CS578- Speech Signal Processing

LECTURE 8: SPEECH ENHANCEMENT

Yannis Stylianou

University of Crete, Computer Science Dept., Multimedia Informatics Lab yannis@csd.uoc.gr

Univ. of Crete

OUTLINE

- 1 Introduction
- 2 Preliminaries
 - Problem Formulation
 - Spectral Subtraction
 - Cepstral Mean Subtraction
- 3 Wiener Filtering
 - Estimating the Object Spectrum
 - Adaptive smoothing
 - Application to Speech
 - Optimal Spectral Magnitude Estimation
 - Binaural Representation
- 4 Model-Based Processing
- **6** Auditory Masking
 - Frequency-Domain Masking Principles
 - Calculation of the Masking Threshold
 - Exploiting Frequency Masking in Noise Reduction
- 6 ACKNOWLEDGMENTS

- Types of noise: Additive and Convolutional
- Speech distortion
- Enhancement foundations:
 - Spectral Subtraction,
 - Cepstral Mean Subtraction
 - Wiener Filter
- Enhanced speech judgements: by humans, by machines

- Types of noise: Additive and Convolutional
- Speech distortion
- Enhancement foundations:
 - Spectral Subtraction
 - Cepstral Mean Subtraction
 - Wiener Filter
- Enhanced speech judgements: by humans, by machines

- Types of noise: Additive and Convolutional
- Speech distortion
- Enhancement foundations:
 - Spectral Subtraction,
 - Cepstral Mean Subtraction
 - Wiener Filter
- Enhanced speech judgements: by humans, by machines

- Types of noise: Additive and Convolutional
- Speech distortion
- Enhancement foundations:
 - Spectral Subtraction,
 - Cepstral Mean Subtraction
 - Wiener Filter
- Enhanced speech judgements: by humans, by machines

- Types of noise: Additive and Convolutional
- Speech distortion
- Enhancement foundations:
 - Spectral Subtraction,
 - Cepstral Mean Subtraction
 - Wiener Filter
- Enhanced speech judgements: by humans, by machines

- Types of noise: Additive and Convolutional
- Speech distortion
- Enhancement foundations:
 - Spectral Subtraction,
 - Cepstral Mean Subtraction
 - Wiener Filter
- Enhanced speech judgements: by humans, by machines

- Types of noise: Additive and Convolutional
- Speech distortion
- Enhancement foundations:
 - Spectral Subtraction,
 - Cepstral Mean Subtraction
 - Wiener Filter

Enhanced speech judgements: by humans, by machines.

loy (a.b) = hya+hyb

OUTLINE

- 1 Introduction
- PRELIMINARIES
 - Problem Formulation
 - Spectral Subtraction
 - Cepstral Mean Subtraction
- 3 Wiener Filtering
 - Estimating the Object Spectrum
 - Adaptive smoothing
 - Application to Speech
 - Optimal Spectral Magnitude Estimation
 - Binaural Representation
- 4 Model-Based Processing
- 6 Auditory Masking
 - Frequency-Domain Masking Principles
 - Calculation of the Masking Threshold
 - Exploiting Frequency Masking in Noise Reduction
- 6 ACKNOWLEDGMENTS

A discrete-time noisy sequence:

$$y[n] = x[n] + b[n]$$

with power spectra:

$$S_{y}(\omega) = S_{x}(\omega) + S_{b}(\omega)$$

Working with STFT:

$$y_{pL}[n] = w[pL - n](x[n] + b[n])$$

• in the frequency domain:

$$Y(pL,\omega) = X(pL,\omega) + B(pL,\omega)$$

$$\hat{X}(pL,\omega) = |X(pL,\omega)|e^{jAY(pL,\omega)}$$

A discrete-time noisy sequence:

$$y[n] = x[n] + b[n]$$

• with power spectra:

$$S_y(\omega) = S_x(\omega) + S_b(\omega)$$

Working with STFT:

$$y_{pL}[n] = w[pL - n](x[n] + b[n])$$

• in the frequency domain:

$$Y(pL,\omega) = X(pL,\omega) + B(pL,\omega)$$

$$\hat{X}(pL,\omega) = |X(pL,\omega)|e^{j\Delta Y(pL,\omega)}$$

A discrete-time noisy sequence:

$$y[n] = x[n] + b[n]$$

with power spectra:

$$S_y(\omega) = S_x(\omega) + S_b(\omega)$$

Working with STFT:

$$y_{pL}[n] = w[pL - n](x[n] + b[n])$$

• in the frequency domain:

$$Y(pL,\omega) = X(pL,\omega) + B(pL,\omega)$$

$$\hat{X}(pL,\omega) = |X(pL,\omega)|e^{j\angle Y(pL,\omega)}$$

A discrete-time noisy sequence:

$$y[n] = x[n] + b[n]$$

• with power spectra:

$$S_y(\omega) = S_x(\omega) + S_b(\omega)$$

Working with STFT:

$$y_{pL}[n] = w[pL - n](x[n] + b[n])$$

in the frequency domain:

$$Y(pL,\omega) = X(pL,\omega) + B(pL,\omega)$$

$$\hat{X}(pL,\omega) = |X(pL,\omega)|e^{j\angle Y(pL,\omega)}$$

A discrete-time noisy sequence:

$$y[n] \neq x[n] + b[n]$$

with power spectra:

$$S_y(\omega) = S_x(\omega) + S_b(\omega)$$

Working with STFT:

$$y_{pL}[n] = w[pL - n](x[n] + b[n])$$

in the frequency domain:

$$Y(pL,\omega) = X(pL,\omega) + B(pL,\omega)$$

Our target:

$$\widehat{X}(pL,\omega) = |X(pL,\omega)|e^{j\angle Y(pL,\omega)}$$

 $|Y(\omega)|^2 S_y(\omega)$

CONVOLUTIONAL DISTORTION

• A discrete-time convolutional distorted sequence:

$$y[n] = x[n] \star g[n]$$

where g[n] is the impulse response of a linear time-invariant distortion filter.

Working with a frame-by-frame analysis:

$$y_{pL}[n] = w[pL - n](x[n] * g[n])$$

• In the frequency domain, we can show that:

$$Y(pL,\omega) = X(pL,\omega)G(\omega)$$

CONVOLUTIONAL DISTORTION

• A discrete-time convolutional distorted sequence:

$$y[n] = x[n] \star g[n]$$

where g[n] is the impulse response of a linear time-invariant distortion filter.

Working with a frame-by-frame analysis:

$$y_{pL}[n] = w[pL - n](x[n] \star g[n])$$

• In the frequency domain, we can show that:

$$Y(pL,\omega) = X(pL,\omega)G(\omega)$$

CONVOLUTIONAL DISTORTION

• A discrete-time convolutional distorted sequence:

$$y[n] \neq x[n] \star g[n]$$

where g[n] is the impulse response of a linear time-invariant distortion filter.

Working with a frame-by-frame analysis:

$$y_{pL}[n] = w[pL - n](x[n])$$

• In the frequency domain, we can show that:

$$Y(pL,\omega) = X(pL,\omega)G(\omega)$$

STANDARD SPECTRAL SUBTRACTION

• Estimate of object's short-time squared spectral magnitude

$$|\hat{X}(pL,\omega)|^2 = |Y(pL,\omega)|^2 - |\hat{S}_b(\omega)| \text{ if } |Y(pL,\omega)|^2 - |\hat{S}_b(\omega)| \ge 0$$

$$= 0 \text{ otherwise}$$

• STFT estimate:

$$\hat{X}(pL,\omega) = |\hat{X}(pL,\omega)|e^{j\angle Y(pL,\omega)}$$

OLA

SPECTRAL SUBTRACTION AS A FILTERING OPERATION

• We can show:

$$\begin{aligned} |\hat{X}(pL,\omega)|^2 &= |Y(pL,\omega)|^2 - \hat{S}_b(\omega) \\ &\approx |Y(pL,\omega)|^2 \left[1 + \frac{1}{R(pL,\omega)} \right]^{-1} \end{aligned}$$

where

$$R(pL,\omega) = \frac{|X(pL,\omega)|^2}{\hat{S}_b(\omega)}$$

Suppression filter frequency response

$$H_s(
ho L, \omega) = \left[1 + rac{1}{R(
ho L, \omega)}
ight]^{-1/2}$$

SPECTRAL SUBTRACTION AS A FILTERING OPERATION

• We can show:

$$|\hat{X}(pL,\omega)|^2 = |Y(pL,\omega)|^2 - \hat{S}_b(\omega)$$

$$\approx |Y(pL,\omega)|^2 \left[1 + \frac{1}{R(pL,\omega)}\right]^{-1}$$

where

$$(R(pL,\omega)) = \frac{|X(pL,\omega)|^2}{\hat{S}_b(\omega)} = \sum_{N} (SNR)$$

Suppression filter frequency response

$$H_s(\rho L, \omega) = \left[1 + \frac{1}{R(\rho L, \omega)}\right]^{-1/2}$$

THE ROLE OF THE ANALYSIS WINDOW

Let $x[n] = A\cos(\omega_0 n)$ be in a stationary white noise b[n] of variance σ^2 and w[n] be a short-time window. Then:

• Average short-time signal power at ω_0 :

$$\hat{S}_{x}(pL,\omega_{0}) = E[|X(pL,\omega_{0})|^{2}] \approx \frac{A^{2}}{4} \left| \sum_{n=-\infty}^{\infty} w[n] \right|^{2}$$

Average power of the windowed noise

$$\hat{S}_b(pL,\omega) = E[|B(pL,\omega)|^2] = \sigma^2 \sum_{n=-\infty}^{\infty} w^2[n]$$

• Ratio at ω_0 :

$$\frac{E[|Y(pL,\omega)|^2]}{\hat{S}_b(pL,\omega_0)} = 1 + \frac{A^2/4}{[\sigma^2 \Delta_w]}$$

$$\Delta_{w} = \frac{\sum_{n=-\infty}^{\infty} w^{2}[n]}{\left|\sum_{n=-\infty}^{\infty} w[n]\right|^{2}}$$

The role of the analysis window

Let $x[n] = A\cos(\omega_0 n)$ be in a stationary white noise b[n] of variance σ^2 and w[n] be a short-time window. Then:

• Average short-time signal power at ω_0 :

$$\hat{S}_{x}(pL,\omega_{0}) = E[|X(pL,\omega_{0})|^{2}] \approx \frac{A^{2}}{4} \left| \sum_{n=-\infty}^{\infty} w[n] \right|^{2}$$

Average power of the windowed noise

$$\hat{S}_b(pL,\omega) = E[|B(pL,\omega)|^2] = \sigma^2 \sum_{n=-\infty}^{\infty} w^2[n]$$

• Ratio at ω_0 :

$$\frac{E[|Y(pL,\omega)|^2]}{\hat{S}_b(pL,\omega_0)} = 1 + \frac{A^2/4}{[\sigma^2 \Delta_w]}$$

$$\Delta_{w} = \frac{\sum_{n=-\infty}^{\infty} w^{2}[n]}{\left|\sum_{n=-\infty}^{\infty} w[n]\right|^{2}}$$

THE ROLE OF THE ANALYSIS WINDOW

Let $x[n] = A\cos(\omega_0 n)$ be in a stationary white noise b[n] of variance (σ^2) and w[n] be a short-time window. Then:

• Average short-time signal power at ω_0 :

$$\widehat{S}_{x}(\rho L, \omega_{0}) = E[|X(\rho L, \omega_{0})|^{2}] \approx A^{2} \sum_{n=-\infty}^{\infty} w[n]^{2}$$

Average power of the windowed noise

$$\hat{S}_b(pL,\omega) = E[|B(pL,\omega)|^2] = \sigma^2 \sum_{n=0}^{\infty} w^2[n]$$

• Ratio at ω_0 :

$$\frac{E[|Y(pL,\omega)|^2]}{\hat{S}_b(pL,\omega_0)} = 1 + \frac{A^2/4}{[\sigma^2 \Delta_w]}$$

$$\Delta_{w} = \frac{\sum_{n=-\infty}^{\infty} w^{2}[n]}{\left|\sum_{n=-\infty}^{\infty} w[n]\right|^{2}}$$

CEPSTRAL MEAN SUBTRACTION

Let $y[n] = x[n] \star g[n]$. Then:

• Logarithm of the STFT of y[n]:

$$Y(pL,\omega) \approx \log [X(pL,\omega)] + \log [G(\omega)]$$

Cepstrum:

$$\hat{y}[n,\omega] \approx F_p^{-1}(\log [X(pL,\omega)]) + F_p^{-1}(\log [G(\omega)])
= \hat{x}[n,\omega] + \hat{g}[0,\omega]\delta[n]$$

Cepstral filter:

$$\hat{x}[n,\omega]pprox \mathit{l}[n]\hat{y}[n,\omega]$$
 where $\mathit{l}[n]=\mathit{u}[n-1]$

CEPSTRAL MEAN SUBTRACTION

Let $y[n] = x[n] \star g[n]$. Then:

• Logarithm of the STFT of y[n]:

$$Y(pL, \omega) \approx \log [X(pL, \omega)] + \log [G(\omega)]$$

Cepstrum:

$$\hat{y}[n,\omega] \approx F_p^{-1}(\log [X(pL,\omega)]) + F_p^{-1}(\log [G(\omega)])
= \hat{x}[n,\omega] + \hat{g}[0,\omega]\delta[n]$$

Cepstral filter:

$$\hat{x}[n,\omega] \approx \mathit{I}[n]\hat{y}[n,\omega$$
 here $\mathit{I}[n] = \mathit{u}[n-1]$

CEPSTRAL MEAN SUBTRACTION

Let
$$y[n] = x[n] \star g[n]$$
. Then:

• Logarithm of the STFT of $y[n]$: Let $y[n] \star y[n] \star y[n]$.

• Cepstrum:

• Cepstrum:

• Cepstrum:

• Cepstrum:

• Cepstrum:

• Cepstrum:

• $\hat{y}[n,\omega] \approx F_p^{-1}(\log[X(pL,\omega)]) + F_p^{-1}(\log[G(\omega)])$

• Cepstral filter:

• $\hat{x}[n,\omega] \star \hat{g}[n]$.

• Where $y[n] = y[n-1]$

OUTLINE

- 1 Introduction
- PRELIMINARIES
 - Problem Formulation
 - Spectral Subtraction
 - Cepstral Mean Subtraction
- 3 Wiener Filtering
 - Estimating the Object Spectrum
 - Adaptive smoothing
 - Application to Speech
 - Optimal Spectral Magnitude Estimation
 - Binaural Representation
- 4 Model-Based Processing
- **6** Auditory Masking
 - Frequency-Domain Masking Principles
 - Calculation of the Masking Threshold
 - Exploiting Frequency Masking in Noise Reduction
- 6 ACKNOWLEDGMENTS

WIENER FILTERING

Stochastic optimization:
 if y[n] = x[n] + b[n], find h[n] such that x̂[n] = y[n] * h[n]
 minimizes

$$e = E[|\hat{x}[n] - x[n]|^2]$$

• Frequency domain solution (Wiener filter):

$$H_{w} = \frac{S_{x}(\omega)}{S_{x}(\omega) + S_{b}(\omega)}$$

• Time-varying Wiener filter:

$$H_w(pL,\omega) = \frac{\hat{S}_x(pL,\omega)}{\hat{S}_x(pL,\omega) + \hat{S}_b(\omega)}$$

Or

$$H_w(pL,\omega) = \left[1 + \frac{1}{R(pL,\omega)}\right]^{-1}$$

$$R(pL,\omega) = \frac{\hat{S}_{x}(pL,\omega)}{\hat{S}_{b}(\omega)}$$

WIENER FILTERING

Stochastic optimization:
 if y[n] = x[n] + b[n], find h[n] such that x̂[n] = y[n] * h[n]
 minimizes

$$e = E[|\hat{x}[n] - x[n]|^2]$$

• Frequency domain solution (Wiener filter):

$$H_{w} = \frac{S_{x}(\omega)}{S_{x}(\omega) + S_{b}(\omega)}$$

Time-varying Wiener filter:

$$H_w(pL,\omega) = \frac{\hat{S}_x(pL,\omega)}{\hat{S}_x(pL,\omega) + \hat{S}_b(\omega)}$$

Or

$$H_{w}(pL,\omega) = \left[1 + \frac{1}{R(pL,\omega)}\right]^{-1}$$

$$R(pL,\omega) = \frac{\hat{S}_{x}(pL,\omega)}{\hat{S}_{b}(\omega)}$$

WIENER FILTERING

Stochastic optimization:
 if y[n] = x[n] + b[n], find h[n] such that x̂[n] = y[n] * h[n]
 minimizes

$$e = E[|\hat{x}[n] - x[n]|^2]$$

• Frequency domain solution (Wiener filter):

$$H_{w} = \frac{S_{x}(\omega)}{S_{x}(\omega) + S_{b}(\omega)}$$

Time-varying Wiener filter:

$$H_w(pL,\omega) = \frac{\hat{S}_x(pL,\omega)}{\hat{S}_x(pL,\omega) + \hat{S}_b(\omega)}$$

Or

$$H_w(pL,\omega) = \left[1 + \frac{1}{R(pL,\omega)}\right]^{-1}$$

$$R(pL,\omega) = \frac{\hat{S}_{x}(pL,\omega)}{\hat{S}_{b}(\omega)}$$

Wiener Filtering

 Stochastic optimization: if y[n] = x[n] + b[n], find h[n] such that $\hat{x}[n] = y[n] \star h[n]$ minimizes

$$e = E[|\hat{x}[n] - x[n]|^2]^{\ell}$$

e = $E[|\hat{x}[n] - x[n]|^2]$ • Frequency domain solution (Wiener filter):

$$S_{y}(\omega) = S_{x}(\omega) + S_{b}(\omega) \qquad H_{w} = \frac{S_{x}(\omega)}{S_{x}(\omega) + S_{b}(\omega)} \qquad S_{x}(\omega)$$

Time-varying Wiener filter:

$$H_{w}(pL,\omega) = \frac{\hat{S}_{x}(pL,\omega)}{\hat{S}_{x}(pL,\omega) + \hat{S}_{b}(\omega)}$$

Or

$$H_w(\rho L, \omega) = \left[1 + \frac{1}{R(\rho L, \omega)}\right]^{-1}$$

$$R(pL,\omega) = \frac{\hat{S}_x(pL,\omega)}{\hat{S}_b(\omega)}$$

COMPARING THE TWO SUPPRESSION FILTERS

A BASIC APPROACH

• We assume that the Wiener filter of p-1 frame is known, then:

$$\hat{X}(pL,\omega) = Y(pL,\omega)\underline{H}_{w}((p-1)L,\omega)$$

Updating the Wiener filter:

$$H_{w}(pL,\omega) = \frac{|\hat{X}(pL,\omega)|^{2}}{|\hat{X}(pL,\omega)|^{2} + |\hat{S}_{b}(\omega)|}$$

Smooth power spectrum:

where
$$\hat{S}_{x}(pL,\omega) = \tau \tilde{S}_{x}((p-1)L,\omega) + (1-\tau)\hat{S}_{x}(pL,\omega)$$

where $\hat{S}_{x}(pL,\omega) = |\hat{X}(pL,\omega)|^{2}$

Initialization: spectral subtraction

Adaptive smoothing

- Wiener filter estimator adapts to the "degree of stationarity" of the measured signal.
- A measure of the degree of stationarity

$$\Delta Y(pL) = h_{\Delta}[p] \star \left[\frac{1}{\pi} \int_0^{\pi} |Y(pL, \omega) - Y((p-1)L, \omega)|^2 d\omega \right]^{1/2}$$

Time varying smoothing constant:

$$r(p) = Q[1 - 2(\Delta Y(pL) - \overline{\Delta Y})]$$

where

$$Q(x) = \begin{cases} x, & 0 \le x \le 1 \\ 0, & x < 0 \\ 1, & x > 1 \end{cases}$$

• Smooth object spectrum:

$$\tilde{S}_{x}(pL,\omega) = \tau(p)\tilde{S}_{x}((p-1)L,\omega) + [1-\tau(p)]\hat{S}_{x}(pL,\omega)$$

Adaptive smoothing

- Wiener filter estimator adapts to the "degree of stationarity" of the measured signal.
- A measure of the degree of stationarity

$$\Delta Y(pL) = h_{\Delta}[p] \star \left[\frac{1}{\pi} \int_{0}^{\pi} |Y(pL,\omega) - Y((p-1)L,\omega)|^{2} d\omega\right]^{1/2}$$

Time varying smoothing constant:

$$T(p) = Q[1 - 2(\Delta Y(pL) - \overline{\Delta Y})]$$

where

$$Q(x) = \begin{cases} x, & 0 \le x \le 1\\ 0, & x < 0\\ 1, & x > 1 \end{cases}$$

Smooth object spectrum:

$$\tilde{S}_{x}(pL,\omega) = \tau(p)\tilde{S}_{x}((p-1)L,\omega) + [1-\tau(p)]\hat{S}_{x}(pL,\omega)$$

Adaptive smoothing

- Wiener filter estimator adapts to the "degree of stationarity" of the measured signal.
- A measure of the degree of stationarity

$$\Delta Y(pL) = h_{\Delta}[p] \star \left[\frac{1}{\pi} \int_0^{\pi} |Y(pL,\omega) - Y((p-1)L,\omega)|^2 d\omega\right]^{1/2}$$

Time varying smoothing constant:

$$\tau(p) = Q[1 - 2(\Delta Y(pL) - \bar{\Delta Y})]$$

where

$$Q(x) = \begin{cases} x, & 0 \le x \le 1 \\ 0, & x < 0 \\ 1, & x > 1 \end{cases}$$

Smooth object spectrum:

$$\tilde{S}_{x}(pL,\omega) = \tau(p)\tilde{S}_{x}((p-1)L,\omega) + [1-\tau(p)]\hat{S}_{x}(pL,\omega)$$

Adaptive smoothing

- Wiener filter estimator adapts to the "degree of stationarity" of the measured signal.
- A measure of the degree of stationarity

$$\Delta Y(pL) = h_{\Delta}[p] \star \left[\frac{1}{\pi} \int_{0}^{\pi} |Y(pL, \omega) - Y((p-1)L, \omega)|^{2} d\omega\right]^{1/2}$$

Time varying smoothing constant:

$$\tau(p) = Q[1 - 2(\Delta Y(pL) - \Delta Y)]$$

where

$$Q(x) = \begin{cases} x, & 0 \le x \le 1 \\ 0, & x < 0 \\ 1, & x > 1 \end{cases}$$

Smooth object spectrum:

$$ilde{S}_{x}(
ho L,\omega) = au(
ho) ilde{S}_{x}((
ho - 1)L,\omega) + [1 - au(
ho)]\hat{S}_{x}(
ho L,\omega)$$

EXAMPLE OF ENHANCEMENT

Application to Speech

Satisfying enhanced speech quality with Wiener filter is obtained if:

- Window: triangular
- Frame length: 4ms
- Frame interval (rate): 1ms
- OLA synthesis

EXAMPLE OF ENHANCEMENT IN SPEECH

MINIMUM MEAN-SQUARE ERROR

If
$$y[n] = x[n] + b[n]$$
 sompute the expected value of:

compute the expected value of:

$$E\{|X(pL,\omega)| \quad y[n]\}$$
 (Ephraim and Malah, 1984)

SUPPRESSION FILTER

Suppression Filter of Ephraim and Malah

$$H_{s}(pL,\omega) = \sqrt{\frac{\pi}{2}} \sqrt{\left(\frac{1}{1+\gamma_{po}(pL,\omega)}\right) \left(\frac{\gamma_{pr}(pL,\omega)}{1+\gamma_{pr}(pL,\omega)}\right)} \times G\left[\frac{\gamma_{pr}(pL,\omega)+\gamma_{po}(pL,\omega)\gamma_{pr}(pL,\omega)}{1+\gamma_{pr}(pL,\omega)}\right]$$

where

$$G(x) = e^{-x/2}[(1+x)I_0(x/2) + xI_1(x/2)]$$

a posteriori SNR:

SNR:

$$\frac{\gamma_{po}(pL,\omega)}{\hat{S}_{b}(\omega)} = \frac{P[|Y(pL,\omega)|^{2} - \hat{S}_{b}(\omega)]}{\hat{S}_{b}(\omega)}$$

a priori SNR:

BINAURAL REPRESENTATION

$$\forall tn = x tn = y tn = x tn =$$

- Compute the enhanced signal (object) through $H_s(pL,\omega)$
- Compute its complement: $1 H_s(pL, \omega)$
- Play a stereo signal: i.e., left channel for the object and right channel it complement
- Illusion: object and its complement come from different directions, and thus there is further enhancement!!!

OUTLINE

- 1 Introduction
- PRELIMINARIES
 - Problem Formulation
 - Spectral Subtraction
 - Cepstral Mean Subtraction
- 3 Wiener Filtering
 - Estimating the Object Spectrum
 - Adaptive smoothing
 - Application to Speech
 - Optimal Spectral Magnitude Estimation
 - Binaural Representation
- 4 Model-Based Processing
- **6** Auditory Masking
 - Frequency-Domain Masking Principles
 - Calculation of the Masking Threshold
 - Exploiting Frequency Masking in Noise Reduction
- 6 ACKNOWLEDGMENTS

Model-Based Processing

• Model-based Wiener Filter:

$$H(\omega) = \frac{\hat{S}_x(\omega)}{\hat{S}_x(\omega) + \hat{S}_b(\omega)}$$

• Power spectrum estimate of speech:

$$\widehat{S}_{x}(\omega) = \frac{A^{2}}{|1 - \sum_{k=1}^{p} \widehat{a}_{k} e^{-j\omega k}|^{2}}$$

STOCHASTIC ESTIMATION METHODS

Maximum Likelihood, ML

$$\max_{a} p_{Y|A}(y|a)$$

Maximum a posteriori, (MAP)

$$\max_{a} p_{A|Y}(a|y)$$

knowing the a priori probability $p_A(a)$

• Minimum-Mean-Squared Error, (MMSE)

mean of
$$p_{A|Y}(a|y)$$

STOCHASTIC ESTIMATION METHODS

Maximum Likelihood, ML

$$\max_{a} p_{Y|A}(y|a)$$

Maximum a posteriori, (MAP)

$$\max_{a} p_{A|Y}(a|y)$$

knowing the a priori probability $p_A(a)$

Minimum-Mean-Squared Error, (MMSE)

mean of
$$p_{A|Y}(a|y)$$

STOCHASTIC ESTIMATION METHODS

Maximum Likelihood, ML

$$\max_{a} p_{Y|A}(y|a)$$

Maximum a posteriori, (MAP)

$$\max_{a} p_{A|Y}(a|y)$$

knowing the a priori probability $p_A(a)$

Minimum-Mean-Squared Error, (MMSE)

mean of
$$\rho_{A|Y}(a|y)$$

EXAMPLE OF (L)MAP ESTIMATION FOR ENHANCEMENT

- Solution to the MAP problem requires solving a set of nonlinear equations.
- Instead we use a linearized approach of MAP:
 - Initial estimation of \hat{a}^0
 - Estimate speech spectrum $E[x|\hat{a}^0, y]$ —
 - Having a speech estimate, estimate a new parameter vector \hat{a}^1
 - Estimate speech spectrum:

$$\hat{S}_{x}^{1}(\omega) = \frac{A^{2}}{|1 - \sum_{k=1}^{p} \hat{a}_{k}^{1} e^{-j\omega k}|^{2}}$$

• Estimate suppression filter:

$$H^1(\omega) = rac{\hat{S}_x^1(\omega)}{\hat{S}_x^1(\omega) + \hat{S}_b(\omega)}$$

make iterations

LINEARIZED MAP

OUTLINE

- 1 Introduction
- PRELIMINARIES
 - Problem Formulation
 - Spectral Subtraction
 - Cepstral Mean Subtraction
- 3 Wiener Filtering
 - Estimating the Object Spectrum
 - Adaptive smoothing
 - Application to Speech
 - Optimal Spectral Magnitude Estimation
 - Binaural Representation
- 4 Model-Based Processing
- **6** Auditory Masking
 - Frequency-Domain Masking Principles
 - Calculation of the Masking Threshold
 - Exploiting Frequency Masking in Noise Reduction
- 6 ACKNOWLEDGMENTS

Auditory Masking

Auditory masking: one sound component is concealed by the presence of another sound component.

- Frequency masking
- Temporal masking
- Critical band
- Masking threshold
- Maskee
- Masker

MASKING THRESHOLD CURVE

- Physiologically-based/Psychoacoustically-based filters
- Critical Bands: Bandwidth of Psychoacoustically-based filters
- Quantized critical bands (Bark Scale):

$$z = 13 \arctan (0.76f) + 3.5 \arctan (f/7500)$$

• Quantized critical bands (Mel Scale):

$$m = 2595 \log_1 0(1 + f/700)$$

- Physiologically-based/Psychoacoustically-based filters
- Critical Bands: Bandwidth of Psychoacoustically-based filters
- Quantized critical bands (Bark Scale):

$$z = 13 \arctan (0.76f) + 3.5 \arctan (f/7500)$$

• Quantized critical bands (Mel Scale):

$$m = 2595 \log_1 0(1 + f/700)$$

- Physiologically-based/Psychoacoustically-based filters
- Critical Bands: Bandwidth of Psychoacoustically-based filters
- Quantized critical bands (Bark Scale):

$$z = 13 \arctan (0.76f) + 3.5 \arctan (f/7500)$$

• Quantized critical bands (Mel Scale):

$$m = 2595 \log_1 0(1 + f/700)$$

- Physiologically-based/Psychoacoustically-based filters
- Critical Bands: Bandwidth of Psychoacoustically-based filters
- Quantized critical bands (Bark Scale):

$$z = 13 \arctan (0.76f) + 3.5 \arctan (f/7500)$$

• Quantized critical bands ($Mel\ Scale$): $m = 2595 \log_{10} 0(1 + f/700)$

$$m = 2595 \log_{10} 0(1 + f/700)$$

MASKING THRESHOLD CALCULATION

- Compute energy E_k in each kth bark filter in the estimated speech spectrum (after spectral subtraction)
- Convolve each E_k with a "spreading function" h_k : $T_k = E_k \star h_k$
- Subtract a threshold offset depending if the masker is noise-like or tone-like.
- Map T_k to linear frequency scale to obtain $T(pL,\omega)$

AUDITORY MASKING THRESHOLD CURVES

Suppression filter:

$$\begin{array}{lcl} \textit{H}_{\textit{s}}(\textit{pL},\omega) & = & [1-\textit{aQ}(\textit{pL},\omega)^{\gamma_1}]^{\gamma_2}, & \text{if } \textit{Q}(\textit{pL},\omega)^{\gamma_1} < \frac{1}{\textit{a}+\textit{b}} \\ & = & [\textit{bQ}(\textit{pL},\omega)^{\gamma_1}]^{\gamma_2}, & \text{otherwise} \end{array}$$

where

$$Q(pL,\omega) = \left[\frac{\hat{S}_b(\omega)}{|Y(pL,\omega)|^2}\right]^{1/2}$$

• Requirements: (a) Estimation of $\hat{S}_b(\omega)$, and (b) a masking threshold curve on each frame $T(pL,\omega)$.

- From y[n] = x[n] + b[n] go to d[n] = x[n] + ab[n]
- If $h_s[n]$ is the impulse response of the suppression filter, then the noise error is:

$$ab[n] - h_s[n] \star b[n]$$

with short-time power spectrum:

$$\hat{S}_{e}(pL,\omega) = |H_{s}(pL,\omega) - a|^{2}\hat{S}_{b}(\omega)$$

Constraint:

$$H_s(pL,\omega) - a|^2 \hat{S}_b(\omega) < T(pL,\omega)$$

or:

$$a - \sqrt{rac{T(pL,\omega)}{\hat{S}_b(\omega)}} < H_s(pL,\omega) < a + \sqrt{rac{T(pL,\omega)}{\hat{S}_b(\omega)}}$$

- From y[n] = x[n] + b[n] go to d[n] = x[n] + ab[n]
- If $h_s[n]$ is the impulse response of the suppression filter, then the noise error is:

$$ab[n] - h_s[n] \star b[n]$$

with short-time power spectrum:

$$\hat{S}_e(pL,\omega) = |H_s(pL,\omega) - a|^2 \hat{S}_b(\omega)$$

Constraint:

$$|H_s(pL,\omega) - a|^2 \hat{S}_b(\omega) < T(pL,\omega)$$

or:

$$a - \sqrt{\frac{T(pL,\omega)}{\hat{S}_b(\omega)}} < H_s(pL,\omega) < a + \sqrt{\frac{T(pL,\omega)}{\hat{S}_b(\omega)}}$$

- From y[n] = x[n] + b[n] go to d[n] = x[n] + ab[n]
- If $h_s[n]$ is the impulse response of the suppression filter, then the noise error is:

$$ab[n] - h_s[n] \star b[n]$$

with short-time power spectrum:

$$\hat{S}_e(pL,\omega) = |H_s(pL,\omega) - a|^2 \hat{S}_b(\omega)$$

Constraint:

$$|H_s(pL,\omega)-a|^2\hat{S}_b(\omega)< T(pL,\omega)$$

or:

$$a - \sqrt{rac{T(
ho L, \omega)}{\hat{S}_b(\omega)}} < H_s(
ho L, \omega) < a + \sqrt{rac{T(
ho L, \omega)}{\hat{S}_b(\omega)}}$$

OUTLINE

- 1 Introduction
- 2 Preliminaries
 - Problem Formulation
 - Spectral Subtraction
 - Cepstral Mean Subtraction
- 3 Wiener Filtering
 - Estimating the Object Spectrum
 - Adaptive smoothing
 - Application to Speech
 - Optimal Spectral Magnitude Estimation
 - Binaural Representation
- 4 Model-Based Processing
- **6** Auditory Masking
 - Frequency-Domain Masking Principles
 - Calculation of the Masking Threshold
 - Exploiting Frequency Masking in Noise Reduction
- 6 ACKNOWLEDGMENTS

ACKNOWLEDGMENTS

Most, if not all, figures in this lecture are coming from the book:

T. F. Quatieri: Discrete-Time Speech Signal Processing, principles and practice 2002, Prentice Hall

and have been used after permission from Prentice Hall