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INTRODUCTION

Speech d|stort|on
@ Enhancement foundations:

o Spectral Subtraction,
o Cepstral Mean Subtraction

o Wiener Filter @

@Enhanced speech judgements: by humans, by mac
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@ A discrete-time noisy sequence:
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@ with power spectra:
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ADDITIVE NOISE

o A discrete-time noisy s

yIn] 3 x[n] + b[n]

@ with power spectra: l I

2
Sy (@) = Su(w) + Splw) MOIBYY
e Working with STFT: , f

A

@: wlpl— (o] + bl 14

@ in the frequency domain:

o Our target:
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@ A discrete-time convolutional distorted sequence:
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where g[n] is the impulse response of a linear time-invariant
distortion filter.
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CONVOLUTIONAL DISTORTION

@ A discrete-time convolutional distorted sequence:
N
{ nf| == x{n| % n
k{[]/ [@] gln]

where g[n] is the impulse response of a linear time-invariant
distortion filter.

e Working with a frame-by-frame analysis:

/
youlrl = wlpt = nl(x{r1gla)
@ In the frequency domain, we can show that:

Y(pL,w) = X(pL,w)G(w)
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*Assumlng that noise and target (object) S|gna| are uncorrelated

7" "o Estimate of object’s short-time squared spectral magnitude

A
= @ ) otherW|se

o STFT estimate:




SPECTRAL SUBTRACTION AS A FILTERING OPERATION

@ We can show:
(X(pL,w)? = |Y(pL,w)]* = Sp(w)

~ Y (pL,w)P [1 * R(plL,w)]_1

where )
RipLw) — X(PL)
Sp(w)



SPECTRAL SUBTRACTION AS A FILTERING OPERATION

@ We can show:

IX(pL,w)]? = |Y(pL,w)* = Sp(w)
~ 2 1 -
~ LWl [1 * R(pL o)
R(pL,w) = XPLWIE = (50
Sp(w) \-

@ Suppression filter frequency response

Hy(pL ) = [1+R(plL’w)]_1/ e



THE ROLE OF THE ANALYSIS WINDOW

Let x[n] = Acos (wgn) be in a stationary white noise b[n] of
variance o2 and w[n] be a short-time window. Then:
@ Average short-time signal power at wy:

0o 2

§X(pL,w0) = E[\X(pL,w0)|2] ~




THE ROLE OF THE ANALYSIS WINDOW

Let x[n] = Acos (wgn) be in a stationary white noise b[n] of
variance o2 and w[n] be a short-time window. Then:
@ Average short-time signal power at wy:

A A2 & ?
SulpL,wo) = EIX(pLwo) = - | 3 win)
n=—o00
@ Average power of the windowed noise
oo

S(pL,w) = E[|B(pL,w)]’] = 0* Y w?[n]

n=—0oo



THE ROLE OF THE ANALYSIS WINDOW

Let x[n] = Acos(.uo 7) be in a stationary white noise b[n] of
variance (%) and w(n] be a short-time window. Then:
o Average short-time signal power at wyp:

: g 2

N A &

S.fpL.n) = EX(pLan)) < 5 | 3wl
@ Average power of the windowed noise

SulpLow) = E[IB(pL)?] =62 )3 w?[n]

@ Ratio at wo: - __,; .

S ENY(eLw)P )

N Se(pL,wo) |\ _ Lazﬁwl

oo wAn]
S0 wlnl|?

where

w =



CEPSTRAL MEAN SUBTRACTION

Let y[n] = x[n] x g[n]. Then:
o Logarithm of the STFT of y[n]:
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CEPSTRAL MEAN SUBTRACTION

Let y[n] = x[n] x g[n]. Then:
o Logarithm of the STFT of y[n]:

Y(pL,w) ~ log [X(pL,w)] + log [G(w)]

o Cepstrum:

Q

Fp H(log [X(pL,w)]) + F, * (log [G(w)])
= X[n,w] + &[0, w]d[n]

yin, ]



CEPSTRAL MEAN SUBTRACTION

Let y[n] =/x[n] *g[n] Then
° Logarlthm of the STFT of y[n]

Y (ol 0) ~ log [X(pLow)] + 0B [6()]

= / = / N
° Cepstrum ,_{_' v
(o] |~ CFy Hiog X(pL.)) + F; (g [G())
T~ = Lx[n w] %g[O w](S[n]
o Cepstral filter: ' ]
2l = I[nl91n, ] T
where / [n] _:_ti[rz —1] B P £ _ " N
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WIENER FILTERING

@ Stochastic optimization:
if y[n] = x[n] + b[n], find h[n] such that X[n] = y[n] * h[n]
minimizes
e = E[IR[n] - x[r]?]

e Frequency domain solution (Wiener filter):

oo Sx(w)
T S(w) + Sp(w)
o Time-varying Wiener filter:
Se(pL,w)

Hy(pL,w) = < 2
(bt ) S«(pL,w) + Sp(w)



WIENER FILTERING

@ Stochastic optimization: —\
if y[n] = x[n] + b[n], find h[n] such thaj; x[n] y[n] * h[n]\
minimizes -
e [|X[”] ><[f7]\2]t
o Frequency doimain Solttio n (Wiener filter):
LS0) Sx(w)
L Hyle 2> - :
Se(@) + S5l S)

o Time-varying Wiener filter: )

> ~—
-
1Y

& 171
Hy(pL,w) = — Sx(pLjw
SX(pI—v W) + Sb(W)

o Or
Hy(pL,w) = 1+# 71""'
wlpL, W) = R(pL,LL)) o
where P

A

S«(pL,w) <~ ¥_7 _
R(pL,w) = é(w)) F’;i
. :



COMPARING THE TWO SUPPRESSION FILTERS

Attenuation (dB)

_(3%0 — -l(}- 20 30 40
T — Slgnalgtommsc (dB) o

. Wiener filter

Solid line: Spe_c_t[gléubtractlon. Dashed—lin



A BASIC APPROACH

o

— ;‘,\
@ We assume that the'Wlener fllter/bf p— 1 frame is known,

then '—___"_"‘\
{ ~
& X(pL, ) Y(pL,w)Hw((p —1)L,w) T
. A i
o Updating the Wlener filter:
- ——«f( A

'____ ks X pL - -
H ( )_ | ( —

—— __’.| pL |2 +< /)

o Smeoth power spectrum:

POW o A ﬁf

@(PLE = 75l(p— 1)L + (1~ 7)Su(pL. )

e . ey
where S, (pL,w) = [X(pL,w)[* —> | | O /___>;.
o Initialization: spectral subtraction

—_—
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@ Wiener filter estimator adapts to the “degree of stationarity”
of the measured signal.
@ A measure of the degree of stationarity
1 [ , 1/2
AY(pt) = halpke| 2 [T ¥(pLw) - ¥((p - L)
0



ADAPTIVE SMOOTHING

@ Wiener filter estimator adapts to the “degree of stationarity”
of the measured signal.
@ A measure of the degree of stationarity

T 1/2
AY(pL) = hA[p]*[jr | 1Yt = (e - L)

@ Time varying smoothing constant:
7(p) = QIL —2(AY(pL) — KY)]

where
x, 0<x<1
R(x)=¢ 0, x<0
1, x>1



( 'KBAPTIVE _'s JIOOTHING

~—

° W|ener filter estimator adapts to the “degree of stationarity”
of the measuired signal. ——

@ ‘A measure of the degree @’i"’statlonanty >

J 1/2
AY(p_L { / 1Y ( ,5 Y((p— 1)L,w)\2dw]
— e = .
e Time varylng smoothlng constant ~ o 41——‘%:+;

rp) =[QlL—2aY(pL) —AV)]

where ] "V___l / \
- : &) 0<x<1 _
/

_L_L/i - R(x)=¢ 0, x<0

/ . -
1, x>1 )Py } .

@ Smooth object spectrum: '
- |

8u(pL,w) = 7(p)5:((p — 1)L,w) + [1 — 7(p)]Sx(pL, )




EXAMPLE OF ENHANCEMENT
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APPLICATION TO SPEECH

Satisfying enhanced speech quality with Wiener filter is obtained if:

o Window: triangular

o Frame length: 4ms

e Frame interval (rate):(1ms
@ OLA synthesis



EXAMPLE OF ENHANCEMENT IN SPEECH

Amplitude
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MINIMUM MEAN-SQUARE ERROR

y[n] = x[n] + b[n]
compute the expected value of:
E{|X(pL,w)| y[n]}

(Ephraim and Malah, 1984)



SUPPRESSION FILTER

@ Suppression Filter of Ephraim and Malah

Hs(pL,w)

s r(pLw)
\/;\/< 1+”/pol(PL7w) > < 1]‘[’)Yprp(Pva) )
x G [“’P’(PL"");FVVPZ((ILLZ::))%r(PL,w)}

where
G(x) = e 2[(1 + x)lo(x/2) + xl(x/2)]
@ a posteriori SNR:

P[lY (pL,w)|> =S
’Ypo(pl-;w) _ [| (P i"i)’ : b(w)]
Sp(w)

@ a priori SNR:

Ypr(PL,w) = (1 — a)P[vpo(pL,w)]+
+ aLHﬂfl)L’&))Y((pfl)L’w)F
Sp(w)




BINAURAL REPRESENTATION

Compute the enhanced signal (object) through Hs(pL,w)

Compute its complement: 1 — Hq(pL,w)

(]

Play a stereo signal: i.e., left channel for the okject and right
channel it complement

Illusion: object and its complement come from different
directions, and thus there is further enhancement!!!
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MODEL-BASED PROCESSING

o Model-based Wiener Filter:

Hw) = ¥—————5—— §X(w2
Se(w) + Sp(w)

@ Power spectrum estimate of speech:

Z A2

SX(W) = ’1 _ Zi:l é\ke—jwk 2



STOCHASTIC ESTIMATION METHODS

@ Maximum Likelihood, ML

max py|a(y|a)
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STOCHASTIC ESTIMATION METHODS

@ Maximum Likelihood, ML

max py|a(y/|a)
e Maximum a posteriori, (MAP)

max pajy(aly)

knowing the a priori probabilitv pa(a)
e Minimum-Mean-Squared Error, (ViMSE)

mean of pay(aly)



EXAMPLE OF (L)MAP ESTIMATION FOR
ENHANCEMENT

@ Solution to the MAP problem requires solving a set of
nonlinear equations.
@ Instead we use a linearized approach of MAP:

Initial estimation of 4°

Estimate speech spectrum E[x|4°, y]

Having a speech estimate, estimate a new parameter vector 4!
Estimate speech spectrum:

e 6 ¢ o

A A2

TS, e

Estimate suppression filter:

(W)
w) + Sp(w)

make iterations



LINEARIZED MAP

Initial Estimate

éO
x[n] + b[n] Wiener > K[n]
Filter

A \
Autocorrelation
Method of
Linear Prediction

éi
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AUDITORY MASKING

Auditory masking: one sound component is concealed by the
presence of another sound componernit.

@ Frequency masking
@ Temporal masking
Critical band
Masking threshold
Maskee

Masker



MASKING THRESHOLD CURVE

Amplitude (dB)

Fixed Slope

/) N

\Level-Dependent Slope
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FREQUENCY-DOMAIN MASKING PRINCIPLES

e Physiologically-based /Psychoacoustically-based filters
¢ Critical Bands:’' Bandwidth of Psychoacoustically-based filters
e Quantized critical bands (Bark Scale):

z = 13 arctan (0.76f) + 3.5 arctan (f /7500)
e Quantized critical bands (Mel Scale):

m = 2595 log, 0O(1 + £/700)



MASKING THRESHOLD CALCULATION

o Compute energy Ej in each kth bark filter in the estimated
speech spectrum (after spectral subtraction)

@ Convolve each Ej with a “spreading function” hy:
Tk = Ek * hk

@ Subtract a threshold offset depending if the masker is
noise-like or tone-like.

@ Map T to linear frequency scale to obtain T(pL,w)



AUDITORY MASKING THRESHOLD CURVES
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APPROACH 1

@ Suppression filter:

Hs(pL,w) = [1—aQ(pL,w)"]2, if Q(pL,w)" < 7

a+b
= [bQ(pL,w)"]?2, otherwise
where
Sw) |7
Q(pL,w) = | 2B
(pt,) \Y(pL,w)P]

o Requirements: (a) Estimation of Sp(w), and (b) a masking
threshold curve on each frame T(pL,w).
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APPROACH 2

e From y[n] = x[n] + b[n] go to d[n] = x[n] + ab[n]
o If hs[n] is the impulse response of the suppression filter, then
the noise error is:

ab[n] — hs[n] x b[n]
with short-time power spectrum:
Se(pL,w) = |Hs(pL,w) — a|?>Sp(w)
o Constraint:

|Hs(pL,w) — a]*Sp(w) < T(pL,w)

or:
a— TE'DL’W) < Hs(pL,w) < a+ TE'DL’W)
Sp(w) Sp(w)
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