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Transfer function from the glottis to the
lips

We shown that for voiced speech:

H(z) = AG (z)V (z)R(z)

= A
(1− az−1)

(1− bz)2(1−
∑N

k=1 ak z−k )

However:

1− az−1 =
1∑∞

k=0 ak z−k
, for |z | > |a|

Then:

H(z) =
A

1−
∑p

k=1 ak z−k
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Producing speech [1]

Assuming as input to H(z) a train of unit samples, ug [n], with
z-transform Ug (z), then speech, S(z) is given by:

H(z) =
S(z)

Ug (z)
=

A

1−
∑p

k=1 ak z−k

or

S(z) =

p∑
k=1

ak z−k S(z) + AUg (z)

and in time domain:

s[n] =

p∑
k=1

ak s[n − k] + Aug [n]

Useful terms: Linear prediction coefficients, Autoregressive (AR)
model/process, Linear prediction analysis



Filtering view of linear prediction

where

P(z) =

p∑
k=1

ak z−k prediction filter

A(z) = 1− P(z) prediction error filter



Outline

1 Towards Linear Prediction, LP

2 Linear Prediction

3 Analysis
Covariance Method
Autocorrelation Method
Properties of the Autocorrelation method
Frequency-Domain Interpretation
Criterion of goodness
Comparing Covariance and Autocorrelation

4 Synthesis

5 Acknowledgments

6 References



Justification of LP for speech

If speech is (almost) an AR process, then:

s[n] =

p∑
k=1

ak s[n − k] + Aug [n]

A pth linear predictor, means:

s̃[n] =

p∑
k=1

lk s[n − k]

Prediction error:
e[n] = s[n]− s̃[n]

or:
e[n] ≈ Aug [n] if ak ≈ lk , ∀k
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Error Minimization

Over all time we wish to minimize the mean-squared
prediction error:

E =
∞∑

m=−∞
(s[m]− s̃[m])2

Prediction error in the vicinity of n:

En =
n+M∑

m=n−M

(s[m]− s̃[m])2

Prediction interval: [n −M, n + M]

En =
∞∑

m=−∞
e2

n [m]

where

en[m] = sn[m]−
p∑

k=1

lk sn[m − k], n −M ≤ m ≤ n + M
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Covariance Method

Samples outside the prediction error interval are NOT zero

Minimization of the mean-squared error in the prediction error
interval



Short-time sequences: Covariance



Covariance Method: Formulation

In matrix notation

e
(2M+1×1)
n = s

(2M+1×1)
n − S

(2M+1×p)
n l(p×1)

Mean-squared error

eT
n en = sT

n sn − 2sT
n Snl + lT ST

n Snl

Solution:

l =
(
ST

n Sn

)−1
ST

n sn

Same solution by considering the Projection Theorem:

ST
n en = 0
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Autocorrelation Method

Samples outside the prediction error interval are all zero

Minimization of the mean-squared error in ±∞



Short-time sequences: Autocorrelation



Autocorrelation method: Formulation

Error is nonzero in the interval [0, Nw + p − 1]:

En =

Nw +p−1∑
m=0

e2
n [m]

Normal equations:

p∑
k=1

lk Φn[i , k] = Φn[i , 0], i = 1, 2, 3, . . . , p

where

Φn[i , k] =

Nw +p−1∑
m=0

sn[m− i ] sn[m− k], 1 ≤ i ≤ p, 0 ≤ k ≤ p
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Constructing the autocorrelation function



Using the autocorrelation function

by denoting:
rn[i − k] = Φn[i , k]

Then:
p∑

k=1

lk rn[i − k] = rn[i ], 1 ≤ i ≤ p

In matrix notation:

R
(p×p)
n l(p×1) = r

(p×1)
n

Or (Toeplitz matrix):
rn[0] rn[1] · · · rn[p − 1]
rn[1] rn[0] · · · rn[p − 2]
...

...
. . .

...
rn[p − 1] rn[p − 2] · · · rn[0]




l1
l2
...
lp

 =


rn[1]
rn[2]
...
rn[p]


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Levinson Recursion

� Build an order i + 1 solution from an order i solution until the
desired order p is reached:

Initial step:

l0
0 = 0, E 0 = r [0]

Step 1: Compute the partial correlation coefficients

ki =
r [i ]−

∑i−1
j=1 l i−1

j r [i − j]

E i−1

Step 2: Update prediction coefficients, l

l i
i = ki

l i
j = l i−1

j − ki l i−1
i−j , 1 ≤ j ≤ i − 1

Step 3: Update the minimum squared prediction error

E i = (1− k2
i )E i−1

Step 4: Repeat steps 1 to 3 for i = 1, 2, · · · , p

Final Step: at pth step, compute the optimal predictor coefficients, l∗j ,

l∗j = l
p
j , 1 ≤ j ≤ p



Lossless Tube Model and Linear Prediction

There is a strong resemblance to the recursions in the lossless tube
model and in the Autocorrelation Method for Linear Prediction:

Transfer functions:

V (z) =
A

D(z)
D(z) = 1−

N∑
k=1

lk z−k

H(z) =
A

A(z)
A(z) = 1−

p∑
k=1

lk z−k

Recursions:

D0(z) = 1 | A0(z) = 1
For k = 1, 2, · · · , N | For i = 1, 2, · · · , p

Dk (z) = Dk−1(z) + rk z−k Dk−1(z−1) | Ai (z) = Ai−1(z)− ki z−i Ai−1(z−1)
D(z) = DN (z) | A(z) = Ap (z)

Identical recursions if: ki = −ri = −Ai+1−Ai
Ai+1+Ai
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Estimating the vocal tract area functions
via the autocorrelation method



Properties of the Autocorrelation method

|ki | < 1, ∀i

H(z) is a minimum phase system (stability)

Flip all maximum-phase poles inside the unit circle to their
conjugate reciprocal locations

One-to-One correspondence: ki � li , li � rn[i ].

ki = l i
i

l i−1
j =

l i
j + ki l

i
i−j

1− k2
i

Autocorrelation matching: If, H(z) is an pth all-pole
minimum phase system, and if rh[0] = rn[0], then:

rh[τ ] = rn[τ ], for |τ | ≤ p
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Consequence I

� Flip all maximum-phase poles inside the unit circle to their
conjugate reciprocal locations



Consequence II

� Autocorrelation matching



Consequence III

� Autocorrelation matching:

A2 = rh[0]−
p∑

k=1

lk rh[k]

or

A2 = rn[0]−
p∑

k=1

lk rn[k] = En



Estimations in the frequency domain

Let |S(ω)| be the magnitude spectrum of speech and
H(ω) = A/A(ω) be an all-pole model
Define a frequency-domain error function

I =
1

2π

∫ π

−π
[eQ(ω) − Q(ω)− 1]dω

where

Q(ω) = log |S(ω)|2 − log |H(ω)|2 = log

∣∣∣∣E (ω)

A

∣∣∣∣2
Minimizing I over the linear prediction coefficients, results in
the minimization of: ∫ π

−π
|E (ω)|2dω

Minimizing I over A it gives:

A2 =
1

2π

∫ π

−π
|E (ω)|2dω
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Favoring spectral peaks

A note on f (Q) = eQ − Q − 1



Time-domain



Frequency-domain: voiced



Frequency-domain: unvoiced



Comparing Covariance and Autocorrelation

Simple test of estimation

s[n] = anu[n] ? δ[n]

Stability issues

Sensitivity, pitch-synchronous analysis
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Sensitivity, pitch-synchronous analysis
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Synthesis

The synthesized speech is:

s[n] =

p∑
k=1

lk s[n − k] + Au[n]

where u[n] could be:

A periodic impulse train

An impulse

White noise



Synthesis Structure



Consider ...

Window duration

Frame interval (frame rate)

Model order

Voiced/unvoiced state and pitch estimation
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Overlap and Add, OLA



Speech Reconstruction example



How does it sound ...

/a/ pgflastimage

/e/ pgflastimage
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