priors,. )

o a measure of membership, telling to which extent a data point
“belongs” to a model;

e the above implicitly defines global criterion of “goodness of
fit" of the models to the data, e.g.: )

o in the case of a distance, the models that are globally closer
from the data characterize it better:

e in the case of a probability measure, the models bringing a
better likelihood for the data explain it better.

@ a reC|pe to update the model parameters in function of the
membershlp information.
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e Start with K initial prototypes i, k =1,--- , K.
e Do:
@ For each data-point x,, n=1,---, N, compute:

di(3n) = (xo — 11k) T (X — k)

© Assign each data-point x, to its closest prototype pi, i.e.
assign x, to the class gy if:

dk(Xn) < dI(Xn)ﬂ V/# k

© Replace each prototype with the mean of the data-points
assigned to the corresponding class;
Q@ Gotol.



K-MEANS ALGORITHM

e Start with K initial prototypes uﬁk =1,.-- ,K_ |

e Do: _ - )
o @ For each data- p0|nt X,:?I n=1---,N, compute:
\_/
7 .
/ — dk(xn) = (X0 — ﬂk)T(Xn — [tk)

/ © Assign each data- pomt x,,\lto its closest prototype@ i.e.
‘ assign x, to the class qk

di(xn) < di(xm), ,/V/ # >
\

\ © Replace each prototype with the mean of the data-points
\ assigned to the corresponding class;
— @ Go to 1.

@ Until: no further change occurs.
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Global criterion:
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@'%ERBI-EM)ALGORITHM FOR GAUSSIANS
o Assume K initial Gaussian models N (7’ Z;ﬁ k=1- Kj

and |n|t|a| prior probabilities P(qk) = 1/K

e Do: f
@ Classify each data-point to its most probable cluste" ( 'd) ,,-"
S

\_ -

using. Bales rule. -
© Update the parameters:
o update the means:

l 7 ("e_';v\)'— mean of the points belonging to ¢{°®

lL/ _,Li___'_/ p ging to g,

e update the variances:

( L,/)): "ew) — variance of the points belonging to q(°/d)
A
o update the priors: ~
e
P\k ,,EW)|@ new) )= number of training points be belonglng to q,(f’/d)/
A » - total number of training pomtsx
© Goto 1.

o Until: no further change occurs.
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Global criterion: R
— T T
- K
/C(e) => ) log p(xs|©k)
\ k=1 Xxn€qx
__h_:_t_::_—lk—=— —
e
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e Assume K initial models N (uk, k), with P(qx) = 1/K.
o Do:
@ Estimation step:

old old old
P(q\7 100 . p(x, |l £

P (qx(<0/d)|xnve(01d)) (old) (old old
LCCE N CAT AR S

© Maximization step:
o update the means:

(old)
(new) _ ZnN 1 X (qk ‘X © OId))
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e Assume K initial models N (uk, k), with P(qx) = 1/K.
o Do:
@ Estimation step:
P(g ‘°"”\e °’d>) (xnm,:’“ =)

P(q{® |x,, @)Y =

© Maximization step:
o update the means:

(new) _ Zn 1X"'D(qk01d |Xn, © OId))
k ZN P(qkold o, ©(0))

o update the variances:

soe) _ Ly P07 1xn, 0D (0 — ™) 0 — ™))"
‘ S P(@™ xn, ©))



EM ALGORITHM FOR GAUSSIAN CLUSTERING

e Assume K initial modelo N(uk,gbA with P( k) =1/K.
e Do: ) —

© Estimation step:

T RS

L~

: (old old

-——--__—X'\.-/P'( (old) @(ow)__ﬁ( q" )le °’d)) p(xal ™, £y
ZANES LG - (old) ,;,) old) 5 (oid)
TR 4 A > P(q 7 100) - x|l £

@ Maximization step: =~ —
e update the@ean

(new) _ ZW’ xiP(a" | xa, ©7%)
k ZN P(qkold PE))

° update the variances:

(old) new new
./Zinew) ) Zn: P(qk |x,,7 @(old))(xn _ lig( ))(Xn _ Mi ))T
( /

id
. SN PG x,, ©C0))
o update the priors:

=

- P o
I — :\N “\',..--- m—
| new) | S(new)y | 1 N7 (old)| gold) ™
| S ) )

e
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e Assume K initial models N (uk, k), with P(qx) = 1/K.
o Do:
@ Estimation step:
P(ai”10) - p(xl ™. X))

P(q" xn, ©(74)) =
k n Z P( (old) ‘@ o/d)) (Xn|,UjOld),zJ(-0ld))

© Maximization step:
o update the means:

(new) _ ZnN 1X"'D(qk01d |Xn, © OId))
k ZN P(qkold o, ©(0))

o update the variances:
old new new
soem) _ S P(a™ b, O 0 — ™) (0 — 1)
i =

SN P(q 30, o))

o update the priors:
P(qinew)le(new)) N Z P (o/d |Xn, (old) )

O ChA +n 1
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o Assume K initial models N (g, X«), with P(qx) = 1/K.

e Do:
o Estimation step:
old d (old Z old
P(ql(< )|e(ol )) ( |/J‘ ) ( ))

(old) (old)y _
P(q Xn, © =
( k |Xn ) Zj P(qjgo/d)‘@(o/d)) . p(Xn|MjOld),Zj(-Old))

2\

|'/[/ /
o/
© Maximization step:
o update the means:
) (new) ZnN 1X"'D(qk01d |xa, ©0°)

|I /U _
| i ! Py - o
|Iﬂ I‘: r' TR || / ZN 'D(qk e ‘X ©ferd))
! ‘f"/g L ;% | update the variances:
|| o
1 P(qk 9 |Xm ©

\J
I/

| T ."I
P N Yot P(a xn, )

)0 — i 0 = ™)

o update the priors:

new new old) (ol
P(q/E )le( )) N Z P ( |Xn, Id) )

O ChA +n 1
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Global criterion :

K /7N
£(©) = log y P(ak/X. ©)4(X|©)

k=1 “__ I

/
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