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Compression and rarefaction of air particles



Some definitions

Sound wave: propagation of disturbance (local changes in
pressure, displacement, and velocity) of particles through a medium,
creating the effect of compression or rarefaction.

Wavelength: distance between two consecutive peak compressions,
λ

Frequency: number of cycles of compressions per second, f

Speed of sound: c = f λ (at sea level and at 70◦F , c = 344m/sec)

Isothermal process: a slow variation of pressure where the
temperature in the medium remains constant

Adiabatic process: a fast variation of pressure where the
temperature in the medium increases
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Cube configuration



Notation

Assuming planar propagation, and within the cube:

p(x , t) fluctuation of pressure about an ambient or average
pressure P0.
� Threshold of hearing: 2 10−5 newtons/m2

� Threshold of pain: 20 newtons/m2

υ(x , t) fluctuation of particles’ velocity about zero average
velocity.

ρ(x , t) fluctuation of particles’ density about an average
density ρ0.
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The Wave Equation

Under the assumptions:

If there is no friction of air particles in the cube with those
outside the cube (no viscosity),

Cube is very small,

The density of air particles is constant in the cube
(i.e.,ρ0 = ρ)

then, one form of the Wave Equation is given by:

−∂p
∂x = ρ∂υ∂t

−∂p
∂t = ρc2 ∂υ

∂x
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Lossless Case of cross section A

−∂p
∂x = ρ

A
∂u
∂t

−∂p
∂t = ρc2

A
∂u
∂x

where u(x , t) = Aυ(x , t)



Solution for a Lossless Tube

Under the assumptions/conditions:

No friction along the walls of the tube

At the open end of the tube, there are no variations in air
pressure, i.e. p(l , t) = 0

Volume velocity at x = 0: u(0, t) = Ug (Ω)e jΩt

� Volume velocity:

u(x , t) =
cos [Ω(l − x)/c]

cos (Ω l/c)
Ug (Ω)e jΩt

� (Incremental) Pressure:

p(x , t) = j
ρc

A

sin [Ω(l − x)/c]

cos (Ω l/c)
Ug (Ω)e jΩt

where Ug (Ω)e jΩt denotes volume velocity at x = 0
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Velocity and Pressure are “orthogonal”



Input/Output volume velocity

At x = l

u(l , t) =
1

cos (Ω l/c)
Ug (Ω)e jΩt

Then, the frequency response V (Ω) is:

V (Ω) =
U(l ,Ω)

Ug (Ω)
=

1

cos (Ω l/c)

providing resonances of infinite amplitudes at frequencies:

Ωk = (2k + 1)
πc

2l
, k = 0, 1, 2, · · ·

Example: if l= 35cm, c = 350 m/s, then fk = 250, 750, 1250, · · ·
Hz.
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Uniform tube: being realistic

Energy loss due to the wall vibration (left) and with viscous and
thermal loss (right)[1]:



Uniform tube: being more realistic

Sound radiation at the lips, as an acoustic impedance:

Zr (Ω) =
P(l ,Ω)

U(l ,Ω)

All the previous losses, plus radiation loss[1]:



Pressure-to-volume velocity frequency
response

Since we measure pressure at the lips:

H(Ω) =
P(l ,Ω)

Ug (Ω)
= Zr (Ω)V (Ω)



Numerical simulations for /o/[1]
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Concatenating lossless Uniform Tubes

Reflection coefficient:

rk =
Ak+1 − Ak

Ak+1 + Ak



Discretizing the continuous-space tube

Impulse response of N lossless concatenated tubes with total
length l :

h(t) = b0δ(t − Nτ) +
∞∑

k=1

bkδ(t − Nτ − k2τ)

where τ = ∆x
c and ∆x = l

N

Frequency response:

H(Ω) =
∞∑

k=0

bke−jΩ2kτ

Observe that:

H(Ω +
2π

2τ
) = H(Ω)
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Signal flow graphs

(a) two concatenated tubes, (b) lip boundary condition, (c) glottal
boundary condition



For a lossless two-tube model

Transfer function relating the volume velocity at the lips to the
glottis:

V (s) =
be−s2τ

1 + a1e−s2τ + a2e−s4τ

with a1 = r1rg + r1rL, a2 = rLrg and b = 0.5(1 + rg )(1 + rL)(1 + r1)
(Show me this)



Discrete-time lossless models

Two cubes: By setting z = es2τ , then:

V (z) =
bz−1

1 + a1z−1 + a2z−2

N cubes:

V (z) =
Az−N/2

1 +
∑N

k=1 akz−k
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Choosing the number of tube elements

Question:
If a vocal tract has length l = 17.5 cm and the speed of sound
c = 350 m/s, how many tubes, N, do we need to cover a
bandwidth of 5000 Hz?

Answer: N = 10
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Complete discrete-time model from N Tubes

Discrete-time pressure-to-volume velocity frequency response:

H(z) = R(z)V (Z )

where R(z) ≈ 1− αz−1 and V (z) is an all-pole model.
And for the speech signal (voiced case):

X (z) = AvG (z)H(z)

with Av to control loudness and G (z) being the z-transform of the
glottal flow input.
or

X (z) = AvG (z)
1− αz−1

1 +
∑N

k=1 akz−k
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Glottal waveform model

A typical glottal flow waveform over one cycle is modeled as:

g [n] = (b−nu[−n]) ? (b−nu[−n])

which has as z-transform:

G (z) =
1

(1− βz)2

So for a voiced frame:

X (z) = Av
(1− az−1)

(1− bz)2(1 +
∑N

k=1 akz−k )
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Modeling other states

For noisy inputs:

X (z) = AnU(z)V (z)R(z)

For impulsive sounds:

X (z) = AiV (z)R(z)

being more general:

X (z) = A
(1− az−1)

∏Mi
k=1(1− ckz−1)

∏Mo
k=1(1− dkz)

(1− bz)2 (1−
∑N

k=1 akz−k )
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An Overview then
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Glottal Flow Derivative

Since speech signals, x(t) can be obtained in general by:

x(t) ≈ A
d

dt
[ug (t) ? v(t)]

and because:

A
d

dt
[ug (t) ? v(t)] = A

[
d

dt
ug (t)

]
? v(t)

we usually consider the derivative d
dt ug (t) as input to the system,

which is referred to as Glottal Flow Derivative



Glottal flow and its derivative
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Ripple in the glottal flow derivative?



Regarding the first formant [2]



Truncation effect - again
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