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INTRODUCTION

(]

Types of noise: Additive and Convolutional

Speech distortion
Enhancement foundations:

o Spectral Subtraction,
o Cepstral Mean Subtraction
o Wiener Filter

(]

Enhanced speech judgements: by humans, by machines
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ADDITIVE NOISE

@ A discrete-time noisy sequence:

yln] = x[n] + bn]

with power spectra:
Sy(w) = Sx(w) + Sp(w)
Working with STFT:
ypr[n] = wlpL — n](x[n] + b[n])

in the frequency domain:

(]

Y (pL,w) = X(pL,w) + B(pL,w)
o Our target:
X(pL,w) = |X(pL,w)[e<Y (L)
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CONVOLUTIONAL DISTORTION

@ A discrete-time convolutional distorted sequence:

yln] = x[n]  g[n]

where g[n] is the impulse response of a linear time-invariant
distortion filter.

@ Working with a frame-by-frame analysis:
Ypi[n] = wlpL — n](x[n] * g[n])
@ In the frequency domain, we can show that:

Y(pL,w) = X(pL,w)G(w)



STANDARD SPECTRAL SUBTRACTION

Assuming that noise and target (object) signal are uncorrelated:

o Estimate of object’s short-time squared spectral magnitude

R(pLw)? = [Y(pLw)2 = Spw) if | (pL,w)? — Sp(w) = 0
=0 otherwise

o STFT estimate:

X(pL,w) = [X(pL,w)|e/“Y (PL)
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@ We can show:
(X(pL,w)? = |Y(pL,w)]* = Sp(w)
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SPECTRAL SUBTRACTION AS A FILTERING OPERATION

@ We can show:
(X(pL,w)? = |Y(pL,w)]* = Sp(w)

~ Y (pL,w)P [1 * R(plL,w)]_1

where )
R(pL,w) = M
Sp(w)

@ Suppression filter frequency response
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THE ROLE OF THE ANALYSIS WINDOW

Let x[n] = Acos (wgn) be in a stationary white noise b[n] of
variance o2 and w[n] be a short-time window. Then:
@ Average short-time signal power at wy:

0o 2

§X(pL,w0) = E[\X(pL,w0)|2] ~

@ Average power of the windowed noise

o

So(pL,w) = E[IB(pL, )2 = 0* 3 w2[n]
o Ratio at wy:
E[lY(pL,w)?] A%/4

x =14
Su(pL, wo) [02Au]

> om0 W2n]

Tl

where

w
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CEPSTRAL MEAN SUBTRACTION

Let y[n] = x[n] x g[n]. Then:
o Logarithm of the STFT of y[n]:

Y(pL,w) ~ log [X(pL,w)] + log [G(w)]
o Cepstrum:

F, *(log [X(pL,w)]) + F, *(log [G(w)])
K[n,w] + g[0,w]d[n]

Q

yin, ]

o Cepstral filter:
R[n,w] = I[n]9[n, w]

where /[n] = u[n — 1]
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WIENER FILTERING
@ Stochastic optimization:
if y[n] = x[n] + b[n], find h[n] such that X[n] = y[n] * h[n]
minimizes
e = E[IX[n] — x[n]|?]
e Frequency domain solution (Wiener filter):
H, — Se(w)
Sx(w) + Sp(w)

o Time-varying Wiener filter:

A

Ho (o) = — SX(pL,wz
SX(pI—v W) + Sb(W)
e Or
1 -1
HW(,DL,W) = |:1 + R(pr):|
where N
R(pL,w) = M

Sp(w)



COMPARING THE TWO SUPPRESSION FILTERS

Attenuation (dB)

=20 -10 0 10 20 30
Signal-to—noise (dB)

Solid line: Spectral Subtraction. Dashed-line: Wiener filter



A BASIC APPROACH

o We assume that the Wiener filter of p — 1 frame is known,
then:

A~

X(pL,w) = Y(pL,w)Hu((p — 1)L, w)

Updating the Wiener filter:

X (pL,w)[?

Hu(pL,w) = — -
(Pt [X(pL, w)|? + Sp(w)

Smooth power spectrum:

A

Se(pL,w) = 75((p — 1)L, w) + (1 — 7)5:(pL,w)

where S,(pL,w) = |X(pL,w)[?

Initialization: spectral subtraction
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ADAPTIVE SMOOTHING

@ Wiener filter estimator adapts to the “degree of stationarity”
of the measured signal.

@ A measure of the degree of stationarity

T 1/2
AY(pL) = hA[p]*[jr | 1Yt = (e - L)

@ Time varying smoothing constant:
7(p) = QIL —2(AY(pL) — KY)]
where
x, 0<x<1
QRQ(x)=4¢ 0, x<0
1, x>1

@ Smooth object spectrum:

Se(pL,w) = 7(p)Su((p — 1)L, w) + [ — 7(p)]Su(pL, w)



EXAMPLE OF ENHANCEMENT

Q T
=}
= T . :
20 Juspssieny WM
£
<-1 , . . . , . . . . ]
©
1 T T T T T T T -
0 |upetsseon WMMMW
1 : . . . ; . . . ]
2]

1_ T T T T T T T ]
_1 = 1 1 1 1 1 1 1 1 1 33
0 002 004 006 008 01 012 014 016 0.8

©



APPLICATION TO SPEECH

Satisfying enhanced speech quality with Wiener filter is obtained if:

o Window: triangular

o Frame length: 4ms

e Frame interval (rate): 1ms
@ OLA synthesis



EXAMPLE OF ENHANCEMENT IN SPEECH
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MINIMUM MEAN-SQUARE ERROR

yln] = x[n] + b[n]
compute the expected value of:
E{|X(pL,w)| | y[n]}

(Ephraim and Malah, 1984)



SUPPRESSION FILTER

@ Suppression Filter of Ephraim and Malah

Hs(pL,w)

s r(pLw)
\/;\/< 1+”/pol(PL7w) > < 1]‘[’)Yprp(Pva) )
x G [“’P’(PL"");FVVPZ((ILLZ::))%r(PL,w)}

where
G(x) = e 2[(1 + x)lo(x/2) + xl(x/2)]
@ a posteriori SNR:

W)?2 = S (w
Ypo(pL,w) = P”Y(pL’gsz) Sp(w)]

@ a priori SNR:

Yor(pL,w) = (1 —a)P[ypo(pL,w)]+
+ a\Hs((Pfl)L,vg)Y((Pfl)L,w)|2
Sp(w)




BINAURAL REPRESENTATION

Compute the enhanced signal (object) through Hs(pL,w)

Compute its complement: 1 — Hq(pL,w)

(]

Play a stereo signal: i.e., left channel for the object and right
channel it complement

Illusion: object and its complement come from different
directions, and thus there is further enhancement!!!
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MODEL-BASED PROCESSING

o Model-based Wiener Filter:

H(Ld) = ,\3#&),)\
Sx(w) + Sp(w)

@ Power spectrum estimate of speech:

N A2

SX(W) = ’1 _ Zi—l é\ke—jwk 2
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@ Maximum Likelihood, ML

max py|a(y|a)
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STOCHASTIC ESTIMATION METHODS

@ Maximum Likelihood, ML

max py|a(y|a)
e Maximum a posteriori, (MAP)

max pajy(aly)

knowing the a priori probability pa(a)
e Minimum-Mean-Squared Error, (MMSE)

mean of pay (aly)



EXAMPLE OF (L)MAP ESTIMATION FOR
ENHANCEMENT

@ Solution to the MAP problem requires solving a set of
nonlinear equations.
@ Instead we use a linearized approach of MAP:

Initial estimation of 4°

Estimate speech spectrum E[x|4°, y]

Having a speech estimate, estimate a new parameter vector 4!
Estimate speech spectrum:

e 6 ¢ o

A A2

TS, e

Estimate suppression filter:

(W)
w) + Sp(w)

make iterations



LINEARIZED MAP

Initial Estimate

éO
x[n] + b[n] Wiener > K[n]
Filter

A \
Autocorrelation
Method of
Linear Prediction

éi
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AUDITORY MASKING

Auditory masking: one sound component is concealed by the
presence of another sound component.

@ Frequency masking
@ Temporal masking
Critical band
Masking threshold
Maskee

Masker



MASKING THRESHOLD CURVE

Fixed Slope Level-Dependent Slope

Amplitude (dB)
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FREQUENCY-DOMAIN MASKING PRINCIPLES

e Physiologically-based /Psychoacoustically-based filters
o Critical Bands: Bandwidth of Psychoacoustically-based filters
e Quantized critical bands (Bark Scale):

z = 13 arctan (0.76f) + 3.5 arctan (f /7500)
e Quantized critical bands (Mel Scale):

m = 2595 log; 0(1 + £/700)



MASKING THRESHOLD CALCULATION

o Compute energy Ej in each kth bark filter in the estimated
speech spectrum (after spectral subtraction)

@ Convolve each Ej with a “spreading function” hy:
Tk = Ek * hk

@ Subtract a threshold offset depending if the masker is
noise-like or tone-like.

@ Map T to linear frequency scale to obtain T(pL,w)



AUDITORY MASKING THRESHOLD CURVES
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APPROACH 1

@ Suppression filter:

Hs(pL,w) = [1—aQ(pL,w)"]2, if Q(pL,w)" < 7

a+b
= [bQ(pL,w)"]?2, otherwise
where
Sw) |7
Q(pL,w) = | 2B
(pt,) \Y(pL,w)P]

o Requirements: (a) Estimation of Sp(w), and (b) a masking
threshold curve on each frame T(pL,w).
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APPROACH 2

e From y[n] = x[n] + b[n] go to d[n] = x[n] + ab[n]
o If hs[n] is the impulse response of the suppression filter, then
the noise error is:

ab[n] — hs[n] x b[n]
with short-time power spectrum:
Se(pL,w) = |Hs(pL,w) — a|?>Sp(w)
o Constraint:

|Hs(pL,w) — a]*Sp(w) < T(pL,w)

or:
a— TE'DL’W) < Hs(pL,w) < a+ TE'DL’W)
Sp(w) Sp(w)
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