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Formulas and definitions

A d-dimensional random variable follows a Gaussian, or
Normal, probability law: x → N (µ,Σ)

g(µ,Σ)(x) =
1

√
2π

d√
det (Σ)

e−
1
2

(x−µ)T Σ−1(x−µ)

where µ is the mean vector and Σ is the variance-covariance
matrix.

If x → N (0, I ) and if y =
√

Σ x + µ, then y → N (µ,Σ).√
Σ defines the standard deviation of the random variable x .

Note this square root is meant in the matrix sense.
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Formulas and definitions

Mean estimator :

µ̂ =
1

N

N∑
i=1

xi

Unbiased covariance estimator :

Σ̂ =
1

N − 1

N∑
i=1

(xi − µ)(xi − µ)T
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Likelihood :
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identically distributed (i.i.d.) points
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Formulas and definitions

Log likelihood :

p(X |θ) =
N∏

i=1

p(xi |θ) ⇔ log p(X |θ) =
N∑

i=1

log p(xi |θ)

In the Gaussian case:

p(x |θ) =
1

√
2π

d√
det (Σ)

e−
1
2

(x−µ)T Σ−1(x−µ)

log p(x |θ) = −d

2
log (2π)− 1

2
log (det (Σ))− 1

2
(x − µ)T Σ−1(x − µ)

Property:

p(x |θ1) > p(x |θ2) ⇔ log p(x |θ1) > log p(x |θ2)
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Formulas and definitions

Bayes’ decision rule :

X ∈ qk if P(qk |X ,Θ) ≥ P(qj |X ,Θ), ∀j 6= k

with P(qk |X ,Θ) being a posteriori probability (while P(qk |Θ)
is the a priori probability) for classes qk . Note Θ represents
the set of all θ.
A posteriori probability :

P(qk |X ,Θ) =
p(X |qk ,Θ)P(qk |Θ)

p(X |Θ)

(Bayes’ law)
For speech :

∀k, P(qk |X ,Θ) ∝ p(X |qk ,Θ)P(qk |Θ)

or in log domain :

log P(qk |X ,Θ) ' log p(X |qk ,Θ) + log P(qk |Θ)
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Preliminaries

All unsupervised training algorithm assume:

a set of models qk (not necessarily Gaussian), defined by some
parameters Θ (means, variances, priors,...);

a measure of membership, telling to which extent a data point
“belongs” to a model;

the above implicitly defines global criterion of “goodness of
fit” of the models to the data, e.g. :

in the case of a distance, the models that are globally closer
from the data characterize it better;
in the case of a probability measure, the models bringing a
better likelihood for the data explain it better.

a “recipe” to update the model parameters in function of the
membership information.
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K-means algorithm

Start with K initial prototypes µk , k = 1, · · · ,K .

Do :
1 For each data-point xn, n = 1, · · · ,N, compute:

dk(xn) = (xn − µk)T (xn − µk)

2 Assign each data-point xn to its closest prototype µk , i.e.
assign xn to the class qk if :

dk(xn) ≤ dl(xn), ∀l 6= k

3 Replace each prototype with the mean of the data-points
assigned to the corresponding class;

4 Go to 1.

Until : no further change occurs.
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K-means algorithm

Global criterion :

J =
K∑

k=1

∑
xn∈qk

dk(xn)



Viterbi-EM algorithm for Gaussians

Assume K initial Gaussian models N (µk ,Σk), k = 1 · · ·K ,
and initial prior probabilities P(qk) = 1/K .
Do :

1 Classify each data-point to its most probable cluster q
(old)
k

using Bayes’ rule.
2 Update the parameters :

update the means :

µ
(new)
k = mean of the points belonging to q

(old)
k

update the variances :

Σ
(new)
k = variance of the points belonging to q

(old)
k

update the priors :

P(q
(new)
k |Θ(new)) =

number of training points belonging to q
(old)
k

total number of training points

3 Go to 1.

Until : no further change occurs.
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Viterbi-EM algorithm for Gaussians

Global criterion :

L(Θ) =
K∑

k=1

∑
xn∈qk

log p(xn|Θk)



EM algorithm for Gaussian clustering

Assume K initial models N (µk ,Σk), with P(qk) = 1/K .
Do :

1 Estimation step :

P(q
(old)
k |xn,Θ

(old)) =
P(q

(old)
k |Θ(old)) · p(xn|µ(old)

k ,Σ
(old)
k )∑

j P(q
(old)
j |Θ(old)) · p(xn|µ(old)

j ,Σ
(old)
j )

2 Maximization step :
update the means :

µ
(new)
k =

∑N
n=1 xnP(q

(old)
k |xn,Θ

(old))∑N
n=1 P(q

(old)
k |xn,Θ(old))

update the variances :

Σ
(new)
k =

∑N
n=1 P(q

(old)
k |xn,Θ

(old))(xn − µ(new)
k )(xn − µ(new)

k )T∑N
n=1 P(q

(old)
k |xn,Θ(old))

update the priors :

P(q
(new)
k |Θ(new)) =

1

N

N∑
n=1

P(q
(old)
k |xn,Θ

(old))

3 Go to 1.

Until : total likelihood doesn’t increase.
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EM algorithm for Gaussian clustering

Global criterion :

L(Θ) = log
K∑

k=1

P(qk |X ,Θ)p(X |Θ)
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