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o Speech Denoise: A common terms used on dealing with the
non-speech interference
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The Speech denoising Task Waveform domain models: WaveNet and FFTNet Conclusion

TRADITIONAL SIGNAL PROCESSING APPROACH

@ The noise and speech in the mixuture will vary over the time

@ The intensity of noise variations will be lower compared to the
speech
o Traditional Approach: Estimate the variations of the noise
over time and subtract.
-Spectral Substractions

-Wiener filterin
Input: & Output:
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The Speech denoising Task Waveform domain models: WaveNet and FFTNet Conclusion

CONVOLUTIONAL AND LSTM SE MODEL

Conv-1 Conv-2 FC-LSTM

[YVY

output

0
* ottt ¢ t ottt

0‘2t3

FIGURE: The convolutional LSTM model architecture!

1

@ Temporal recurency was achieved through a Fully Connected
LSTM unit followed the casual convolution

!Naithani, Gaurav, et al. " Low latency sound source separation using
convolutional recurrent neural networks.” 2017 IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics (WASPAA). IEEE, 2017.
shifaspv@csd.uoc.gr Neural Models 7/25



The Speech denoising Task Waveform domain models: WaveNet and FFTNet Conclusion

@ The Network has low latency; frame size processing at each
instent is bms.

@ The 160 point FFT is calculated and the magnitude of half of
these points are processed: since spectral symmetry.

@ The noisy phase is used for reconstruction of the clean
prediction at the output.

@ The input is the noisy speech spectrogram (X(t,f)) and
objective is to get clean output
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Target : M(t,f) =

Y(t,f)
Y(t,f)+ N(t,f) (1)
Manual Post Processing:
Y(t,f) = M(t,f) = X(t,f) (2)
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The Speech denoising Task

MODEL LAYER DETAILS

TABLE: Model Parameter count

Layer Kernal size Params
Convolution [3X3] 1X[3X3]X256
Convolution [3X3] 256X[3X3]X256
Convolution [3X3] 256X[3X3]X256

FC-LSTM  [80X256]  [80X256]X256X 11
FC-layer  [256X81] [256X81]

Total 12 Million
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The Speech denoising Task Waveform domain models: WaveNet and FFTNet Conclusion

PROPOSED RECURRENT CONVOLUTION SE MODEL

RecConv-1
RecConv-2 Fully
Connected

t t, t
° bttt tototot bt bl o
FIGURE: Recurrent convolutional layer architecture

@ Temporal recurrency is being modeled while extracting the
feature through the convolutional layter

@ As the convolutional recurrency is less computational
demanding the model is compressed upto 60%, which is
benificial for applications like Hearin%‘Aids.
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The Speech denoising Task Waveform domain models: WaveNet and FFTNet Conclusion

MODEL LAYER DETAILS

TABLE: Model Parameter count

Layer Kernal size Params

Convolution [3X3] 1X[3X3]X256

Conv-LSTM  [3X3]  3X[3X3]X256

Conv-LSTM  [3X3]  3X[3X3]X256
FC-Layer [256X81] [256X81]

Total 4 Million

shifaspv@csd.uoc.gr Neural Models 13/25



Target : M(t,f) =

Y(t,f)
Y(t,f)+ N(t,f) (3)
Manual Post Processing:
Y(t,f) = M(t,f) = X(t,f) (4)
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o Neural models are grown up to operates in the sample domain.

@ |t was not pissible initially since the implementational
constraints like gradient vanishing

e Now the Resideual Network baypass the vanishing gradient

@ WaveNet and FFTNet are the existing sample domain models
as Vocoders (TTS)?

@ It models the dependency of a sample at t on the r previous
samples as:

F(yelxe—1,- s xe—r) (5)

e This conditional dependency is being achieved by different
architecture for WaveNet and FFTNet
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Waveform domain models: WaveNet and FFTNet

SAMPLE DOMAIN MODELS
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Intelligibility enhanced samples (16KHz)

FIGURE: Causal Wavenet architecture
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Intelligibility enhanced samples (16KHz)

O00O00OOO0OOOLOOOOOO

noisy speech samples (16KHz)

FIGURE: Causal FFTNet architggtyrgﬁ
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o Causal architecture: current sample is generated by
considering past dependencies

e Target is the intelliginility enhanced samples (SSDRC

modfied) of the clean speech corresponding to a noisy signal
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The Speech denoising Task Waveform domain models: WaveNet and FFTNet Conclusion

MODEL DETAILS

o Causal architecture: current sample is generated by
considering past dependencies

e Target is the intelliginility enhanced samples (SSDRC
modfied) of the clean speech corresponding to a noisy signal
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Waveform domain models: WaveNet and FFTNet

MODEL DETAILS

o Causal architecture: current sample is generated by
considering past dependencies

e Target is the intelliginility enhanced samples (SSDRC
modfied) of the clean speech corresponding to a noisy signal

THE LOSS FUNCTION
e Loss function: Mean Absolute Error (time domain):

THR —p

Ky (k)Y _ 1 (k) _ oK)
L(X( )’y( ))—m ; e =9
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The Speech denoising Task Waveform domain models: WaveNet and FFTNet Conclusion

DATA

o Noisy and clean files has been selected from NSDTSEA
dataset?

@ It consists of 20 native speakers speaking 400 different
sentences

o Noisy set composed of 20 different environmental noises
mixed with clean speech with different SNR points

2Valentini-Botinhao, Cassia. " Noisy speech database for training speech
enhancement algorithms and TTS models.” (2017)
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~ The Speech denoising Task  Waveform domain models: WaveNet and FFTNet  Conclusion
@ Peroposed a recurrent convolutional architecture for speech
denoising
e The model parameters being reduced considerably (50-60%)
compared to traditional method while maintaining the
perfromance

@ It has the potential to be implemented in the DSP processor
for hearing aid.

@ Proposed two neural network models (WaveNet & FFTNet)
for the task of real-life speech (noisy speech) intelligibility
enhancement.

@ The FFTNet performes better than WaveNet model in task.

@ The FFTNet is outperfromed the traditional WBSSDRC nac
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The Speech denoising Task

Waveform domain models: WaveNet and FFTNet

Conclusion

Thank You
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