Articulatory Phonetics

Anna Sfakianaki
Phonetician/Linguist (PhD)
Laboratory Teaching Staff, CSD UoC

CS-578 Digital Speech Signal Processing
Spring Term 2020-21
University of Crete
What is Phonetics?

Phonetics is a branch of Linguistics that systematically studies the sounds of human speech.

1. How speech sounds are produced
2. How speech sounds are transmitted
3. How speech sounds are received

It is an interdisciplinary subject, theoretical as much as experimental.
Why do speech engineers need phonetics?

An engineer working on speech signal processing usually ignores the linguistic background of the speech he analyzes. (Olaszy, 2005)

- How was the utterance planned in the speaker’s brain?
- How was it produced by the speaker’s articulation organs?
- What sort of contextual influences did it receive?
- How will the listener decode the message?
Phonetics in Speech Engineering

Combined knowledge of articulatory gestures and acoustic properties of speech sounds

Categorization of sounds | speech Segmentation

Speech Database Annotation

Algorithms

Speech Recognition | Speech Synthesis
Phonetics in Speech Engineering

Speech Disorders
- diagnosis
- treatment

Pronunciation Teaching Tools
- L2
- Foreign languages

Speech Intelligibility Enhancement
- Hearing aids
- Other tools
A week with a Phonetician...

Tuesday 10:00-12:00
Articulatory Phonetics
- Speech production
- Sound waves
- Places and manners of articulation
 - Consonants & Vowels
- Waveforms of consonants - VOT
- Suprasegmentals

Thursday 10:00-12:00
Acoustic Phonetics
- Formants
- Fundamental Frequency
- Acoustics of Vowels
 - Articulatory vs Acoustic charts
- Acoustics of Consonants
 - Formant Transitions
- Individual differences
- Interpreting spectrograms

More Phonetics:
CS-590.74 Introduction to Speech Science & Technology
Spring Term
Peter Ladefoged

- Professor UCLA (1962-1991)
- Travelled in Europe, Africa, India, China, Australia, etc.
- Interested in listening to and describing every sound used in spoken human language, which he estimated at
 900 consonants and 200 vowels (The Sounds of the World's Languages).
- He was president of the International Phonetic Association (1986-1991) & the Linguistic Society of America.
- Had a brief career in Hollywood as the chief linguistic consultant on the 1964 film My Fair Lady.
- Exemplary teacher

Home Page: http://www.linguistics.ucla.edu/people/ladefoge/

Material from this book was used in the slides.
Most speech sounds result from movements of the tongue and the lips.

Speech movements are named articulatory gestures.

Making speech gestures audible involves:
- pushing air out of the lungs
- producing a noise in the throat or mouth

Tongue and lip movements form the noise coming from the larynx.
Joy Nash trapped in an MRI machine…

https://www.youtube.com/watch?v=0-aEN2xHBCCc
The tongue and lips move rapidly from one position to another.

The actions of the tongue are among the fastest and the most precise physical movements that people make.
The basic source of power for speech: the respiratory system
- Pushing **air** out of the lungs
- **lungs → trachea → larynx → vocal folds**

Try to talk while breathing in instead of out. What do you observe?
Speech Production - Vocal folds

- In the larynx there are two small muscular folds, the vocal folds.
- If they are apart, the air has free passage into the pharynx and the mouth.
Abducted vocal folds:
- respiration
- Production of **voiceless** sounds

Adducted vocal folds:
- Production of **voiced** sounds (phonation)

Exercise: Voiceless vs voiced sound

[fMMM]
Speech Production - Vocal folds

- Stroboscopy: female vocal folds vibrating at high and low pitches

 Video: http://www.youtube.com/watch?v=UpOXecWC5Dw
Voicing

- Distinguishing sounds on the basis of voicing:
 - fat vs. vat
 - thigh vs. thy
 - sue vs. zoo
 - φάρος vs. βάρος
 - σώνει vs. ζώνη

More pairs?
Vocal Tract

- Oral Tract
 - mouth
 - pharynx

- Nasal Tract

- Articulators
 - tongue
 - lips

Flap at the back of mouth:
- air goes in and out through the nose
- production of [m] and [n]
Speech Production Mechanism

The four main components of the speech production mechanism:

1. airstream process
2. phonation process
3. oro-nasal process
4. articulatory process
Sound waves

The way in which we hear a sound depends on its **acoustic structure**.

Speech sounds differ from one another in three ways:

1. **pitch/frequency**
2. **loudness**
3. **quality**

How is sound produced?

articulatory movements superimposed on outgoing flow of lung air → small variations in air pressure → **sound wave** → vibrations in listener’s eardrum
Sound waves

http://www.youtube.com/watch?v=-rFnzHXX1vk
Word duration: 0.6s

Recurrence of major peaks in air pressure: 0.01s →

Vocal folds vibrate 100 times a sec. →

1 pulse every 1/100 sec

Variations within each period → Vocal tract shape (vowel quality)
Sound waves

CONSONANTS
- smaller amplitude
- irregular vibrations in air pressure
- Vocal folds do not vibrate (voiceless C).

VOWELS
- large regular pulses of air pressure
- Vocal folds vibrate.
PlACES OF ARTICULATORY GESTURES

- Articulators: parts of the vocal tract used to form sounds
- Articulators forming the lower surface of the vocal tract
 - are highly mobile
 - move towards articulators that form the upper surface

Exercise: Try saying the word “capital” and note the major movements of your tongue and lips.
Parts of the upper surface of the vocal tract

Soft palate/velum: muscular flap that can be raised to press against the back wall of the pharynx and shut off the nasal tract, preventing air from going out through the nose (**velic closure**).
Parts of the lower surface of the vocal tract:

- lower lip
- lower teeth
- tip
- blade
- tongue
- back
- center
- front
- root
- epiglottis
Άνω αρθρωτές – Upper articulators
Terms in Greek & English

- χείλος – lip
- οδόντες – teeth
- φατνία – alveolar ridge
- ουρανίσκος – hard palate
- υπερώα – soft palate/velum
- σταφυλή – uvula
Kάτω αρθρωτές – Lower articulators
Terms in Greek & English

- κάτω χείλος (bottom lip)
- κάτω οδόντες (bottom teeth)
- άκρο (tip)
- προράχη (blade)
- πρόσθιο τμήμα (front)
- κέντρο (center)
- ράχη (back/dorsum)
- ρίζα (root)
- επιγλωττίδα (epiglottis)
Examples

- **“peculiar”**
 1. lips come together
 2. back and center of the tongue are raised (towards hard palate or velum?)
 3. tip of the tongue on alveolar ridge

- **“true”** vs. **“tea”**

- **“sigh”** vs. **“shy”**
Tongue depiction

- Mid-sagittal vs. 3D view

Takano & Honda (2007)
3D tongue depiction

“It ran a lot”

Young & Stone (2002)
Basic places of consonant articulation

- In order to form consonants, the airstream through the vocal tract must be **obstructed** in some way.
- Consonants can be **classified** according to the place and manner of this **obstruction**.
Basic places of consonant articulation

<table>
<thead>
<tr>
<th>Articulator</th>
<th>Articulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>lips</td>
<td>labial</td>
</tr>
<tr>
<td>tongue tip and blade</td>
<td>coronal</td>
</tr>
<tr>
<td>back of the tongue</td>
<td>dorsal</td>
</tr>
</tbody>
</table>

Example: “topic”
Places of consonant articulation

LABIAL ARTICULATION

- **bilabial**
 The two lips come together.
 - *pie, buy, my*
- **labiodental**
 The lower lip is raised and nearly touches the upper front teeth.
 - *fie, vie*

CORONAL ARTICULATION

- **dental**
 Tongue tip/blade protruding between upper and lower teeth (**interdental**) or close behind the upper front teeth
 - *thigh, thy*
Places of consonant articulation

CORONAL ARTICULATION (cont’d)

- **alveolar**
 tip/blade of the tongue
 at the alveolar ridge
 tie, die, nigh
 sigh, zeal
 lie

- **retroflex**
 tongue tip at the back of alveolar ridge
 rye, row, ray / ire, hour, air

- **palato-alveolar** or **post-alveolar**
 tongue blade at the back of alveolar ridge
 shy, she, show

Tip: Articulate and hold the position while taking breath in...
Places of consonant articulation

CORONAL / DORSAL ARTICULATION

- **palatal**
 - front of the tongue at hard palate
 - *you*

DORSAL ARTICULATION

- **velar**
 - back of the tongue at soft palate
 - *hack, hag, hang*

Example:

fee \rightarrow theme \rightarrow see \rightarrow she
labiodental \rightarrow (inter)dental \rightarrow alveolar \rightarrow palato-alveolar
The oro-nasal process

- In most speech, the soft palate is raised so that there is a velic closure (oral sounds).

- During production of nasal sounds:
 - There is an obstruction in the mouth.
 - The velum is lowered so that air escapes through the nasal cavity.

Example:
- rang → ran → ram
- velar → alveolar → bilabial
Manners of articulation

- At most places of articulation, there are several ways in which articulatory gestures can be accomplished.
 - Oral tract may close off
 - for an instant
 - for a longer period
 - The articulators may
 - narrow the space considerably
 - simply approach each other
Manners of articulation: stop

- Complete closure of articulators involved so that the airstream cannot escape through the mouth.

- Types of stops:
 - oral stop
 - nasal stop
Oral stop

- Articulatory closure in the mouth
- The nasal tract is blocked off (raised soft palate)
- Pressure in the mouth builds up
- Airstream is released → burst → plosives

Example:
- pie, buy →
- tie, dye →
- kye, guy →
- bilabial →
- alveolar →
- velar →
Nasal stop

- Articulatory closure in the mouth
- Lowered soft palate \rightarrow air goes through nasal cavity
- Usually:
 - stop = oral stop
 - nasal = nasal stop

Example: my \rightarrow nigh \rightarrow hang
 bilabial \rightarrow alveolar \rightarrow velar
Oral vs. Nasal stop

Oral

Nasal
Fricative

- close approximation of two articulators
- airstream is partially obstructed
- turbulent airflow is produced (hissing sound - noise)

Example: fie, vie → thigh, thy → sigh, zoo → shy
labiodental → dental → alveolar → palato-alveolar
Approximant

- approximation of two articulators
- vocal tract not narrowed to such an extent that turbulent airstream is produced

Example: yacht \(\rightarrow\) we \(\rightarrow\) raw
palatal \(\rightarrow\) labial-velar \(\rightarrow\) alveolar

Anna Sfakianaki, CS-578, University of Crete
Lateral (approximant)

- obstruction of airstream at a point along the center of the oral tract
- incomplete closure between one or both sides of the tongue and the roof of the mouth
- air flows freely over the side of the tongue

Example: lie, laugh, hill alveolar
Additional consonant gestures

- **tongue-tip trill** (roll)
 rye, raw (Scottish English)

- **tap** (flap)
 poζ (Greek /r/) or *pitty* (American English)

- **affricate** (stop + fricative)
 church, judge

- **glottal stop** [ʔ]
 flee east vs. fleeced
Summary

Consonants are described in terms of five factors

1. state of vocal folds (voiced/voiceless)
2. place of articulation
3. central or lateral articulation
4. soft palate raised or lowered (oral/nasal)
5. manner of articulation

Exercise

- sing
 1. voiceless
 2. alveolar
 3. central
 4. oral
 5. fricative

- sing
 1. voiced
 2. velar
 3. central
 4. nasal
 5. stop
Phonetic chart of English consonants

<table>
<thead>
<tr>
<th></th>
<th>bilabial</th>
<th>labiodental</th>
<th>dental</th>
<th>alveolar</th>
<th>Alveolo-palatal</th>
<th>palatal</th>
<th>velar</th>
</tr>
</thead>
<tbody>
<tr>
<td>nasal</td>
<td>m</td>
<td></td>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td>nj</td>
</tr>
<tr>
<td>stop</td>
<td>p</td>
<td>b</td>
<td>t</td>
<td>d</td>
<td></td>
<td>k</td>
<td>g</td>
</tr>
<tr>
<td>fricative</td>
<td>f</td>
<td>v</td>
<td>θ</td>
<td>ð</td>
<td>s</td>
<td>z</td>
<td>j 3</td>
</tr>
<tr>
<td>(central) approximant</td>
<td>(w)</td>
<td></td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lateral (approximant)</td>
<td></td>
<td></td>
<td>l</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Waveforms of Consonants

"my two boys know how to fish"
Waveforms of Consonants
Waveform of /t/ vs. /d/

/th/
- spike indicating noise burst
- after burst very small semi-random variations during the aspiration

/d/
- no spike, smaller noise burst
- very little gap between burst and vowel start
/t/ vs. /d/

- Difference of /t/ vs. /d/ in duration of previous vowel
- Vowels are much shorter before voiceless /p, t, k/ than voiced /b, d, g/.
Voice Onset Time (VOT) is the duration of the period of time between the release of a plosive and the beginning of vocal fold vibration. This period is usually measured in milliseconds (ms).
VOT (Voice Onset Time)

- **Positive VOT**: where there is a delay in the onset of vocal fold vibration after the plosive release.
- **Zero VOT**: where the onset of vocal fold vibration coincides (approximately) with the plosive release.
- **Negative VOT**: where the onset of vocal fold vibration precedes the plosive release.
The articulation of vowel sounds

- Articulators do not come very close together → the passage of the airstream is relatively unobstructed.

- We describe vowel sounds in terms of
 - the position of the highest point of the tongue
 - the position of the lips.
Tongue position
UCLA tongue video

- X ray video of tongue and lip movement during production of vowels /i, e, a, o, u/.

Video: http://www.phonetics.ucla.edu/vowels/chapter11/tongue.html
Targets for vowel gestures

1. heed
2. hid
3. head
4. had
5. father
6. good
7. food
Front vowels

- The highest point of the tongue is in the front of the mouth.
- The mouth becomes progressively more open.
- The tongue remains in the front.

1. heed: high front
2. hid: mid-high front
3. head: mid-low front
4. had: low front
Back vowels

- The tongue is close to the back surface of the vocal tract.

5. father: low back
6. good: mid high back
7. food: high back
Lip rounding

- In **good** and **food** there is movement of the lips called lip rounding.

Unrounded vowels
- heed, hid, head, had, father

Rounded vowels
- good, food
Articulatory description of vowels

1. **height** of tongue body
2. **front-back** position of the tongue
3. degree of lip **rounding**

[i] [e] [a]

[i] [u]
Articulatory description of vowels

- Very difficult to become aware of the position of the tongue in vowels.
- Get some impression of tongue height by observing position of jaw while saying the vowels in “heed, hid, head, had”.
- Compare he vs. who → Feel your tongue going from front to back and feel your lips become more rounded.
UCLA jaw and larynx videos

http://www.phonetics.ucla.edu/vowels/chapter11/chapter11.html
Relative positions of highest points of the tongue

- Specification of vowels in these terms is not so satisfactory.

- Vowels classified as “high” do not have same height (see 1 vs. 7).
- “Back” vowels vary in their degree of backness (see 5, 6, 7).
- Shape of the tongue and pharynx width are not taken into account.
Suprasegmentals

- Vowels & Consonants = Segments
- Segments → Syllables → Utterances
- Suprasegmentals:
 - Features superimposed on the syllables
 - They can affect single segments as well as whole syllables.
Stress can have a grammatical function

- an 'insult - to in'sult (noun - verb)
- a 'walkout - to 'walk 'out (noun - verb)
- a 'hot dog - a 'hot 'dog (compound noun – adjective+noun)
- 'diplomat → di'plomacy → diplo'matic
- 'photograph → pho'tography → photo'graphic
- 'monotone → mo'notony → mono'tonic

Contrastive Stress

- I want a red pen, not a black one.
Stress

Stress in English is produced by

1. increased activity in the respiratory muscles, producing greater loudness
2. exaggeration of consonant and vowel properties (vowel height, stop aspiration)
3. exaggeration of pitch
Pitch

- Pitch of the voice is what you alter to sing different notes in a song.

- The pitch of a sound is an auditory property that enables a listener to put it on a scale going from low to high.

- When a speech sound goes up in frequency, it also goes up in pitch.
Intonation

- The **pitch pattern** in a sentence is known as intonation.

- This is my father. statement

- Is this your father? question
Intonation

- That’s a cat. statement
- That’s a cat? question

- It is the **relative values** of pitch, length, or degree of stress of an item that are significant.
- The absolute values are never linguistically important!
Read & visit…

- Visit the websites:
 - http://soundsofspeech.uiowa.edu/index.html#english (Interactive Phonetic Library for American English, Spanish and German)
 - http://smu-facweb.smu.ca/~s0949176/sammy/(Interactive Sagittal Section)
 - https://corpus.linguistics.berkeley.edu/acip/course/chapter1/ (Material from UC Berkeley Linguistics for chapter 1 of the book “A course in phonetics”)