Motion and Structure. Application to
feature-oriented coding

As mentioned in Chapters 1 and 3, observation and associated estimation methods of
an apparent motion vector field within an image sequence results from the projection of
3-D objects and from their 3-D motion on the 2-D image plane. This projection operation,
which is perspective or orthogonal in nature, depending on the projection system selected,
creates ambiguities concerning apparent 2-D motions perceived and, in addition, does not
generate a compact representation of the motion information itself. In fact, if we take the
example of a rigid 3-D body undergoing 3-D motion, this motion of the object is wholly
specified by a small number of parameters (generally six degrees of freedom) through
the kinematic screw (translation + rotation) associated with the object and referenced in
relation to an absolute fixed reference. This same 3-D motion observed through the 2-D
apparent motion-vector field is, on the other hand, much more complex to analyze and
to represent. A more compact representation and more effective estimation of complex
motions which are not purely translational parallel to the image plane, constitute the two
essential arguments in favour of a higher level modelling for the motions and structures
of objects manipulated. All of the motion estimation techniques detailed in the preceding
chapters limited themselves:

e to alocal estimation by pixel for which the representation of motion by its apparent

motion vector (&,7)! = (£, %)t = (u,v)" - two translational components - is ade-
quate. Clearly, it is impossible to talk about rotational motion of an object restricted

to one pixel.

e to a global estimation of a translation vector (u,v)" by block (block matching) or
region. This representation of the apparent motion field only makes it possible to
model and identify a constant and purely translational motion parallel to the image
plane by object (region, block...) which constitutes a very restrictive class of 3-D
motions of an actual natural scene. Let us recall that in the case of sensor motions
which are not purely translational parallel to the image plane, which is often the
case in televisual scenes (tilt, panning, translations parallel to the optical axis...),
the apparent motion vector field cannot be correctly represented on regions or blocks
by a simple 2-D translation.

As far as modelling and identification of 3-D motion parameters are concerned, there
are several possibilities. Firstly (Section 8.1), we recall the geometrical relations between 3-
D motions, 3-D structures (i.e., 3-D geometry of objects) and apparent 2-D motions in the
case of the visual “perspective” projective system. The particular cases of the description
of objects by planar facets and low-order parametrized approximation of motion vector
fields (1st order: affine models and 2nd order: quadratic models) are more particularly
detailed.

As far as the resolution methods and the application frameworks envisaged are con-
cerned, we will present separately:



e the monocular case where a unique sensor (if necessary moving) perceives the dy-
namic scene and, through spatio-temporal observations, tries to reach both motion
information and that concerning the structure of objects. The applications within
coding schemes concern compression methods (“second” generation with very low
rates) or techniques of analysis/synthesis by extraction of high-level global primi-
tives.

e the stereoscopic case where several sensors (2 or even 3 sensors) simultaneously per-
ceive the same dynamic scene which makes it possible to identify, either in parallel
or jointly, the structural and motion parameters of the 3-D objects which consti-
tute the scene. Many studies have been carried out into stereo-motion cooperation
within the field of Artificial Vision, primarily with the aim of 3-D reconstitution
of objects or of robot navigation in complex environments. More recently, for 3-D
TV or stereoscopic sequence dynamic restitution applications (CAD of 3-D objects,
computer-assisted chirurgical operation...), these techniques have also been studied
with the aim of improving image reconstitution quality after analysis/synthesis phase
or compression/decompression. Whilst still remaining at the heart of similar mo-
tion estimation schemes, the bi- or tri-nocular stereoscopic case makes it possible to
improve the observation space and to solve some ambiguities in temporal occlusion
regions.

Some results of simulation of predictive coding schemes with motion compensation
will be given, which enables to measure the performance of associated estimators.

1 Models and descriptors of 3-D motions

1.1 Relations between 3-D motions and apparent motions

Let us recall the geometric relations which link the 3-D motion vector V = (X,V, Z)t of
a point (X,Y, Z)" of the surface of an object in motion and its projection (&,9)" = (u,v)'
on the image plane.. We examine the case of the perspective projective system where

X

In order to simplify the notations, we will select the term f to designate the ratio focal

Y
y=/7 (1)

length/pixel size as having a normalized value of 1.

The 3-D motion vector V can be expressed using the instantaneous translation vector
T and of the instantaneous rotation vector € of the kinematic screw associated with the
moving object [26], i.e.,

X
V=T4+0A]|Y (2)
A

which is expressed, by components, as

X Ty W7 —QY
Y = | Ty | + | QzX —QxZ (3)
7 Ty, QxY — Oy X



In the same way, the components of the apparent motion vector associated with the
point (z,y) in the image plane, are defined in the case of perspective projection by

[ ] I X-zZ
e ] - l 7 ] (4)
Ly LY 7a
which after replacement in Equation (4) of the expressions defined in Equation (3) gives
-i- — -T7X+QY_T7Z$_QZ3/_QX$3/+QY$2 (5)
g | Qx - Zy+ Qze + Qyay - Qxy?

The relations (5) are fully specified when the term 1/7 is also expressed as a function
of the local pixel-coordinates (z,y). In order to retain a maximum quadratic order in
Equation (5) as a function of the coordinates (z,y), but particularly since the structural
terms of a geometric surface greater than order 1 are difficult to identify without bias on
real images, a priori hypotheses concerning the regularity of surfaces are given. Then, if
the term 7 (and, therefore, the term 1/7) is expressed by a first order Taylor development,

Z = ZO—I'(%)OX—I'(%)OY—I'OZ()QY)

= Zo+ Z1X + Z3Y +0*5(X,Y) (6)
it leads to
11 )
7= Z—O(l—le—Zzy)+0 (v,y) (7)
subsequently noted by
%Inxw-l-nyy-l-nz-l-Oz(%@/) (8)

(nx,ny,nz) specifying the terms of the structure of the local surface which is approxi-
mated here by a planar facet (Equation (6)) around (X, Yo, Zp). Currently, the reference
point selected will be the center of gravity of the region for which planar facet approxi-
mation (6) or (8) is carried out, being

(20:0)' = (52 5) (0)

1.2 Affine and quadratic models

Equation (5) linking the apparent motion components (&, §)* to the pixel coordinates and
the surface approximation carried out in (8) making it possible to establish a quadratic
relation between ¥ = (#,7)" and the coordinates of the point where this measurement is
carried out

[ & _|®m + asx + asy + arxy + agx? (10)
i (] as + ase + agy + agry + ary?
where,
ap = Txnz + Qy
az = Txnx — Tzngz
as = Txny — Sy
ay = Tyny; — QOx
as = Tynxy + Qy (11)
ag = Tyny — Tzng
a; = =Tzny - Qx
ag = —1Iznx + Qy




1.2.1 Justification of the linear approximation
Two sub-models of the motion vector local field can be introduced naturally from Equation

(10).

1. a linear model: (dim=6) restricts itself to motion parameters

(alv g, 03,04, a5, a6)-

This model is also called an affine model in so far as it makes it possible to identify
an affine pixel-based transformation. In fact, if the pixel piyar = (244A¢, yH_At)t is
matched to the pixel p; = (4, y:)" by the affine relation

piyar = Ap+ B (12)
)1 oy YAl vl , B
l y] ~ At(pt-I-At Pe) = At(A I,) l » ] + N (13)

we again find the linear relation between motion vector field and pixel-coordinates.
An important consequence of this observation is that, when such a linear motion
model is used, the properties of affine transformations will be used, implicitly: in
particular, let us refer to the transformation of a linear segment in a linear segment, of
a polygonal region in a polygonal region and the maintenance of convexity property.

2. a quadratic model (dim=8) using all the parameters {a;}
(10).

We will then see that these models, even if they prove to be more complete, come up
against two major problems: it turns out that it appears difficult to obtain an accu-

=18 defined in Equation

rate estimation of quadratic terms from previously estimated 2-D apparent motion
measurements; the model described by the Equation (10) is already a restrictive
model compared to a general quadratic model which would contain six quadratic
terms and is only obtained by first order approximation of local surfaces and rigid
motion hypothesis; secondly, the use of a quadratic parametric model in motion com-
pensation only brings minor improvements in the regions of complex motions and
can even prove to be less efficient than the use of a lower order parametric model.

1.2.2 Illustration of particular cases of linear modelling

Case 1: If the instantaneous rotation vector § = (Qx, %y, Q7) is equal to (0,0,Qz),
that is to say where only rotations around the center of gravity of the region, and with
a rotational axis parallel to the optical axis are authorized, then the development

(10) becomes:

RNt
+[Tm TXnYHx_xg] ”

Tynx Tyny Y=Yy

with



. (Txg,Tyg)t = (al,a4)t = (Tan,Tynz)t, translation vector of the center of
gravity of the region which, as we note, in relation to the 3-D translation
components, is only defined to within one ny factor (similarity factor on the 7
axis).

o k= —-Tynyand 0 = Qz, terms which are very often preponderant in translation
and rotation along the optical axis

o the other terms constituting crossed motion and structure terms along the other
axes

Case 2: Simplified linear model (SLM model)

An even rougher form of modelling of the structural geometry of objects and regions
consists of considering the scene as a succession of planar facets parallel to the image
plane, in the same way as a z-buffer in infography. This leads to nx = ny = 0 and,
consequently,

z Tx, k -0 T — 2,
.| = + 15
The merit of this form of modelling is that it provides a compact representation (4

parameters) for the description of the field and a simple interpretation concerning
the 3-D motion components: Tx, Ty, Tz, and 7 = 6.

Case 3 : Constant Model (CST model)

Finally, let us recall the case of the constant model, restriction of the linear model
solely to 0 order terms. This model, which is widely used in motion compensation
by regions nevertheless proves limited in identifying complex global 3-D motions.

1.3 Linear approximation of the motion vector field and choice of 21-D
descriptors

The analysis base for specifying the geometry of the motion vector field as specified by
the Equation (10) is not of course unique. To convince ourselves of this it is possible,
through differential operators, to return to the general formulation of a vector field with,
for example, linear geometry

du du
wo| _ | YUy Jr Oy T — Ty
= +| o o 16
l v ] l Vg ] l = o ] l Y=Y ] (19

which corresponds to a development limited to first order of the field around the point

(24 9y), 0t

v vy Y — Yy
Francois et Bouthemy [13], and Simard and Mailloux [44] recall that the M matrix can be

re-written as:

M = ftrace(M)I+ $(M - MT) + T(M+ M” — trace(M)T)

Coafro] o Jo 1], 1 0
= 2dzvlo 1]—|—2mt[1 0]+2hyp1[0 _1] (18)
0 1



which makes it possible to introduce general differential operators for the description of a
vector field (not necessarily linear) at each (z,y) point

divergence = div(u,v) = gg + g_Z

rotational = rot(u,v) = 2—;{ - 3—;‘ 19
hyperbolic 1 = hyp,(u,v) = _g_Z + g_g .
hyperbolic 2= hypy(u,v) = g_; + g_;

Examples of synthetic fields are provided by Figure 1 and illustrate fairly well the physi-
cally interpretable nature of these differential descriptors.
Using these, we thus specify a linear geometry motion vector field by

|| ug 1| (div+ hypy) (hypy — rot) T -z,
[z’/]_[vg]Jer(mthpz) (div—hypl)] [y—yg ] (20)

The analogy with the affine decomposition model defined at Equation (10) makes it pos-
sible to define the change of basis between descriptor sets.

ay = Uy = Ty, B
a = ( divt hyp, ) u.g - M
2 = 2 div = as+ ag
as = (7hyp2—r0t) rol = as—a
> 2 — o (21)
ay = vy = Tyg Vg = a4
_ r0t+hyp2 hypl = a3 — Qg
a5 = (d 2h ) hyp a ‘|‘ a
w— = asg 5
ag = ( L yp, ) 2

According to the estimation method (evoked in Section 8.2) and the intended applica-
tion (qualitative interpretation and/or use in motion compensation), it would be advisable
to select whichever set of descriptors proves to be the most effective. Finally, let us stress
that the particular case of linear models defined by Equation (15) corresponds to the case
in which the hyperbolic terms (hyp, and hyp,) are disregarded, that is to say:

ag = ag =
az = —ay = —

1.4 Design and use of an apparent motion model hierarchy

div

rot (22)

(IR

Up until now, studies carried out in the field of motion estimation-compensation only used
a pre-defined motion model, without seeking to adapt it to the various motions present
within the image. Let us note that, as a general rule, it is the region-constant model which
is used. Now, as there are generally several different types of motions in a single natural
image sequence, it would seem to be interesting to adapt the motion model to be identified
locally, this, essentially, for the following two reasons:

e the identification of a too simple motion model (for example a constant model) in
a region in which the physically observed motions are complex (some sort of 3-D
motion of a rigid body for example) can only lead to poor reconstitution by motion
compensation or to an over-segmentation of the region (possibly down to pixel level)
costly in terms of volumes of motion information to estimate and to transmit (see
Figure 1).
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Figure 1: Ilustration of the effect of the selection of a model on segmentation: if a
divergence model is used, the whole of the vector field constitutes a single homogenous
region, on the other hand, if a constant model is used, it is necessary to decompose the
main region into several sub-regions (thus more descriptors are used) and that for a less
effective result.

e the identification of a sophisticated motion model (for example a quadratic model)
on a region in which a single motion can be observed (for example 2-D translation
motion parallel to the image plane) leads to large estimation bias, including on the
significant parameter sub-vector corresponding to the single motion which naturally
should be identified. In fact, as we will establish in the next paragraph, the criterion
to be minimized in the motion parameter vector estimation diagram is very often
global, since it is simultaneously dependent on all the components of the motion
vector to be identified. Thus the components which are not actually observable
introduce bias on the identification of the components of the true motion.

Naturally, paragraphs 8.1.2 and 8.1.3 introduced several motion models of increasing
complexity. Figure 2 illustrates how these different models can be placed in a hierarchy
from the most simple (zero motion) to the most complex. As with [8] and [39], we have
included the possibility of introducing into the motion parameters vector to be identified,
an estimate of the illumination variation, considered as a potential source of temporal
change in the intensity function. Once this model hierarchy has been identified (denoted
by M), it is advisable to define the path strategy within this hierarchy. The introduction
of the notion of local adaptivity of motion models signifies the choice from amongst the
M entity of the most “probable” model 3 in the sense of a cost or performance criterion
for the model 3. This cost function very often depends on:

e the error due to reconstitution by motion compensation associated with the model

8

e the cost of representation (indeed of transmission if the motion vector field is trans-
mitted in accordance with the coding schemes considered) of the motion information
(parameters vector ©3 with dimensions which vary depending on the model)
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Figure 2: A model hierarchy

o the size of the region considered in order to avoid an under- or over-segmentation of
the image

e the operational cost of the identification of the vector Og

It is easy to distinguish two extensive methodologies for the effective use of the Mg entity
of motion models:

1. Parallel approach: a test in parallel of all motion models is carried out, region by
region in the sense of a MAP criterion, and the most effective model is selected. The
clearly formalized mathematical framework of the statistical criteria based to the
information theory [40] makes it possible to solve this problem.

2. Sequential approach: this involves using the hierarchy of M models in accordance
with a pre-defined path which can be either:

e from the simplest to the most complex model (“coarse to fine” approach)

e from the most complex to the simplest by progressive suppression of the com-
ponents of the motion vector (“fine-to-coarse” approach)

e from an averagely complex intermediate model (for example an SLM model

introduced in paragraph 8.1.2) to a more complex or more simple version.

For all these sequential approaches, the mathematical framework for the tests of the hy-
potheses based on likelihood functions appears well adapted: two hypotheses will be tested
by comparison with each other, for example in the sense of maximum likelihood:

e Hypothesis HO: the motion of the current region corresponds to a motion model /3



e Hypothesis H1: the motion of this same region corresponds to a just slightly more
complex (4 + 1) motion model.

In conclusion, let us note that within the context of the use of such a motion hierarchy,
the representation of the motion information will consist of two information fields:

e the map of models selected (one label {3} per region)

e the motion parameter vector field itself. Let us also recall that the size of the vector
Op varies depending on 3.

2 Estimation methods in the monocular case

2.1 Estimation of the sensor motion of a static scene

Several motion estimation algorithms try, before or at the same time as the estimation of a
dense motion information field, at all points or in all regions of the image, to estimate the
sensor motion, in order to be able to identify not the relative motions between the camera
and the objects, but the absolute motions of the objects in relation to a fixed reference.

A priori, the camera has freedom of motion throughout the six dimensions of a true
motion (3-D translation and 3-D rotation). According to certain hypotheses (see [16],
[50], [39]) involving, in particular, the relative distancing of objects present in the scene
in relation to the small angles of rotation during a panoramic motion of the sensor, the
camera motions can be reduced to the following three classes:

e translations parallel to the image plane (including panning).

e translations perpendicular to the image plane (divergence) analytically equivalent to
a change in focal length (zoom).

e rotations around the optical axis.

It can thus be seen that a simplified linear motion model (SLM model with ©grp =
(tz,ty, k,0)), as introduced by Equation (15), makes it possible to identify such a sensor
motion.

This sensor motion can be estimated directly by one of the methods introduced in the
paragraph below. The entire image is then considered as a single region whose center of
gravity is the center of the image also identified at the projection of the optical center.
Other quantitative information (localization of fixed objects in the scene whose apparent
motion is thus not due to the sensor motion alone) or qualitative information (known
nature of the sensor motion model) can be injected easily into the algorithm, in order
to ease and improve the estimate. A priori, such knowledge is rarely available in the
case of communication services (contribution, distribution, storage services, etc...) which
is the opposite of applications which use “closed-loop” dynamic imagery, that is to say
where information is available concerning the sensor motion from its own control (e.g.,
tele-monitoring, vision for robotics, etc...).

The results in Figures 3 to 7 illustrate the performance obtained when sensor motion is
taken into account, in terms of compactness of motion representation and of the error due
to reconstitution by motion compensation, in the limited case in which only this sensor
motion estimation is carried out.
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Figure 3: (a) and (b), two original frames of the “Kiel harbour” sequence, (c¢) Frame
difference image with MSE=922.5

2.2 Estimation methods of motion descriptors for a moving scene

All the motion estimation methods - closely related to the aspects of segmentation based
on motion in the case of motion estimators by regions - were discussed in Chapter 3,
essentially using the 2-D constant translation model (¢,,t,). Let us also recall that the
following general classes of motion estimation were presented:

e translation of a 2-D region (whose “block-matching” algorithm is an example)
o pel-recursive algorithms

e iterative algorithms

e analysis of spatio-temporal frequencies

e parametric models

e segmentation/estimation link

Below we detail how these methods can be extended naturally for more complex para-
metric motion models (already presented in Section 3.3.2.5). However, two cases present
themselves depending on the existence or otherwise of a dense apparent motion vector field
preliminary to the estimation of the parameters of more global models. We deal briefly
with the case in which such a dense field preexists since, clearly, an algorithmic scheme
complete as much for coding as for analysis, will tend to remove itself from the calculation
of this dense field, sometimes very operationally complex, if it is not useful. Let us note,

10
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Figure 4: (a) Identification of a global (camera) motion using a divergence motion
model, (b) optical flow relative to the global motion, (c¢) Differential flows, (d) Motion-
compensated frame difference image only based to the global motion (a) MSE = 56.3

Figure 5: (a) and (b), two original frames of the “Interview” sequence

however, that through the analytical relations detailed below, it is still possible to pass
from a sparse field of motion descriptors to a dense apparent motion vector field and vice
versa.

2.2.1 Estimation of a parametric model from a dense motion vector field

As we saw in Chapter 3, many methods make it possible to obtain a dense motion vector
field. An illustration is provided below (Figure 8) with the Horn-Schunck algorithm [17].
The idea is to use this dense information in order to extract from it parameters of a more
global model (for example an affine or SLM model as illustrated in Figure 9).

11
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Figure 6: (a) Identification of a global (camera) motion using a constant motion model,

(b) optical flow relative to the global motion

Differential flow

(c)

b

137.4, (b) Motion-compensated frame

Figure 7: (a) Frame difference image with MSE

100.9

difference image only based to the global motion MSE

At this stage, we assume that we have image segmentation into homogenous regions

in the motion sense. The parameters are obtained:

e by minimization of the mean square error between the initial dense field and the

dense field derived from the parametric model ([15], [29], [16]); for example, let us

consider an SLM model with parameters O gy s

(tz,ty, k,0)" for aregion R and an

initial dense field noted as {(u;, v;)} for each pixel € R indexed by ¢ with coordinates

(2, 9;); the error to be minimized is therefore expressed as:

(23)

E? =Y (to + kxy — 0yi — w;)* + (ty + kyi + 02 — v;)?

1€ER
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Figure 8: Example of an optical flow obtained by the Horn-Schunck method [17] on
differents areas where “pure” divergent, translational, rotational and affine flows have
been synthetized

The least mean squares resolution requires the inversion of the 4 x 4 matrix (for
such an SLM model). Simplifications can be made [42] concerning this system’s
resolution. The resolution equations provide the vector of the following parameters:

A S S TN
o= e kY6
S urY e wak Y ne Y vy v
. (in)2—2$?+(zyz’)2—zyf (24)
S e ud -y vy vy
o o T ST A
() ()

e by separable identification of global translation motions and rotation/divergence in
relation to the center of gravity of the region considered, by simple averaging of local
estimates [37] the following global parameters are obtained:

t, = ZUZ
7

ty, = Zvi
7

o N i)yl (vimty) (25)
- Z x/.2-|—y/.2
Z' 2 2
zh(vi—ty)—yl (ui—ta)
0 = Z xzz2-|—y/.2

7

where (2!, y!) represents the relative coordinates in relation to the center of gravity
of the region considered.
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Figure 9: Identification of the affine motion model descriptors on the four regions (Velocity
field obtained by using the system in Equation (25))

2.2.2 Direct parametric estimation

Least Mean Square Estimation By extension of the methods introduced in Chapter
3 (paragraph 3.3.2.5) it is quite possible to envisage the introduction into the resolution
model of a more complex model (ex. here of an affine model). The resolution of the motion
constraint equation is expressed by: for the region R, the optimal estimated motion 0%

will be

* * * * * * *\T
G)72—((11 , g ,a3 ,a4 ,05 ,0g )

= s i 3 (L(0)u(O) + ,(#)0(0) + H(p)) (26)
pER

with w(©) = a1 + azz + aszy and v(0) = a4 + asz + asy (affine model). The least
squares resolution is achieved by resolution of a linear system of six equations. Certain
simplifications have been proposed [42], [15].

Estimation by a generalized gradient method (see Chapter 3)
Here we seek the solution minimizing the motion compensation mean square error
across the whole of the region R by the gradient optimization technique.

® = argmin ZDFDZ(p,(D)
0] pER

= arg min Z (I(i,§;k)— I(i —u(®),j — v(0); k — 1))
) p(i,5)ER

(27)

The gradient algorithm ([35], [42], [37]) then becomes general to the following iterative
estimation process:
~ ~ A"
Ot = 0" —T—— 28
> (29)
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=DFD(i,j,0™)
with A®" = Y :
GDER | 2 DFD(i,j,6™)

where,
o m designates the iteration index
o Np the size of the region R

e I' a gain matrix which can be either fixed, adaptive, full or empty; limited to a
- m
diagonal matrix, the corrective term 'A®  between two iterations is carried out in
the direction of the gradient of each component..

In the case of an affine model where © = (al,az,a3,a4,a5,a6)t, the estimation of © is
obtained iteratively by:

G+l = @™ — N T¢"(i, j)DFD((i,]),0™) (29)
(1,7)ER

with the displaced gradient vector qgm equal to

[ L(i—u(0™),j— v(0™);k—1) ]
e

D= G w(om). - o(om k- 1) 0
iy (i = u(®™),j — v(0™);k — 1)

L iLy(i = u(@™),j — v(0™); k- 1) |

m

-1
-1

The T' gain matrix is taken diagonal in order to avoid interaction between the different
descriptors, otherwise the corrective term A®" would not be taken in the direction of
the gradient. Elsewhere, in practice, it is necessary to take account of the difference in
scale and in physical size which exists between the various components of the vector O of
motion parameters. Thus the “constant” parameters (a; and a4) of a affine model will be
allocated a larger gain than the other descriptors.

The estimation-segmentation link The identification of the previous motion models
requires the definition of a segmentation, either prior to, or concomitant with, the motion
estimation phase itself, since this operates on an region R of matched pixels.

Generally speaking, two approaches can be used:

1. the definition of a segmentation which is either arbitrary (decomposition of the image
into blocks) or independent of motion (purely spatial segmentation which has the
major inconvenience of constituting an over-segmentation from the motion point of
view). This segmentation can be either monogrid, or in relation to a pyramid of
information [15], [42], a quadtree splitting [39] or a splitting/merging into regions
6], [14].

In the case of a pyramidal structure, the elements of this structure inherit motion
parameter vectors calculated at a coarser level and a correction to this motion pre-
diction is carried out by parametric estimation as described previously.

Segmentation into a quadtree allows the progressive decomposition of an image into
smaller and smaller regions making it possible firstly to identify the more global

15



attributes and to lead to identification of local motions (even at pixel level, if the
quadtree is complete) at the end of the estimation process. Clearly, a splitting
criterion has to be defined; it can be based on the following tests of hypotheses:

o test of a region’s homogeneity

The test consists of comparing the motion homogeneity hypothesis (the R re-

gion corresponds to a ©g parametric model) with that of inhomogeneity (pres-

ence of several motions). According to Gaussian hypotheses (and zero-mean

laws) concerning associated error functions, the search for maximum likelihood

leads to testing the following estimated variance:

NLRO Z DFD(i,j,0r,)* > or < o (31)
(.7)ERo

o test of division of a region into L sub-regions

In this context, the test consists of comparing the following hypotheses:
Hypothesis HO: the region Ry corresponds to a unique parametric model.

Hypothesis H1: the region Rg could be decomposed into sub-regions, on each
one of which a Ox, parametric model must be identified.

Bouthemy and Santillana-Rivero [6] test the case in which the region divides
up into two sub-regions. According to the same hypotheses as previously men-
tioned, the likelihood test between the two hypotheses (hypotheses Hy and H
associated with likelihood functions f; and fi) leads to the following test:

M }2 or @ A (32)
/(o)

and we obtain the following criterion:

H H
Ng,log o2 — Ng, logo? — Ng,logo? < or > A (33)
where,

— Ngy, Ng,, Nr, designate respectively the surfaces of the regions Ry, R1, R2

— o} =g Y DFD*p,0;)
' pER;
i.e., after linearization,

0f = 7= 3 (L(p)u(©) + 1,(p)o(0:) + L(p)’
PER;

2. Markovian models make it possible to specify effective observation interaction models
(linked with spatio-temporal gradients) and labels (in our case motion parameters).
Francois [14] thus defines a motion based segmentation by Markovian approach using
an energy function composed of two terms:

e one term favouring identical labelling of two adjacent sites (region merging
approach)

e one term seeking to maximize the likelihood of the observations depending on
the labels (same formula as previously for o?)

A deterministic relaxation scheme makes it possible to propagate labels.
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In conclusion, in the case of the use of a motion parametric model in a motion com-
pensation scheme, it seems important :

e to select the criterion to minimize as a direct function of the local compensation
errors, i.€., Z DFD(i,7, (973)2
(i.)ER

e to smooth out the motion parameters field to achieve better compactness of presen-
tation.

e to avoid the convergence of the estimation process towards local minima of the non-
convex functional to be minimized. The latter two constraints are simply resolved
by the introduction of a relaxation algorithm.

e to proceed with a “coarse-to-fine” analysis in a pyramidal or progressive region
splitting sense.

Several authors [15], [16], [42], [22], [39] have adopted these principles and obtain
interesting results from the point of view of both vector field regularity and motion com-
pensation effectiveness. In Figure 9 we illustrate the example of the algorithm [37], [38]
which will serve as a basis for the results on real sequences in paragraph 8.2.4 and Fig-
ures 10 and 11.

2.3 Model hierarchy

In the case where, for a given region R, a notion of adaptation of a model to the region is
envisaged, it is best to define a selection criterion for the optimum $* model from all the
parametric models written Mpg. Two families of criteria can be used depending on the
sequential or parallel approach desired (see Section 8.1.4).

1. Likelihood ratio

The procedure is identical to that described previously in the context of splitting of
regions. It is a matter of testing, for the same estimation surface (the current region
R ), two hypotheses:

Hypothesis H1: the use of a “complex” model
Op, = (A1yees ..y ly)
Hypothesis HO: the use of a “simple” model, restriction to r parameters (7 < n) of

the previous model @5, = (ay,...,a,)"

5* will be selected in accordance with the most probable hypothesis by comparison
with a threshold of the likelihood ratio associated with the two hypotheses.

According to certain hypotheses (see [14]), it has been shown that this ratio L can
be written in the form

L:%log(l—l—l/l/)zlogﬁ (34)

Jo

where fy and f; are respectively the likelihood functions under hypothese Hy and
Hy and where W is proportional to a random process according to a Fisher’s law
which makes it possible, assuming the prior selection of an error probability a (for
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example a = 0.05 ) to fix a direction for the test of the hypotheses. In many cases
for coding applications, likelihood functions are relative to the motion-compensated
mean square errors.

2. Information statistical criteria

In this context, it is possible to use Akaike and Rissanen’s information statistical
criteria [40] which, for a given model, evaluate both its performance and its com-
plexity.

Generally speaking, these two criteria are expressed in the form:
AKAIKE criterion: C = —2log f(y/©g) + 2dim(©p) (35)
RISSANEN criterion: C = —2log f(y/0p) + 2dim(0z) X log Nz (36)

where f(y/©3) is the likelihood of y conditional to ®. The first terms of these two
criteria constitute the model performance measures (likelihood), whilst the second
are penalization terms for complex models.

A practical implementation, in order to obtain motion compensation using a ©

motion model hierarchy, was tested [39] by using a measurement criterion derived

from the Rissanen criterion and compatible with the function (]\}—R Z DFD?) to
(1,7)ER

be minimized, already used in the ©g vector estimation process. This criterion is

expressed by:

Coe L 20 r(A)
Cs =log Na (i%éRDFD ((7,7),95) + a Na (37)

where

e « is a weighting coefficient (for example, a = 0.1).

e 7(/), motion model encoding rate, represents the volume of binary information
in the entropic sense for example, required to represent and transmit the @g
parameters vector.

If this criterion is applied to the two motion models 1 and 2, then the model 1 will
be selected, if

Cﬁl > 652 (38)

2.4 Estimation of 3-D motion

The estimation of 3-D motion based on image sequences can be carried out naturally
using two distinct approaches. The first of these, called the two-stage method, consists
of calculating these 3-D motions from a previously estimated 2-D apparent motion vector
field. The second, called the direct method, attempts to evaluate these 3-D motions
directly from spatio-temporal derivatives of the intensity function. We describe these two
general approaches below.
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2.4.1 Two-stage estimation methods

This approach, which is similar to that evoked in paragraph 8.2.2 for the estimation of a
2%-D parametric model from a 2-D motion vector field, is based on the following scheme:

stage 1: estimation of a 2-D displacement vector field which will be sparse (discrete
methods of matching 2-D primitives) or dense (differential methods) by one of the
estimation methods described in Chapter 3.

stage 2: By equations linking the projected 2-D motions and 3-D motions (see para-
graph 8.1.1 in the case of a dense field), this second stage identifies the 3-D motion
parameters based on the 2-D primitives’ field.

We will deal with the case of discrete methods in Section 8.3, since it is very similar
to the problem of stereovision-motion cooperation on discrete primitives. Within the
context of differential methods, many authors ([1], [45], [55]) pose the problem of the
determination of motion and of the 3-D structure from apparent motion in the form of the
minimization of a quadratic criterion based on equations concerning 2-D/3-D relations.
Even in accordance with the theory of the observation of rigid objects, Equation (5) shows
that this problem of optimization is non-linear.

As an example, in the case of differential methods, Adiv [1] breaks this estimation
process down into two stages. The first of these consists of segmenting an apparent motion
vector field (assumed to have been calculated previously) into regions corresponding to
planar facets. The parametric motion modules are thus quadratic models defined by the
equations at (11). The estimation technique is based on a generalized Hough transform;
from Equation (5), the energy function @ is defined by

P = Z(u —aq — aTz)2 + (v — Bq — ﬁTZ)2 (39)
R
with
ag = —2yQyx + Qy(1+2%) —yQy
Ba = —-Qx(1+ v+ 2yQy +2Qy
Ty —zT
ar = TXHJ;JEWZ (40)
— Y
Bro= =7
T
z = =

which consists of separating the terms which involves the instantaneous translation vector
T = (Tx,Ty,Tz)" and the instantaneous rotation vector @ = (Qx, Qy, Q)" respectively.
Assuming the constancy of the energy function ® depending on the relative depth variable

z (% = 0), we can deduce the optimum relative depth

o _ (u—ag)ar + (v~ fa)fr (41)

(af + 67)

which, carrying over to Equation (39)

(u— ag)Br + (v — Bo)or)?
= Z (e + %)

The unitary vector ﬁ can then be parametered in an angular space (v, ) such that:

(42)

T
= sinvsiné, —= = cosv (43)

177l

Tx . ¢ Ty
— = S1IN IV COS [y
7| 7|
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and the energy function ® is then parametered to ®(2, v, §).
The generalized Hough transform makes it possible to calculate the optimum couple
(§2*,7™) such that

(", 7") = arg min ®(Q",v,¢) (44)
v,§

On completion of this first stage, a fusion of adjacent components corresponding to
the same parametric transformation is carried out, using least squares criteria. The al-
gorithm continues by iterative sequencing of these motion-structure parameter estimation
procedures and that of the grouping together of regions which correspond to a single trans-
formation. Adiv [2] extends his work by raising the ambiguities inherent in the estimation
of 3-D motion and of depth; these ambiguities are essentially of two types:

e asingle 2-D field can have several 3-D interpretations (non-unicity of representation)
[2], [5], [51].

e an estimation bias on the 2-D primitives field induces an estimation bias on the 3-D
parameters and often creates phenomena of instability in estimations.

2.4.2 Direct estimation methods

These methods seek to mitigate the drawbacks mentioned previously by direct estimation
of parameters linked to motions and 3-D structures without previously estimated apparent
motion fields. In this context, we again find extensions of estimation methods known in the
2-D case, such as extensive recursive estimation methods in the case of parametric motion
models ([36], [9], [10], [39]) and iterative estimation methods based on the “brightness
change equation” or extensive motion constraint equation in the case of 3-D motions and
particular 3-D structures (planar, quadratic surfaces, ...) [18], [33].

Dugelay and Pele [9], and Netravali and Salz [36] start off from the following three-stage
approach:

e from the Equations (11) defining the relations between apparent motion descrip-
tion parameters A, those of 3-D motion C = (€2,7)" and those of structure K =

(. 55.1)
ny ? ny ?

e from an initial vector or previous estimate: C"~!, K71
it is possible to repeat the following three stages:
Stage 1: calculation of A"~ from "~ K"~ initial values using Equation (11);
Stage 2: a differential method of estimating a corrective term 6.A""! is operated by
gradient algorithm as follows (see Equations (28) to (30)):
SA = €> DFD(p, A"t - 1)%DFD(p,A”_1;t— 1) (45)

peR

Stage 3: based on the system of Equations (11) calculation of the parameters ™ and K™,
function of (A"~ 4 64" 1).
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This system of 8 unknowns and 8 non-linear equations works out by successive lin-
earization (Newton method) for example.

The second family of approaches ([18], [32], [33]) consists of starting with the theory
of the temporal invariance of the intensity function expressed by the motion constraint
equation

Lu+Ip+ I, =VIG+I1,=0 (46)

In a vectorial manner, Equation (4) deduced from the perspective projection model
can be expressed:

U — —
3 P
= | v | = 220AD) (47)
0 (£.2)

where p = (z,y,1)", P = (X,Y, Z), V= (X,Y,Z)t , U= (2,9,0)" and 7 is the unitary
vector along the optical axis, with p'= ﬁi' By substituting the expression of 1% (Equation

(2)) in Equation (47), that gives us:

Y

T

T=ZANGAFANE+ =
2

) (48)

]l

The motion constraint equation (46) expanded to the 3-D case is then expressed:

s T

VIZANGANPAQ+ =)+ 1 =0 (49)
P.Z

or in a more compact fashion, if § = (VI ANZ)ApPand @ = 5A p, then Equation (49)

becomes

—

T B,
S L GAGEL =0 (50)
Pz

The resolution method often assumes a geometric structure model. For example, in

the planar region case, we have the region of the 3-D points {]3} defined by PN =1

which is equivalent to ]7]\7 = ]3#4. The motion constraint equation then becomes
2
0

(F.T)(F. N)+ BAQ+ 1, = (51)

and the resolution into (f,Q,]\?) is carried out by iterative resolution of a functional
minimization algorithm

N L= 2
7= //D (BTYFN) + @A G+ L) dedy (52)
These approaches are thus a direct extension of the iterative estimation method normally

used in the 2-D case. Other region models have also been tried [33] such as quadratic
patches, cylindrical surfaces, etc.
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2.5 Use of motion compensation in a predictive coding scheme

The use of parametric motion models within a predictive coding scheme with motion
compensation (see Chapter 4 for an introductory description of these schemes) appears to
be a natural extension of the usual case where a dense motion vector field compensates
the image. As a matter of fact, as illustrated by Equation (10) in the context of a general
quadratic model, if, for each region R, of the image, we have the motion parameter vector
(03, ) identified corresponding to the motion model 3, it is always possible to derive a
dense apparent motion vector field from the {©p,,} and use it in a motion-compensated

loop.
The prediction by motion compensation will be equal to
(6. k) = 1 = (O 5,),5 = (O 5,0): k — 1) (53)

for each pixel with coordinates (i, )" and where,

o I indicates the previously reconstituted image
e [ indicates the current image to be predicted

e (@, 0) the dense field predicted from the field {(u,v)} derived from the parameters
{®ﬁ7m}'

Because of the compact nature of the representation of the motion information which
represents the {®g ,,}, this information is usually transmitted and in this case {(&,?)}
is selected as being the estimated field: a(i,j) = u(©p,,) and (7, j) = v(Og,,) for each
pixel (i,7) € Ry

Let us recall that in such a scheme, the information transmitted has to be decomposed
into four parts

1. the image segmentation into N regions {R.n},,_;  n;

2. the type of model used 3,, for each region R,,;

3. the quantized motion parameters vector (03 ,,) for each region R,;;
4. the quantized motion compensation error.

As far as the coding of the segmentation map is concerned, a compromise has to be
found between the following two extreme cases:

1. a priori known arbitrary segmentation such as a block decomposition: the coding
cost for such a segmentation is null;

2. adapted spatial segmentation on all images: consequence of extensive coding due to
the fact of the irregularity of the edges obtained.

Binary coding schemes adapted to edges (for example Freeman codes) can be used,
even if it could use a lot of bit rate to encode this map of contours. Quadtree decomposition
allows good adaptation of the segmentation to the local contents of the image at only a
small coding cost expressed by [24], [39], [41], [43]

4

unadtree — 3

1
NR — N Rinit = N R (54)
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if NR, N Rz, N Ry designate respectively the number of regions within the final image
after the quadtree decomposition, the number of regions within the initial image (initial
grid) and the number of regions with the minimal size (quadtree roots).

The coding cost of the label 3,, designating the motion model selected for the current
region R, clearly only exists in the case of the use of a distinct motion model hierarchy
and can be accessed by an entropy cost.

The parameter vector Og,, is transmitted after quantization. Note that the various
components of this vector do not require the same accuracy of quantization. Adapted
quantizers must be designed for each component.

Finally, the coding of the prediction error by motion compensation uses all coding-
source techniques (transform coding, entropy coding, ...) again making it possible to
decorrelate the information from a spatial or frequency point of view, and thus to reduce
by as much, the transmission cost of this information field. Figure 10 shows , applied to the
so-called image sequence Interview, motion compensated error image when a motion-based
quadtree segmentation is used. Moreover, the distorsion v.s rate trade-off is assessed in
Figure 11 for several linear scalar quantization versions of the motion compensated errors.

‘ \H‘\ H

T \ \ \ T

Figure 10: Motion compensation of the “Interview” sequence using a “constant motion”
model. (a) Motion-compensated differences : MSE=17.9, (b) quadtree segmentation (4x4
regions are not illustrated), (c¢) Reconstructed image, (d) Motion vector field

2.6 Use of an analysis-synthesis coding approach

The estimation schemes previously described lend themselves well to the definition of
schemes involving object-oriented coding by analysis-synthesis. The first work carried out
in this field ([3], [11], [12], [20]) assumed an extensive knowledge of the nature of the
objects manipulated and restricted itself to a particular category of scenes such as the
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Figure 11: “Interview” sequence. Compression ratio and MSE for different values of the
elementary step of quantization for motion-compensated errors.

motion of human faces (videophone services or video conferences with very small rates
envisaged). In this case, the hypotheses in the preceding paragraphs, used to establish the
relations between 3-D motion/structure and apparent 2-D motion, were valid: rigid objects
decomposed into planar surfaces, small rotation angles, small depth variation between
two successive images. Musmann et al [30] and Hotter [19] develop such an analysis-
synthesis object-oriented coding approach, using either the 2-D motion estimation by
linear regression methods or the 3-D estimation by prediction/verification methods. The
general scheme of the approach is described in the Figure 12. The sequence analysis phase
concerns the extraction of three types of information:

e the shape of objects (regions)

e their motion
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e the texture or radiosity information

Source Model Receiver model
Image i Parameter Transmission channel
Analysis M Coding
Image L Parameter
Synthesis [ ] Decoding

Motion paramete

Shape paramete Y Memory for
Texture paramet — Object
Parameter

Figure 12: Block-diagram of an object-oriented analysis-synthesis coder

These information fields being different in nature, a specific coding procedure is used
for each of them. The shape information describes the outline of objects and this code
naturally by contour coding techniques. Omnly temporal changes in shape will be coded
predictively. Motion information also codes predictively in relation to motion parameters
estimated on the same object to the previous image. Finally radiosity information can be
compressed by hybrid coding techniques with motion compensation.

In conclusion, let us note that these analysis-synthesis coding approaches are often
limited to the identification of 2%-D motion parametric models without seeking the whole
range of 3-D motion + structure parameters. Such a full range would make it possible
to synthesize the scene not only from the true viewing angle at the current moment, but
also from all sensor-object relative intermediate positions, which would make it possible to
obtain efficient temporal or spatial interpolation schemes. This remains difficult to achieve,
however, given the current levels of accuracy obtained on 3-D structural parameters after
identification and given that these parameters are only known to a relative depth factor.
The stereovision-motion cooperation techniques dealt with in the next section can make
it possible in part to overcome these disadvantages.

3 Motion estimation methods in the binocular case

3.1 Introduction

Unlike the monocular case, here we assume the availability of several stereoscopic sen-
sors makes it possible to perceive at different moments (stereocopic sequences) the scene
composed of 3-D objects provided with 3-D motions from several points of view. Various
experimental contexts can be studied:

e number of sensors: at least two cameras, in order to allow the creation of a stereo-
scopic effect. This number can be greater (the case of trinocular vision for example
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was explored) in order to facilitate the matching phase and to identify certain am-
biguities more easily.

o geometry of the stereoscopic system: Most studies which have dealt with this algo-
rithmic theme of stereo-motion cooperation use a stereoscopic system, in which cam-
eras are set out in parallel in a unique plane (i.e., image planes are identical) which
assumes a depth focalization at infinity, and where the separation of the geometric
base of sensors is large (i.e., greater than the distance corresponding to the visual
system of about 65mm). These choices clearly are uncompatible with the optimal
conditions of the quality of relief perception (see paragraph concerning the use of
these techniques in 3-D TV) for which a respect of different levels of conformity is
conventionally introduced.

e calibration of the stereoscopic system: this procedure signifies the prior identifica-
tion of the intrinsic parameters of each sensor (focal length, coordinates of the optical
sensor, radial distortion factor,... see Chapter 1), as well as the extrinsic parameters
matching by a geometric screw (R}, T}) (3-D rotation + 3-D translation) the rela-
tive references attached to each sensor (I = “left” sensor, r = “right” sensor in this
paragraph).

This calibration phase enables:

— the establishment equations linking the 2-D pixel coordinates to the 3-D point

coordinates
Zx F, 0 =z, X
VA 0 0 1 VA

where (X, Y, 7) designate the coordinates of a 3-D point, (z,y) designate the
2-D pizxel coordinates and (z.,y., Fy, F,) are the intrinsic parameters of the
sensor (case of a perspective projection sensor model without radial distortion)

— the passage of “left” coordinate references to “right” and vice versa

X X
Y| =R} | Y | +T) (56)
Z . Z .

— the definition of epipoles: the right (left resp.) epipole is the projection on
the right (left resp.) image plane of the optical center of the left (right resp.)
camera. Epipolar lines linking epipoles and optical centers are associated. This
epipolar geometry makes it possible to constrain analytically the geometry of
the search window during the matching of primitives between left and right
images.

It is clear that in the absence of any calibration, only fairly rough heuristics can be
used:

— selection of the optical center at the center of the image

— focal parameters fixed without identification

— search window limited in number of pixels directly in the image plane and
hypotheses of horizontal epipolar lines
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These heuristic selections naturally introduce large sources of error in the motion
estimation and disparity algorithms then used. Tamtaoui [47] carried out a study
into the robustness of these algorithms faced with such errors or inaccuracies on the
calibration parameters.

Once these experimental selections have been made, the problem of 3-D or 2-D motion
estimation in the context of stereoscopic sequences is then posed in these terms: in the
short term at two successive moments (¢,t + 1), as illustrated in Figure 13, we have four
observation fields (in the binocular case dealt with here) of a 3-D primitive P moving in
3-D space, in the case of a rigid object according to the kinematic screw V= (f, ﬁ), from
these four observation fields various 2-D, 2%-D or 3-D information fields can be identified:

e disparity fields ({6;} at time ¢ and {6,411} at time ¢ 4+ 1 respectively) by standard
matching primitives techniques

e 2-D apparent motion vectors ({©;} = {d_;} on the left sequence and {0,} = {d_;}

on the right sequence respectively) by use of a monocular 2-D apparent motion
estimation algorithm

e motion descriptor fields (resp. {0;} 5 and {0,} ﬁ) dependent on a previously defined
£ motion model

e 3-D motion and structure parameter fields in the monocular case applied here to
each stereoscopic sequence.

b4

dy
4
o) (e

Left sequence Right sequence

t+1 (0]

Figure 13: Stereo-motion observation space and associated identifiable information fields

We will not go back over the estimation techniques of these various information fields
which have already been studied in Chapter 3 and at the beginning of this chapter in
the monocular case. However, let us remember that the manipulated primitives can be of
different levels:

e pixel primitives: the information fields are dense

e contour or region primitives: the information fields are sparse.
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Below we discuss more particularly the various sequencing or matching possibilities of
these stereo-motion primitive estimation procedures; three approaches are distinguished:
the first consists of identifying the 3-D motion of objects by temporal matching of 3-D
primitives (the “stereo then 3-D motion” approach); the second consists of starting with
2-D apparent motion fields, independently estimated in each stereoscopic sequence, and
then raised again by stereoscopic relation between 3-D motion and structure information
fields (“3-D motion then stereo” approach); finally, the third approach, which is meant
to be better adapted to the case of the use of these motion estimation techniques in a
coding context, carries out the joint estimation of motion descriptor fields (“2-D, 2%-D
stereo constrained motion” approach) simultaneously in both stereoscopic sequences, by
respecting the constraints due to the intrinsic stereoscopic geometry.

3.2 3-D motion by matching 3-D primitives

This approach can be arranged as follows:

Stage 1: After identification of a disparity field {6;} (resp. {6;41}) throughout the se-
quence, for every stereoscopic couple of images, a depth map is produced {Z;(z,y)}

(vesp. {Zi41(x,y)}) for every image.

Stage 2: A matching phase for 3-D primitives, obtained by successive depth maps, is
used.

Stage 3: Instantaneous depth maps and the matching previously carried out make it
possible to deduce the 3-D motions + structure of manipulated primitives.

Several authors have studied this type of approach by trying to minimize the number of
3-D primitives to be matched. Leung and Huang [23], Netravali et al [34], and Mitiche
and Bouthemy [27] worked on 3-D pixel-based primitives; since theoretically three non-
colinear points are enough to determine the 3-D motion of a rigid object, a sparse 3-D
point depth map is first formulated by stereo-matching. A temporal matching on one
of the stereoscopic sequences then makes it possible to identify the 3-D motion of these
points. The raising of certain ambiguities is then effected by the verification on the other
stereoscopic sequence, of a matching of projected 3-D points. Kim and Aggarwal [21]
base their approach on the joint extraction of depth maps on contour-primitives extracted
by zero crossings of Laplacians and on pixel-based primitives by Moravec operator. A
two-pass relaxation method (in order to ensure the symmetry of temporal matching) is
used to link the 3-D primitive maps of two successive images (¢) and (¢ + 1); the cost
function for the relaxation procedure is based on the notion of motion invariants for rigid
bodies such as distance ratios or angles between primitives. Lingxiao et al [25] present a
method in which the estimation phases of the instantaneous rotation vector and that of
translation are uncoupled. Firstly, the centroids of the pixel sets of the left and right views
are superposed; on this new set of translated points, the rotation vector Q calculation is
carried out by least mean squares method in the case of a planar structure; finally the
translation vector T is deduced from Equation (2) itself.

Many other studies have introduced alternative algorithms to those described here.
Due to the sparse nature of the processed primitive fields, these stereo-motion cooper-
ation algorithms are intended more particularly for the reconstitution of 3-D objects or
as navigation aids for robots by dynamic stereoscopic vision [31], [49]. In stereoscopic
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sequence coding, it is still necessary to segment and interpret, in terms of motion and
3-D structures, a complete partition of the images, which makes the two complementary
approaches developed below more attractive.

3.3 3-D motion based on 2-D motion fields

Another approach to the calculation of the 3-D motion and structure parameters is based
on the independent and prior combination of estimated 2-D apparent motion fields on
each of the stereoscopic sequences.

Mitiche [28] starts from the hypothesis of the observation of at least four 3-D points
in two stereoscopic sequences. Each point checks the equations

[wr Yr 1] A @x/ll =0
1
] . (57)
[ uy v, 0 ] A Y + [ e Y 1 A 2 =0
1 0

where A, a 3 X 3 matrix, depends only on the relative displacement R;, T between the
systems of coordinates linked to the stereoscopic cameras.

The identification of A (which represents 8 unknown variables after normalization) can
be carried out by resolution of the linear system on four observed points. By using the
apparent motion field itself, this solves the problem of calibrating the stereoscopic system.
For all other 2-D matched point sets, it will therefore be possible to return to the depth
information by simple triangulation and thus to obtain access to the 3-D kinematic screw
(T, ) by resolution of the system of Equation (5) (linear in 7' and ) once this depth
map is known. Waxman et al [53], [54] studied, in particular, the relations between 2-D
motion fields. They define the relative flow or binocular difference flow by

Ad(zr,y1,6) = d (21 + 8z, m) ) — diler, w) (58)

where 6(z;,y;) designates the disparity measure obtained at the current point (z;,y;) of
the left view; in the case of parallel and aligned cameras (i.e., Z; = Z, and y; = y, at all
points), it is expressed by

b

6 E—
(a1, ) z2i(x1, 1)

(59)
where b measures the distance (baseline) between the two stereoscopic sensors.

Equation (5) is reformulated, by separating the terms linked with the instantaneous
translation T and those linked with the rotation Q by:

d(z,y) = ( $ ) _ ( u ) _ Z(;,y)A(w’y)'f—l_ B(z,y).0 (60)

From Equations (58) to (60), we deduce the following analytical relation between disparity
fields, relative flow components and 3-D motion (in the case of aligned cameras):

Au(zyd) 1
e~ = plzé+ywx -y (61)
Avil’l7yl76) —_ 0

§(@y,ur) -
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If a planar structure hypothesis is used, i.e., ﬁ = nxx + nyy + nz then the
relations between 3-D motion + structure and disparity fields and relative flow fields can
be established simply by:

{ W = Z;_; + (nxTyz —wy)z; + (wx + nyT2)y (62)
Av(zg,y,6) = 0

In order to avoid bias in the estimation of initial 2-D motion fields, the latter are
filtered by adapted filters (radial flow filtering for the relative flow, 2nd order filtering for
the fields themselves) [563]. The 3-D motion estimation method proceeds in accordance
with the following principles:

e stage 1: estimation, segmentation and filtering of 2-D apparent motion fields
e stage 2: matching of primitives based on coherence equations (62)

o stage 3: use of disparity functions for the reconstitution of surfaces between discon-
tinuity regions detected during monocular analysis (stage 1)

e stage 4: estimation of 3-D motion parameters

A temporal linking phase is also introduced in order to allow a “sub-pixel” accuracy in
the estimated disparity field (by temporal interpolation) and tracking along the temporal
axis of discontinuity regions and matched segmented regions.

3.4 Joint motion estimation under stereoscopic constraints

In several applications - and notably those of stereoscopic sequence coding, where 3-D re-
construction is not an aim - it is sometimes not necessary to go back as far as the estimation
of explicit 3-D motion and structure parameters. A contrario, it would appear interesting
to move on to the 2-D or 2%-D motion descriptor estimation phases not independently
of each stereoscopic sequence, but jointly by introducing stereoscopic constraints into the
estimation schemes themselves, linking the two descriptor fields.

In the case where only dense 2-D primitive fields are estimated (disparity fields {6}

and {6;11} and apparent motion fields {91 = d_;}, {@T = d_;}) an available coherence
constraint for these fields is to impose, at each point of the image plane, a linear relation:

di+6&+d +8 =0 (63)

consisting of forcing the closure of the quadrilateral illustrated in Figure 13.

Such a relation makes it possible, knowing three information fields, to deduce the
fourth, an ability which is easily applied in the case where, given that the dense dispar-
ity fields are calculated on each stereoscopic pair, the knowledge of a motion field (for
example on the left sequence) makes it possible to deduce the other field (on the right
sequence). Tamtaoui and Labit [46] tested this estimation approach. It turns out that
this too localized and too major constraint, notably on occlusion regions, can only provide
an initial prediction of a field which then has to be affine to obtain results in motion
compensation identical to the monocular case; obviously, this post-processing removes the
previous stereoscopic constraint. Furthermore, this scheme remains very sensitive to the
estimation bias of each of the information fields introduced.
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An interesting alternative [46], [48] is to begin with a coherence equation linking the
apparent motion fields d; = (wy, vl)t and d, = (u,, vT)t under stereoscopic constraints. This
relation establishes itself as follows: if

X, X,
Y, | =R/ | v |+T} (64)
Z, Z

with T] = (t1,t2,%3)" and R} = (r;; ) with ¢ = 1,2,3 , j = 1,2,3, and if we assume
that 7; = Z, for all matched pixels (parallel cameras hypothesis), then it is possible to
establish the following relation between apparent 2-D motion fields:

{ {
(ro1 — —27‘11)Ul + (ro2 — —27‘12)Ul = ——Ur + U (65)
11 11 11

which can be put in the form au; + Sv; + yu, + é6v, = 0 with:

— ra oty
o = 5 i
3 = m2_n2
i i
I G (66)
Y = tll
b= -y

It is equivalent matrically to C' . ¥ = 0 with:
o U = (us,v,u,, vT)t the motion vector linked to the two stereoscopic sequences,
o (' coherence coefficients.

Tamtaoui and Labit [46] introduce this coherence equation within a pel-recursive type
estimation scheme by minimization of a reconstitution error quadratic function (T') linked
to the left and right sequences by gradient techniques. Namely:

T(¥,p,) = DED*(py,dy) + DFD*(p,,d,) (67)

with p;., a couple of pixels (p;, p,) matched together; the estimation algorithm is then
written:

Trtl = gF _ PV T(TF) (68)

with P = I — CT(CCT)='C. The matrix P is the matrix of projection on the coherence
space:

{vemr!/cw=0} (69)

This estimation technique (see Figure 16) compares favourably with monocular indepen-
dent motion estimation techniques (see Figure 15) and with disparity estimation techniques
(see Figure 14) used for compensation schemes.

Naturally, this approach on a dense field extends to region motion descriptor estimation
methods (see Figure 17) by the use of parametric motion models [47]. In addition to
the more global nature of these descriptors, such an approach appears more robust to
estimation bias on the disparity since in this context it is a matter of matching regions
and not points.

Some results below illustrate the performances achieved using these joint estimation
algorithms concerning quality criteria of reconstitution after motion compensation and
quality criteria of motion fields obtained.
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Figure 14: (a) Reconstructed “Campagne” image using disparity compensation, (b) Cor-
responding disparity compensation errors (MSE=54.24)

3.5 Application to coding of stereoscopic sequences (3-D TV)
3.5.1 The general context of 3-D TV

As Figure 18 illustrates, a three-dimensional television system (3-D TV) consists of various
elements as follows:

e a stereoscopic capture system (at least two cameras, calibrated or not)

e a coder-decoder implementing a compression phase for transmission or storage of
stereoscopic sequences

e a 3-D display for which various technologies exist: dual-screens with polarizing filters,
glasses with synchronized obturators, lenticular plate screens,...

The motion estimation algorithms using stereovision-motion cooperation, mentioned
in the previous paragraphs, integrate naturally into such an applicational context in or-
der to analyze stereoscopic source-sequences and code them by motion and/or disparity
compensation.

3.5.2 Stereoscopic sequence coding strategies

We remain within the context of compatible coding-decoding-restitution approaches, i.e.,
which permit restoration of a monocular view, if the receiver does not have a 3-D display.
Two definitions of compatibility can then be introduced (see Figure 19):
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Figure 15: (a) Reconstructed “Campagne” image using motion compensation (Walker-
Rao pel-recursive method), (b) Corresponding motion compensated errors (MSE=7.92),
(¢) Motion vector field

1. in the first approach, we assume the coding of one of the stereoscopic sequences (for
example the left as illustrated in Fig 19) by such a standard monocular sequence
compression technique. The second sequence will be coded by:

e disparity compensation [57] (example in Figure 14)
e motion compensation [47], [10] (examples in Figures 15 to 17).
The second coding channel is thus used to transmit compensation errors and if

necessary, if the disparity and motion information fields are used non-predictively in
the compensation scheme, these should also be transmitted.

In this case, an effective stereo-motion cooperation approach makes it possible:

e to compare the two possible types of compensation
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Figure 16: (a) Reconstructed “Campagne” right image using joint coherent motion com-
pensation on the two stereoscopic sequences, (b) Corresponding motion compensated er-
rors (MSE=3.73), (¢) Motion vector field

e to restrict the volume of information which represents these fields by taking
account of equations of geometric dependence which link them (coherence equa-
tions described just before)

e to minimize depth perception artefacts which are linked to an independent
view-to-view reconstitution by purely monocular approaches.

2. the second approach appears as an attractive, but more difficult to achieve, exten-
sion of the previous notion of compatibility. Prior to any coding of stereoscopic
sequences, a joint stereo-motion analysis is carried out. From this processing phase
are generated, on the one hand, a “compatible” monocular sequence which can be
situated as an intermediate position between the viewpoints of the left and right
cameras and, on the other hand, innovation information (identical in nature to the
compensation error information previously described) with regard to this compat-
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Figure 17: (a) Reconstructed “Campagne” right image using joint coherent quadtree-based
affine motion estimation on the two stereoscopic sequences, (b) Corresponding motion
compensated errors (MSE=15.16), (c) Motion vector field

ible sequence. Such an approach is well adapted to the case of the use of 3-D
motion+structure estimation methods which, once carried out, make it possible to
synthesize the 3-D scene perceived from all viewing angles. This coding strategy,
difficult because of the even more imprecise nature of 3-D parameter estimations
obtained on true stereoscopic sequences, can be considered as a natural extension of
the Analysis-Synthesis or object-oriented coding approaches, described in paragraph
8.2.6 for simple objects.
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