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Wavelet-Based Optical Flow Estimation
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Abstract—In this paper, a new algorithm for accurate optical
flow (OF) estimation using discrete wavelet approximation is
proposed. The computation of OF depends on minimizing the
image and smoothness constraints. The proposed method takes
advantages of the nature of wavelet theory, which can efficiently
and accurately approximate any function. OF vectors and image
functions are represented by means of linear combinations of
scaling basis functions. Based on such wavelet-based approxima-
tion, the leading coefficients of these basis functions carry global
information about the approximated functions. The proposed
method can successfully convert the problem of minimizing
a constraint function into that of solving a linear system of a
quadratic and convex function of scaling coefficients. Once all the
corresponding coefficients are determined, the flow vectors can
be obtained accordingly. Experiments have been conducted on
both synthetic and real image sequences. In terms of accuracy, the
results show that our approach outperforms the existing methods
which adopted the same objective function as ours.

Index Terms—Optical flow estimation, scaling basis function,
wavelets.

I. INTRODUCTION

OPTICAL flow (OF) estimation is an essential problem in
motion analysis of image sequences. It provides informa-

tion needed for video technology, such as object tracking, image
segmentation, and motion compensation. A great number of ap-
proaches for OF estimation have been proposed in the literature,
including gradient-based, correlation-based, energy-based, and
phase-based techniques [1]–[3]. A typical gradient-based ap-
proach was proposed by Horn and Schunck [4], which is mainly
based on optimizing an energy functionthat is a function of
an image constraint and a smoothness constraint

(1)

where
—image brightness function at time

—the flow vector;
gradient operator;
partial derivatives of with respect to the

- and - coordinate, and time, respectively.
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The first term on the right-hand side of (1) is the image con-
straint, the second term is the smoothness constraint, andis
the weighting between the two constraints. The image constraint
is derived from the first-order Taylor expansion of the brightness
constancy assumption .
For each pixel , two variables, and , need to be solved.
With only one constraint (the image constraint), the solution
of and cannot be obtained. Thus, Horn and Schunck pro-
posed the smoothness constraint and added it into the objective
function shown in (1). Under these circumstances, the flow field
can be solved by optimizing the objective function. It is known
that the smoothness constraint may be invalid across the motion
boundary, but this problem can be solved by using the regular-
ization technique [5].

Another major concern is the approximation errors that occur
when the gradient-based approach is adopted. These errors are
due to inaccurate numerical approximation of partial deriva-
tives, as well as temporal and spatial aliasing during sampling
of the image brightness function . In order to solve the
above-mentioned error problem, Barronet al. [1] proposed an
improved approach based on (1). They suggested applying a
spatiotemporal pre-smoothing to the target image first. Then,
a four-point central difference technique is adopted to simu-
late the differentiation operation. Their method significantly im-
proved the method proposed by Horn and Schunck [4] because
the smoothing step is added. In [2], Lai and Vemuri pointed
out the approximation error problem and concluded that in the
image constraint, large approximation errors are usually located
in areas with large nonlinear components or in those with fast
temporal or spatial changes in the brightness function. There-
fore, they proposed a reliability testing scheme to determine
whether each pixel in the image is adequate for the image con-
straint or not.

In general, there are two possible ways to solve the optimiza-
tion problem for the energy function shown in (1). The first is
to convert the optimization problem into one of solving par-
tial differential equations based on variational calculus [1], [4].
This kind of approach estimates flow vectors iteratively. The
other kind of approach directly uses the discrete version of (1)
to calculate the flow vectors [6], [2]. The discretization process
converts the original optimization problem into the problem of
solving a linear system. However, such intuitive discretization
might lose precision of the original energy function and infor-
mation about the interaction between the image brightness func-
tion and the flow field. In this paper, we will introduce the con-
cept of wavelets to solve the optical-flow estimation problem.

The wavelet is a mathematical tool used to describe func-
tions more efficiently and precisely. It has been shown to be a
useful tool and is widely used in various applications [7]–[10].
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Some wavelet-based OF estimation approaches have been pro-
posed [11]–[15]. In [11], Burnset al.proposed a 3-D transform
to the flow field and required large sequences of consecutive
pictures for flow estimation. It is a quite different methodology
than ours, since we only have to use two consecutive images to
estimate flow field. In [12], Bernard assumed that the OF was
locally constant. Therefore, an inner product could be made be-
tween an image and a set of selected scaling bases such that
a linear system which contained all the flow vectors could be
generated. In his approach, every flow vector is calculated in-
dependently since the smoothness constraint is not considered.
Similarly, Srinivasan and Chellappa [13] proposed a similar ap-
proach which modeled the OF field using a set of overlapping
basis functions. After their model is applied, the image con-
straint function can be reduced to a scaler equation by inte-
grating with a suitably chosen kernel. The difference between
the work proposed in [12] and that in [13] lies in the selection of
the basis function for modeling the flow field and some related
function variables. Wuet al. [14], [15] used wavelets to model
flow vectors and proposed a coarse-to-fine hierarchy to recon-
struct these vectors. At each iteration, they estimate the wavelet
coefficients by minimizing the sum of the squared intensity dif-
ference between the warped image and the second image. Ba-
sically, the main difference between our work and Wuet al.’s
[15] is the objective function used for flow field computation.
The first-order Taylor expansion we used is known as a kind of
approximation of the brightness constancy assumption. The ad-
vantage of such approximation is to increase the efficiency of
computation, while the disadvantage is to compromise the ac-
curacy. Nevertheless, the key idea in this paper is to present a
basic methodology for solving elliptic partial differential sys-
tems efficiently and accurately. Meanwhile, Wuet al. [14], [15]
only applied wavelets to representand . That is, they only
used wavelets to approximate the function variable part.

In this paper, the scaling functions are used to approxi-
mate both the flow vectors and the image related operators,
such as the differentiation operator. Using wavelet calculus,
we can efficiently compute derivatives of the functions in
terms of the scaling expansion coefficients. After we apply
our wavelet model, the energy constraint function of the
flow vector becomes a quadratic and convex function of the
scaling coefficients. Therefore, we can successfully convert
the problem of minimizing a constraint function into that of
solving a linear system of a quadratic and convex function of
the scaling coefficients. Such conversion preserves the inter-
action information between flow field and the image related
functions, and estimates flow vectors as global minima. Once
all the the scaling coefficients are obtained, the flow vectors to
be solved can be determined. At the end of this paper, we will
discuss experiments conducted on a set of standard test image
sequences, including synthetic and real image sequences.
The results for standard sequences show that our approach
outperforms the existing methods in terms of accuracy. The
rest of the paper is organized as follows. In Section II, some
key concepts of wavelet theory will be introduced. Then, the
proposed solution of the OF problem will be clearly described
in Section III. Experimental results will be given in Section IV.
Finally, concluding remarks will be made in Section VI.

II. WAVELET THEORY

Since wavelet approximation will be applied to derive the so-
lution of the OF problem, in what follows, we will introduce
some key concepts of wavelet theory. Basically, the process of
wavelet approximation is that of representing a continuous func-
tion with a limited number of successive approximations,
each of which is basically a smoothed version of [16]. De-
note the scaling function by and its dilation and translation
functions by for , where
denotes the set of integers. Let be the subspace spanned by

, where is an orthonormal basis of .
The function spaces have the following properties
[16]:

for all

and

a scaling function exists such that the set

is an orthonormal basis of

Here, denotes the set of real numbers and denotes the
vector space of measurable, square-integrable functions,
respectively. Since is a basis of , for a function

, we have

(2)

where is a sequence and
represents the weighting coefficients for [17]. In the com-
putation of OF, we will represent the flow vector and image re-
lated functions based on (2). More precisely, we will not make
use of the multiresolution concept of wavelets in this paper. In
addition, the Daubechies scaling function [18] will be used as
the basis of since the Daubechies scaling functions have the
properties of compact support and orthogonality. In what fol-
lows, we will describe the relation between the wavelet trans-
form and differential operators, which has been well treated in
[7].

First, we represent the function as
defined in (2), where . Since

and is compactly supported, we can think of
as a function which is similar to a delta function.

Therefore, we have

where . Substituting the above equation into
(2) and differentiating it, we have

(3)

Therefore, a function can be approximated by (2), and its
differential form can be approximated by (3). Based on
these two approximations, we can represent all the function vari-
ables in (1) in a wavelet format. In this format, we have to cal-
culate a number of integrals of products of several differential
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TABLE I
TWO-TERM CONNECTION COEFFICIENTS: � = �(x)� (x) dx AND � =

� (x)� (x) dx, OF DAUBECHIES’ SCALING FUNCTION �(x)
WITH N = 6

scaling functions with different orders, which are called connec-
tion coefficients and have been derived by Lattoet al. [19].

The concept of connection coefficients is very useful for com-
puting derivatives and solving differential equations. The gen-
eral form of -term connection coefficients is as follows [19]:

where represents the differential order of theth scaling
function and is the translation between and .
Once the derivative order is determined, the function

can be calculated for all combinations of .
In [19], a technique was proposed for evaluating the two- and
three-term connection coefficients. They define the scaling
equations as homogeneous linear equations and the moment
equations as inhomogeneous linear equations. These equations
are used as bases to construct a linear system. Once the linear
system is solved, the connection coefficients can be determined
as well. For a specific problem, the connection coefficients of
interest can be calculated in advance and then stored in tables
for look-up use.

In this paper, we define a set of 1-D connection coefficients,
which will be used in the computation of OF, as

(4)

where and . It is ob-
vious that and , for all , due to the or-
thogonality property of the scaling function . Based on the
technique described in [19], we can calculate the values of
and , which are illustrated in Tables I and II, respectively.

Fig. 1 shows the distribution of the function with
. Suppose the Daubechies scaling function is compactly sup-

ported in with its differentiability property;
then, the significant domain of which has nonzero values
is , where . On the

TABLE II
THREE-TERM CONNECTIONCOEFFICIENTS: � = �(x)� (x)� (x) dx, OF

DAUBECHIES’ SCALING FUNCTION �(x) WITH N = 6

other hand, the significant domain of is .
In what follows, we will use wavelet-based approximation and
connection coefficients to estimate the values of OF.

III. OF ESTIMATION

In this section, we will explain in detail how to apply wavelet
approximation to model the OF problem. First of all, we reor-
ganize (1) into the form

(5)

Suppose the image size is . Based on the format defined
in (2), the flow vector can be represented as

where and are the weighting coefficients, and the
’s are the scaling bases of the subspace

at the fine resolution 0. Once the weighting coefficients
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Fig. 1. Distribution of the Daubechies scaling function�(x) with N = 6.

and of and are, respectively, determined,
the OF problem can be solved. Therefore, we convert the OF
problem into a process that involves determining the nodal
variables, and , that will minimize the objective
function described in (5). Similarly, we apply wavelet approx-
imation to represent image related functions as follows:

In order to avoid unbalanced weighting between the scales of
flow vectors and those of image functions, the image functions

are normalized by dividing , where is a con-
stant used to avoid dividing by zero. Throughout the experi-
ments conducted in this study,was constantly set to ten.

Plugging the above mentioned approximations of flow vector
and image functions into (5) and reorganizing their formula-
tions, we have

(6)

where
and . Here,

the notation is the simplified form of . If
we decompose the constraint functionin (6) as
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and

then we have

Based on the basic properties learned from calculus and the
definitions of connection coefficients, can be easily derived
which are shown in the Appendix.

According to the derivation results in Appendix, we can
rewrite as in (7), shown at the bottom of the page. Equation
(7) is a quadratic and convex function of and .
From calculus of variations [20], we know that if one appropri-

ately selects coordinate functions for variable approximation,
then

The optimal coefficients that will minimize
can be determined by the stationary conditions

and

for

The partial differential equations listed above form a large
sparse linear system , where

and the
matrix is symmetric positive–definite with the
following 2 2 block structure

Here, and they are composed of
with row index

and column index . Similarly, is composed of

and has the same formula except is substituted
for . Since functions , and are
symmetric, any combination of two of them is also symmetric.
Furthermore, the diagonals of and are all positive,
thus the matrix can be proved as positive definite. The
well-structured large sparse linear system can be then solved
without difficulty.

The wavelet-based method is superior to the traditional iter-
ative methods due to the efficient and accurate approximation
power of wavelets. With the traditional gradient-based methods,
one often uses a pixel-wise iterative mechanism to solve the OF
problem. At each iteration, each flow vector was computed in-
dependently and updated using local information that was com-
puted in the previous iteration. On the other hand, our wavelet
model collects information from flow field as well as image re-
lated functions concurrently and stores this information into the
matrix . Once the linear system is solved, the optimal
coefficients can also be determined. Thus, we can
successfully convert the problem of minimizing a constraint en-
ergy function, as depicted in (1), into that of solving a linear

(7)
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system of a convex and quadratic function. We then used the In-
complete Cholesky Preconditioned Conjugate Gradient method,
provided in the SparseLib++ package, to solve this large linear
system. Once the coefficients are determined, the flow vectors
can be determined accordingly.

IV. EXPERIMENTAL RESULTS

In our experiments, we used five sets of results obtained
using five different methods for comparison. The five methods
were those of Horn and Schunck [4], Barronet al. [1], Uras
et al. [21], Anandan [22], and the proposed wavelet-based
method. We used six standard image sequences to test the
different methods.1 The first three were image synthetic se-
quences, and the other three were real image sequences. The
source codes included implementation of all the methods in
[4], [1], [21], [22] and the error measurement. The angular
error measurement between the correct velocity and
the estimated velocity with 100% density is [1]

The average errors and standard deviations ofwere calcu-
lated by neglecting a 20-pixel-wide boundary. The last image
sequence was a standard test sequence in video compression.
All experiments described in this section were pre-smoothed by
a Gaussian filter with a sigma value of 1.5 and were sampled
out to 3 standard deviation. The alpha value of the smoothness
constraint was set to 0.2 for all the experiments conducted in
this study. The number of iterations for Horn and Schunck’s ap-
proach [4] and Barronet al.’s approach [1] were both set to 500.
The parameters used in Uraset al.’s approach [21] and those in
Anandan’s approach [22] were set according to the experiments
done in [1]. In our approach, computation of the flow fields was
halted when the process for solving the linear system converged.

Figs. 2–7 show the experimental results obtained by applying
Barron et al.’s method and our method. The estimated OFs
shown in these figures were all subsampled and then rescaled.
Fig. 2(a) shows one of the frames grabbed from the synthetic
Translating/Diverging Tree image sequences; Fig. 2(b) and (c)
shows the corresponding estimated OFs obtained using our
proposed approach. The average errors and standard deviations
of the computed flows for the above mentioned five methods
are shown in Table III. The test images in the experiments were
the 20th frame of the Translating Tree sequence and the 20th
frame of the Diverging Tree sequence, respectively. Table III
also shows the experimental results for Yosemite, where the
test image was the ninth frame of the Yosemite sequence. From
the results shown in Table III, it can be seen that our method
outperformed the existing approaches. These results were not
so obviously different because they were synthetic images. One
thing to note is that we did not use the output data reported
in the literature to make the comparison. This is because we
changed some error-measurement criteria, such as the number
of neglecting pixels in the boundary and the weighting of the
smoothness constraint. In addition, we were not able to make
the comparison with other wavelet-based approaches [12]–[14]

1The first five image sequences and source codes implemented by Barronet
al. [1] were taken from ftp.csd.uwo.ca.

Fig. 2. Estimated OF for the Tree image sequences. (a) A frame grabbed from
the synthetic Translating/Diverging Tree image sequences. (b) Estimated OF of
the Translating Tree. (c) Estimated OF of the Diverging Tree.

TABLE III
COMPARISONRESULTSOBTAINED USING THE TRANSLATING TREE, THE

DIVERGING TREE, AND YOSEMITE

because they did not release their source codes to the public.
However, the readers can refer the experimental results reported
in [12]–[14]. In what follows, we will present the results we
obtained by applying our method to the real image sequences.

Fig. 3 shows two static frames grabbed from two standard
real image sequences. Fig. 3(a) shows the ninth frame of the
Hamburg Taxi image sequence. Fig. 3(b) shows a frame of an
image sequence which had a rotating plate with a Rubik’s cube
on it. The difficulty in detecting the OF from the Rubik’s image
sequence was that the upper surface of the rotating plate was
a very homogeneous region, so that only a little information
could be used. Figs. 4 and 5 show the computed flow fields



CHEN et al.: WAVELET-BASED OF ESTIMATION 7

Fig. 3. Ninth frames, grabbed from the: (a) Hamburg Taxi and (b) rotating Rubik’s image sequences.

Fig. 4. Estimated OF from the Taxi image sequence obtained using Barronet al.’s approach. (a), (c) Obtained results (without setting a threshold) after 4:1
subsampling and 1:2 rescaling were performed. (b), (d) Obtained results from (a) and (c), respectively, by setting the threshold value to 0.8.

corresponding to Fig. 3(a) and (b), respectively. Fig. 4(a) and
(c) show the results obtained (without setting a threshold) using
Barronet al.’s [1] approach and our approach, respectively, after
4:1 subsampling and 1:2 rescaling. Fig. 4(b) and (d) show the

results obtained from (a) and (c), respectively, by setting the
threshold value to 0.8. From Fig. 4(d), we can see that three
moving objects were located by our algorithm. Fig. 5(a) and
(c) show the results obtained (without setting a threshold) using
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Fig. 5. Estimated OF obtained from the Rubik’s image sequence using Barronet al.’s approach. (a), (c) Obtained results (without setting a threshold) after 4:1
subsampling and 1:3.5 rescaling were performed. (b), (d) Obtained results from (a) and (c), respectively, by setting the threshold value to 0.1.

Barronet al.’s [1] approach and our approach, respectively, after
4:1 subsampling and 1:3.5 rescaling. Fig. 5(b) and (d) show the
thresholded results (with the threshold set to 0.1) for (a) and
(c), respectively. From Fig. 5(d), it can be seen that the flow
vectors of the rotating plate and the Rubik’s cube were clearly
captured by our algorithm. The result shown in Fig. 5(d) is very
impressive. This is because the wavelet model has the ability to
collect accurate information and to then spread it over the flow
vector image. It is obvious that the flow vectors on the upper
surface of the rotating plate, which was a homogeneous region,
could be captured clearly and accurately.

Figs. 6 and 7 show a standard sequence in video compression:
the Coastguard sequence. In acquiring this sequence, a video
camera was fixated on a moving coastguard boat such that the
boat was visually stationary. Fig. 6 was the 220th frame of the
Coastguard sequence, and Figs. 7(a) and (c) show the results
obtained(withoutsettinga threshold) forBarronetal.’sapproach
and our proposed approach, respectively, after 3:1 subsampling

Fig. 6. 220th frame grabbed from the Coastguard sequence.

and 1:1.5 rescaling. Fig. 7(b) and (d) show the thresholded results
(with the thresholdset to0.3) for (a)and(c), respectively.Fig.7(d)
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Fig. 7. (a) Estimated OF of the coastguard image sequence obtained using Barronet al.’s approach after 3:1 subsampling and 1:1.5 rescaling. (b) Result obtained
from (a) by setting the threshold value to 0.3. (c) Estimated OF of the coastguard image sequence obtained using our proposed approach after 3:1 subsampling and
1:1.5 rescaling. (d) Result obtained from (c) by setting the threshold value to 0.3.

shows that the shape of the boat was nearly completely captured
by our proposed method, even the tiny parts of the boat, such as
the flag pole, the antenna, and the pole in front of the antenna.

As for the time complexity of the proposed method, two
major parts were involved: 1) computation of the matrix
and 2) solving the large sparse linear system . Our
method was implemented in C and all of our experiments were
performed on a Sun Ultra 2 workstation with 512-MB RAM.
The computational cost of the proposed method is proportional
to the size of images. For divergence/translating tree sequences
of size 150 150, it took about 30 s to compute the matrix

and another 80 s to solve the linear system. For the taxi
sequence of size 190256, it took about 75 s for computing
and about 320 s for solving the linear system. As for the rubic
sequence of size 240256, it took about 90 s for computation
of the matrix and 620 s for solving the linear system. These
computations could be enhanced by applying preconditioners
to sparse linear systems.

V. DISCUSSION

In this paper, we called the proposed method “wavelet-based”
because we adopted the translations of Daubechies’ scaling
functions as basis functions to perform wavelet transform in
space. In traditional gradient-based approaches, they applied
calculus of variations to iteratively estimate the flow field. In
other wavelet-based methods, multiresolution property was

utilized such that the flow estimation is done by interpolation
of basis. However, all functions in our approach have been
projected to space with finest resolution, such that we do not
have to perform interpolation while doing reconstruction. The
accuracy can be improved by estimating the flow field directly
at the finest resolution without interpolation. Furthermore,
applying wavelet transform to image functions can enhance
system efficiency. This advantage can be revealed from the
calculation of (7) in Section III. In the formulation, all scaling
coefficients are unrelated to connection coefficients, and thus,
they can be calculated in advance.

Another important property of wavelets is multiresolution.
Applying multiresolution might speed up flow field estimation;
however, some modifications will be necessary in our formu-
lation. Such modifications will increase the complexity of our
formulation and computational cost.

Regarding the computational complexity of the proposed
method, the most time-consuming parts are the computation of
the matrix and solving the linear system . As for the
construction of the matrix , because of its sparse and sym-
metric properties, only part of it need be computed. Regarding
solving the linear system , the symmetric positive–def-
inite property of the matrix helps the convergence and
efficiency of this linear system. The computation could also
be enhanced by applying preconditioners to this sparse linear
system. Such advantages make our method comparable to other
wavelet-based methods in terms of computation complexity.
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VI. CONCLUSION

In this paper, we have proposed a new algorithm for OF com-
putation using a wavelet model. Based on wavelet transform,
the original problem of minimizing the constraint function can
be converted into that of solving a linear system of a quadratic
and convex function of the scaling coefficients. Experimental re-
sults show that in terms of accuracy, our approach outperforms
the existing methods which adopted the same objective func-
tion as ours. The results are quite convincing and encouraging
especially in the homogeneous region, where the gradient-based
methods usually hard to deal with. In fact, the proposed model
can be applied to solve a great number of problems other than
OF estimation, as long as they can be converted into the format
for minimizing a quadratic energy function, for example, the
gradient vector flow proposed in [23].

APPENDIX

can be written as

The above equation is appropriate because 2-D connection co-
efficients can be converted into 1-D form based on the concept
of the tensor product. These 1-D connection coefficients have
been well defined in Section II. The same derivation can be ap-
plied to and to obtain

and

As for , we can obtain

because .
For and , we have

and

Similarly, can be written as
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The same derivation can be applied to and to
obtain

and
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