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COMPRESSION AND RAREFACTION OF AIR PARTICLES
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SOME DEFINITIONS

@ Sound wave: propagation of disturbance (local changes in
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SOME

DEFINITIONS

Sound wave: propagatior/of disturbance (local changes in
pressure, displacement, and velocity) of particles through & medium,
creating the effect of compression or rarefaction.

Wavelength) distance between two consecutive peak compressions,
A

Frequency: number of cycles of compressions per second, [f
Speed of sound:(cj= f\ (at sea level and at 70°F, ¢ = 344m/sec)

Isothermal process: a slow variation of pressure where the
temperature in the medium remains constant

Adiabatic process: a fast variation of pressure where the
temperature in the medium increases



CUBE CONFIGURATION
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NOTATION

Assuming planar propagation, and within the cube:
e p(x, t) fluctuation of pressure about an ambient or average
pressure Py.
> Threshold of hearing: 2 1075 newtons/m?
> Threshold of pain: 20 newtons/m?
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NOTATION

Assuming planar propagation, and within the cube:

o (p(x, t))fluctuation of pressure about an ambient or average
pressure'Py.
> Threshold of hearing: 2 1075 newtons/m?
> Threshold of pain: 20 newtons/m?

@ v(x, t) fluctuation of particles’ velocity about zero average
velocity.

o (p(x, t))fluctuation of particles’ density about an average
density /0.
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THE WAVE EQUATION

Under the assumptions:

o JIf there is no friction of air particles in the cube with those
outside the cube (no viscosity),

@ )Cube is very small,
@ ) The density of air particles is constant in the cube
(i.e..p0 = p)
then, one form of the |Wave Equation is given by:
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LoOSSLESS CASE OF CROSS SECTION A
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where u(x, t) = Av(x, t)



SOLUTION FOR A LOSSLESS TUBE

Under the assumptions/conditions:
@ No friction along the walls of the tube

o At the open end of the tube, there are no variations in air
pressure, i.e. p(/,t) =0
o Volume velocity at x = 0: u(0,t) = Ug(Q)e/*?



SOLUTION FOR A LOSSLESS TUBE

Under the assumptions/conditions:
4SSUITPLIONS/CONTILIONS.
@No friction along the walls of the tube

t the open end of thehere are no_va_ria_’gi_gg§_ig__ai_r

pressure, i.e. p(/,t) =0 ’P(x 0
@Volume velocity at x = 0: u(0, t) =/Ug( efm -—%Jj&

> Volume velocity:

e S )
T et N

> (Incremental) Pressure:

_ pein90 - /e o 9
cos (Q 1/c) KU s(2)¢ 7

where U, (Q)e/* denotes volume velocity at x = 0




VELOCITY AND PRESSURE ARE “ORTHOGONAL”

Amplitude
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INPUT/OUTPUT VOLUME VELOCITY

At x =1
1

lLt)= ———
u(l t) cos(Q I/c)
Then, the frequency response V(Q) is:

Ug(Q)e™

_uLQ) 1
V(@) = Ug(Q)  cos(Q 1/c)

providing resonances of infinite amplitudes at frequencies:

e

Q= (2k +1)7;,

k=0,1,2,



INPUT/OUTPUT VOLUME VELOCITY
.
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Example: if I— 35cm, ¢ = 350 m/s, then fi = 250, 750, 1250, -

prowdlngl resonances |of infinite_amplitudes at frequencies:

Hz.



UNIFORM TUBE: BEING REALISTIC

/Energy Ioss,due to the wall vibration (left) and with viscous and

rhcrmal f'oss (rlght)[l]
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UNIFORM TUBE: BEING MORE REALISTIC

Sound radiation at the lips, as an acoustic impedance:
oy

oy | =
r(Q) :Ilu'IIIU(Iv Q) J _h__;g

_\L — —
All the previous losses, plus radiation loss[1]:

32
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PRESSURE-TO-VOLUME VELOCITY FREQUENCY
RESPONSE
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NUMERICAL SIMULATIONS FOR /o/[ ]
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CONCATENATING LOSSLESS UNIFORM TUBES




DISCRETIZING THE CONTINUOUS-SPACE TUBE

@ Impulse response of N lossless concatenated tubes with total
length [

h(t) = bod(t — N7) + > bd(t — Nt — k27)
k=1

_ Ax — 1
where 7 = - and Ax = N



DISCRETIZING THE CONTINUOUS-SPACE TUBE

@ Impulse response of N lossless concatenated tubes with total
length [

h(t) = bod(t — N7) + > bd(t — Nt — k27)
k=1

_ Ax — 1
where 7 = - and Ax = N

@ Frequency response:

H(Q) — Z bkeij2k7’
k=0



1Z11 ETHE CONTINUOUS-SPACE TUBE

@_SCPETIZIN_/Z 0

o_Impulse response of N Iosslegc.s cc)mcatenated tubes W|th total
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SIGNAL FLOW GRAPHS
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(a) two concatenated tubes, (b) lip boundary condition, (c) glottal
boundary condition



FOR A LOSSLESS TWO-TUBE MODEL

(1 + rg)
2 (1+719) (1+n)

T T = B

Ug(t) u (t)
g —rq r =\
T T <
(1-r)
(a)

Transfer function relating the volume veIOC|ty at the lips to the
glottis: - ) L“? 7 L-ﬂ o
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with a1 = rirg +nr, ap = rirg and b= 0.5(1+ rg)(l +r)(1+n)
(Show me this)



DISCRETE-TIME LOSSLESS MODELS

e Two cubes: By setting z = e°?7, then:

bz 1

V4 =
(Z) 14 312_1 + 322_2



QISCRETE-TIME LOSSLESS MODELS

S > 'Z'%XCZ)%I X(n -1

e Two cubes: By setting z = e°?7, then:

;' O — T( W=<




CHOOSING THE NUMBER OF TUBE ELEMENTS

Question:
If a vocal tract has length | = 17.5 cm and the speed of sound

¢ = 350 m/s, how many tubes, N, do we need to cover a
bandwidth of 5000 Hz?



CHOOSING THE NUMBER OF TUBE ELEMENTS

Question:
If a vocal tract has length | = 17.5 cm and the speed of sound

¢ = 350 m/s, how many tubes, N, do we need to cover a
bandwidth of 5000 Hz?

Answer: N = 10



COMPLETE DISCRETE-TIME MODEL FROM N TUBES

Discrete-time pressure-to-volume velocity frequency response:

where R(z) ~ 1 — az ! and V/(z) is an all-pole model.
And for the speech signal (voiced case):

X(z) = A,G(2)H(z)

with A, to control loudness and G(z) being the z-transform of the
glottal flow input.



COMPLETE DISCRETE-TIME MODEL FROM N TUBES

Discrete-time pressure- to—volume velocit frequenc_y_tesper.tse:

/_ -
¢ H( ) =(R(z ) (), O **m
r—q— — m ‘<—-—- — | ;\/ > )
where R(z) ®1 - az” ,and V{(z)is an all- pole model. — L
And for the speech signal (voiced case):

L' QiA G(2)H(z)

. I

with A, to control loudness and G(z) being the z-transform of the
glottal flow input.

N Vol




(GLOTTAL WAVEFORM MODEL

A typical glottal flow waveform over one cycle is modeled as:

gln] = (b7 u[=n]) x (b~ "u[-n])

which has as z-transform:



(GLOTTAL WAVEFORM MODEL
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which has as z- transform
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So for a voiced frame: : ,
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X(z)|=A




MODELING OTHER STATES

o For noisy inputs:

X(z) = ApU(2)V(2)R(2)



MODELING OTHER STATES

o For noisy inputs:
X(z) = AU(2)V(2)R(2)
o For impulsive sounds:

X(z) = AiV(2)R(z)



MODELING OTHER STATES

e For noisy inputs: /f‘ \
z)=A,

o For impulsive sounds:

@ being more eral:

_7/ @ (1—az pil 1(1—ckz_1) Hk 1(1—dkz)
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AN OVERVIEW THEN
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GLOTTAL FLOW DERIVATIVE

Since speech signals, x(t) can be obtained in general by:

x(t) ~ A% [ug(£) * v(1)]

and because:

d d
A% Lug(6) V(0] = A | Sugle)] = vl

we usually consider the derivative 4 u,(t) as input to the system,
which is referred to as Glottal Flow Derivative



(GLOTTAL FLOW AND ITS DERIVATIVE
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RIPPLE IN THE GLOTTAL FLOW DERIVATIVE?
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REGARDING THE FIRST FORMANT [2]

LA ) | 1
o,ow.ms 0.02 0.025 0.03
Time (s)
(a)

0.015
Time (s)
(b)

0.02 0.025

F4 Multiplier

0.015
Time (s)
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UNCATION EFFECT - AGAIN

Amplitude
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