NEURAL NETWORK APPLICATIONS IN SPEECH ENHANCEMENT

ESR9: Muhammed Shifas PV

University of Crete, Dept of Computer Science shifaspv@csd.uoc.gr

> hy578: Voice Processsing Crete, April.5

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

OUTLINE

1 The Speech denoising Task

2 Waveform domain models: WaveNet and FFTNet

・ロト ・ 一下・ ・ ヨト ・ ヨト

OUTLINE

1 The Speech denoising Task

2 WAVEFORM DOMAIN MODELS: WAVENET AND FFTNET

ヘロト ヘ部ト ヘヨト ヘヨト

SPEECH DENOISING

• **Speech Denoise**: A common terms used on dealing with the non-speech interference

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

TRADITIONAL SIGNAL PROCESSING APPROACH

- The noise and speech in the mixuture will vary over the time
- The intensity of noise variations will be lower compared to the speech
- Traditional Approach: Estimate the variations of the noise over time and subtract.

-Spectral Substractions

-Wiener filtering

Input:

shifaspv@csd.uoc.gr

・ロト ・ 一日 ・ ・ 日 ・

Conclusion

THE PRACTICAL CONSTRAINTS

・ロト ・ 同ト ・ ヨト ・ ヨト

CONVOLUTIONAL AND LSTM SE MODEL

• Temporal recurency was achieved through a Fully Connected LSTM unit followed the casual convolution

¹Naithani, Gaurav, et al. "Low latency sound source separation using convolutional recurrent neural networks." 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA). IEEE, 2017. (2) 2 3 (2) 3

- The Network has low latency; frame size processing at each instent is 5ms.
- The 160 point FFT is calculated and the magnitude of half of these points are processed: since spectral symmetry.
- The noisy phase is used for reconstruction of the clean prediction at the output.
- The input is the noisy speech spectrogram (X(t, f)) and objective is to get clean output

THE TARGET: MAKER TRAINING

$$Target: M(t,f) = \frac{Y(t,f)}{Y(t,f) + N(t,f)}$$
(1)

Manual Post Processing:

$$Y(t,f) = M(t,f) * X(t,f)$$
⁽²⁾

shifaspv@csd.uoc.gr

Neural Models

Conclusion

MODEL LAYER DETAILS

$\mathrm{TABLE} : \ \mathsf{Model} \ \mathsf{Parameter} \ \mathsf{count}$

Layer	Kernal size	Params
Convolution	[3X3]	1X[3X3]X256
Convolution	[3X3]	256X[3X3]X256
Convolution	[3X3]	256X[3X3]X256
FC-LSTM	[80X256]	[80X256]X256X 11
FC-Layer	[256X81]	[256X81]
Total		12 Million

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □

Neural Models

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

PROPOSED RECURRENT CONVOLUTION SE MODEL

- Temporal recurrency is being modeled while extracting the feature through the convolutional layter
- As the convolutional recurrency is less computational demanding the model is compressed up to 60%, which is benificial for applications like Hearing Aids.
 Shifaspy@csd.uoc.gr

つへで 12/25

Conclusion

MODEL LAYER DETAILS

TABLE: Model Parameter count Kernal size Params Layer Convolution [3X3] 1X[3X3]X256 3X[3X3]X256 Conv-LSTM [3X3] 3X[3X3]X256 Conv-LSTM [3X3] [256X81] [256X81] FC-Layer Total 4 Million

イロト イポト イヨト イヨト

э

THE TARGET: MAKER TRAINING

$$Target: M(t, f) = \frac{Y(t, f)}{Y(t, f) + N(t, f)}$$
(3)

Manual Post Processing:

$$Y(t,f) = M(t,f) * X(t,f)$$
(4)

shifaspv@csd.uoc.gr

Neural Models

(日)、<部)、<注)、<注)、<注)、</p>

Conclusion

THE PROCESSED SAMPLES

< 口 > < 圖 > < 图 > < 图 > < 图 > < 图 > < 图 > < 图 > < 图 > < 图 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

OUTLINE

1 The Speech denoising Task

2 Waveform domain models: WaveNet and FFTNet

3 CONCLUSION

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- Neural models are grown up to operates in the sample domain.
- It was not pissible initially since the implementational constraints like gradient vanishing
- Now the Resideual Network baypass the vanishing gradient
- WaveNet and FFTNet are the existing sample domain models as Vocoders (TTS)^a
- It models the dependency of a sample at *t* on the *r* previous samples as:

$$f(y_t|x_{t-1},\ldots,x_{t-r}) \tag{5}$$

ヘロア ヘロア ヘビア ヘビア

• This conditional dependency is being achieved by different architecture for WaveNet and FFTNet

^ahttps://deepmind.com/blog/wavenet-generative-model-raw-audio/

- Neural models are grown up to operates in the sample domain.
- It was not pissible initially since the implementational constraints like gradient vanishing
- Now the Resideual Network baypass the vanishing gradient
- WaveNet and FFTNet are the existing sample domain models as Vocoders (TTS)^a
- It models the dependency of a sample at *t* on the *r* previous samples as:

$$f(y_t|x_{t-1},\ldots,x_{t-r}) \tag{5}$$

ヘロア ヘロア ヘビア ヘビア

• This conditional dependency is being achieved by different architecture for WaveNet and FFTNet

^ahttps://deepmind.com/blog/wavenet-generative-model-raw-audio/

- Neural models are grown up to operates in the sample domain.
- It was not pissible initially since the implementational constraints like gradient vanishing
- Now the Resideual Network baypass the vanishing gradient
- WaveNet and FFTNet are the existing sample domain models as Vocoders (TTS)^a
- It models the dependency of a sample at *t* on the *r* previous samples as:

$$f(y_t|x_{t-1},\ldots,x_{t-r}) \tag{5}$$

ヘロア ヘロア ヘビア ヘビア

• This conditional dependency is being achieved by different architecture for WaveNet and FFTNet

^ahttps://deepmind.com/blog/wavenet-generative-model-raw-audio/

- Neural models are grown up to operates in the sample domain.
- It was not pissible initially since the implementational constraints like gradient vanishing
- Now the Resideual Network baypass the vanishing gradient
- WaveNet and FFTNet are the existing sample domain models as Vocoders (TTS)^a
- It models the dependency of a sample at *t* on the *r* previous samples as:

$$f(y_t|x_{t-1},\ldots,x_{t-r}) \tag{5}$$

・ロン ・雪と ・ヨン ・ヨン

 This conditional dependency is being achieved by different architecture for WaveNet and FFTNet

^ahttps://deepmind.com/blog/wavenet-generative-model-raw-audio/

- Neural models are grown up to operates in the sample domain.
- It was not pissible initially since the implementational constraints like gradient vanishing
- Now the Resideual Network baypass the vanishing gradient
- WaveNet and FFTNet are the existing sample domain models as Vocoders (TTS)^a
- It models the dependency of a sample at t on the r previous samples as:

$$f(y_t|x_{t-1},\ldots,x_{t-r}) \tag{5}$$

・ロン ・雪と ・ヨン ・ヨン

• This conditional dependency is being achieved by different architecture for WaveNet and FFTNet

^ahttps://deepmind.com/blog/wavenet-generative-model-raw-audio/

- Neural models are grown up to operates in the sample domain.
- It was not pissible initially since the implementational constraints like gradient vanishing
- Now the Resideual Network baypass the vanishing gradient
- WaveNet and FFTNet are the existing sample domain models as Vocoders (TTS)^a
- It models the dependency of a sample at t on the r previous samples as:

$$f(y_t|x_{t-1},\ldots,x_{t-r}) \tag{5}$$

・ロマ ・雪マ ・ヨマ

• This conditional dependency is being achieved by different architecture for WaveNet and FFTNet

^ahttps://deepmind.com/blog/wavenet-generative-model-raw-audio/

THE WAVENET ARCHITECTURE

FIGURE: Causal Wavenet architecture

(日) (同) (三) (三) (三)

Э

THE FFTNET ARCHITECTURE

noisy speech samples (16KHz)

FIGURE: Causal FFTNet architecture

< ∃ >

- Causal architecture: current sample is generated by considering past dependencies
- Target is the intelliginility enhanced samples (SSDRC modfied) of the clean speech corresponding to a noisy signal

The loss function

• Loss function: Mean Absolute Error (time domain):

$$L(x^{(k)}, y^{(k)}) = \frac{1}{T^{(k)} - 2r} \sum_{t=r}^{T^{(k)} - r} |y_t^{(k)} - \hat{y}_t^{(k)}|$$

イロト イポト イヨト イヨト

- Causal architecture: current sample is generated by considering past dependencies
- Target is the intelliginility enhanced samples (SSDRC modfied) of the clean speech corresponding to a noisy signal

The loss function

• Loss function: Mean Absolute Error (time domain):

$$L(x^{(k)}, y^{(k)}) = \frac{1}{T^{(k)} - 2r} \sum_{t=r}^{T^{(k)} - r} |y_t^{(k)} - \hat{y}_t^{(k)}|$$

(日) (同) (三) (三) (三)

- Causal architecture: current sample is generated by considering past dependencies
- Target is the intelliginility enhanced samples (SSDRC modfied) of the clean speech corresponding to a noisy signal

The loss function

• Loss function: Mean Absolute Error (time domain):

$$L(x^{(k)}, y^{(k)}) = \frac{1}{T^{(k)} - 2r} \sum_{t=r}^{T^{(k)} - r} |y_t^{(k)} - \hat{y}_t^{(k)}|$$

(日) (同) (三) (三) (三)

- Causal architecture: current sample is generated by considering past dependencies
- Target is the intelliginility enhanced samples (SSDRC modfied) of the clean speech corresponding to a noisy signal

The loss function

• Loss function: Mean Absolute Error (time domain):

$$L(x^{(k)}, y^{(k)}) = \frac{1}{T^{(k)} - 2r} \sum_{t=r}^{T^{(k)} - r} |y_t^{(k)} - \hat{y}_t^{(k)}|$$

イロト 不得 トイヨト イヨト 二日

DATA

- \bullet Noisy and clean files has been selected from NSDTSEA dataset^2
- It consists of 20 native speakers speaking 400 different sentences
- Noisy set composed of 20 different environmental noises mixed with clean speech with different SNR points

²Valentini-Botinhao, Cassia. "Noisy speech database for training speech enhancement algorithms and TTS models." (2017) ← □ ► ← Ξ ► ← = − ← =

INTELLIGIBILITY IN SSN & SWN

(日)

Conclusion

OUTLINE

1 The Speech denoising Task

2 Waveform domain models: WaveNet and FFTNet

・ロト ・四ト ・ヨト ・ヨト

Э

PART.I: SPEECH DENOISING MODELS

- Peroposed a recurrent convolutional architecture for speech denoising
- The model parameters being reduced considerably (50-60%) compared to traditional method while maintaining the perfromance
- It has the potential to be implemented in the DSP processor for hearing aid.

PART.II: SPEECH INTELLIGIBILITY ENHANCER

- Proposed two neural network models (WaveNet & FFTNet) for the task of real-life speech (noisy speech) intelligibility enhancement.
- The FFTNet performes better than WaveNet model in task.

• The FFTNet is outperfromed the traditional WBSSDRC

shifaspv@csd.uoc.gr

Neural Models

୬ ଏ ୯ 24/25

PART.I: SPEECH DENOISING MODELS

- Peroposed a recurrent convolutional architecture for speech denoising
- The model parameters being reduced considerably (50-60%) compared to traditional method while maintaining the perfromance
- It has the potential to be implemented in the DSP processor for hearing aid.

PART.II: SPEECH INTELLIGIBILITY ENHANCER

- Proposed two neural network models (WaveNet & FFTNet) for the task of real-life speech (noisy speech) intelligibility enhancement.
- The FFTNet performes better than WaveNet model in task.

• The FFTNet is outperfromed the traditional WBSSDRC

shifaspv@csd.uoc.gr

PART.I: SPEECH DENOISING MODELS

- Peroposed a recurrent convolutional architecture for speech denoising
- The model parameters being reduced considerably (50-60%) compared to traditional method while maintaining the perfromance
- It has the potential to be implemented in the DSP processor for hearing aid.

PART.II: SPEECH INTELLIGIBILITY ENHANCER

- Proposed two neural network models (WaveNet & FFTNet) for the task of real-life speech (noisy speech) intelligibility enhancement.
- The FFTNet performes better than WaveNet model in task.

• The FFTNet is outperfromed the traditional WBSSDRC

shifaspv@csd.uoc.gr

Neural Models

୬ ଏ ୯ 24/25

PART.I: SPEECH DENOISING MODELS

- Peroposed a recurrent convolutional architecture for speech denoising
- The model parameters being reduced considerably (50-60%) compared to traditional method while maintaining the perfromance
- It has the potential to be implemented in the DSP processor for hearing aid.

PART.II: SPEECH INTELLIGIBILITY ENHANCER

 Proposed two neural network models (WaveNet & FFTNet) for the task of real-life speech (noisy speech) intelligibility enhancement.

• The FFTNet performes better than WaveNet model in task.

• The FFTNet is outperfromed the traditional WBSSDRC

PART.I: SPEECH DENOISING MODELS

- Peroposed a recurrent convolutional architecture for speech denoising
- The model parameters being reduced considerably (50-60%) compared to traditional method while maintaining the perfromance
- It has the potential to be implemented in the DSP processor for hearing aid.

PART.II: SPEECH INTELLIGIBILITY ENHANCER

- Proposed two neural network models (WaveNet & FFTNet) for the task of real-life speech (noisy speech) intelligibility enhancement.
- The FFTNet performes better than WaveNet model in task.

• The FFTNet is outperfromed the traditional WBSSDRC

PART.I: SPEECH DENOISING MODELS

- Peroposed a recurrent convolutional architecture for speech denoising
- The model parameters being reduced considerably (50-60%) compared to traditional method while maintaining the perfromance
- It has the potential to be implemented in the DSP processor for hearing aid.

PART.II: SPEECH INTELLIGIBILITY ENHANCER

- Proposed two neural network models (WaveNet & FFTNet) for the task of real-life speech (noisy speech) intelligibility enhancement.
- The FFTNet performes better than WaveNet model in task.

• The FFTNet is outperfromed the traditional WBSSDRC shifaspv@csd.uoc.gr

Conclusion

Thank You

shifaspv@csd.uoc.gr

Neural Models

