
Two�dimensional motion analysis

In this chapter� we intend to present several methods of two�dimensional motion analysis�
which can be useful to reduce the existing temporal redundancy� as demonstrated in Chapter
�� in an image sequence� This chapter will focus on a short time horizon analysis� often
restricted to two images�
First� it is essential to distinguish between apparent motion and real motion �Section

����� We shall bring up on the one hand the hypotheses required to obtain a constraint to
the apparent motion of a picture point� and on the other hand we shall review the parametric
models of velocity 	elds such as they may result from the geometry of a three�dimensional
scene� These two elements of information will be used to estimate motion�
Estimating a velocity or displacement 	eld can be done either in a two�dimensional area�

may be possibly the whole image� or in a curvilinear domain� such as a moving contour�
Both methods can be used together� insofar as contour analysis is followed by an analysis
of the regions� The two approaches will be presented separately� the curvilinear domain in
Section ��
� and two�dimensional domain in Section ���� We shall see that in both cases
the data observed from an image sequence are similar� and insu�cient to locally solve the
estimation problem�
In both cases� it is necessary to introduce models of velocity 	elds which express some

spatial consistency� for the estimation problem to be correctly enunciated� Motion 	eld
modelization may be deterministic� or stochastic� In the former case� regularization methods
are to be used� and in the latter case estimation and 	ltering methods will have to be used�
such as Kalman 	lter and adaptive 	ltering�
Also� we address the problems of inter�frame change detection and velocity 	eld segmen�

tation� for which we choose Markovian modelization and Bayesian approach to optimization�
For all these fundamental methods �regularization� Kalman 	lter� adaptive 	ltering� Markov
random 	eld and Bayesian decision�� the fundamental notions are reminded in Appendices�

� ��D velocity �eld and optical �ow

The motion perceived within a sequence of intensity images is not the exact direct projection
of the three�dimensional 	eld of velocities� The apparent motion results from a complex
process involving� beside real motion� the illumination of the scene� the re�ectance properties
of the objects composing the scene� the shape of these surfaces� and also the characteristics of
the sensor used for image acquisition� It is therefore necessary to make a distinction between
real motion� or the two�dimensional 	eld of velocities� and apparent motion� or optical �ow�
The former results from the geometrical projection of three�dimensional moving objects on
the image plane� This implies that geometrical bias has to be corrected by prior calibration�
Optical �ow can be acquired by observing the spatio�temporal variations of intensity�
First� let us take a geometrical model of two�dimensional velocity 	eld� In Chapter �� and

in case of a perspective projection� we indicated the relation between the two�dimensional
coordinates �x� y� of a point according to the point coordinates in three�dimensional space
�X�Y�Z�
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If the projection is parallel or orthographic� then the coordinates �x� y� become
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for a perspective projection� If the projection is parallel� we simply have
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��� Photometric model

On the other side� light intensity variations in time and at any point of the image depend�
beside the moving of the objects� on the characteristics of the three�dimensional scene� com�
prising the surface shape of objects� and the photometric properties of these surfaces� Based
on the geometrical optics and photometry� we can state that the light intensity sensed on the
image is equal to the radiation emitted from the object surface point towards the sensor� pro�
vided that the optical acquisition system has also been correctly calibrated radiometrically
�����

I�x� y� t� 
 L�a� b� �� �� t� ���

where �a� b� are the intrinsic coordinates of the surface point� and ��� �� are the polar coordi�
nates of the direction of the point in relation to the surface normal at that point �Figure ���
Equation ��� well illustrates the fact that for any given surface and at any moment� the polar
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Figure �� Geometrical model of the scene

coordinates of a point �a� b� will vary with time� This means that in the general situation� the
apparent motion does not depend only on the real motion� but also on the three�dimensional
geometry of the scene� at least� Let us now consider a Lambertian surface� i�e�� a surface on
which

L�a� b� �� �� t� 
 L�a� b� t� ���

where the light emitted is not direction�dependent� For simpli	cation purposes� we have kept
the same light intensity notation in Equation ���� Let us suppose that the scene is evenly
illuminated� We can write

L�a� b� t� 
 ��I �N�a� b� t� ���






where � is the albedo of the surface �supposed not to vary spatiotemporally�� �I is a vector
which indicates the direction and intensity of illumination� and �N�a� b� t� is the normal unit
vector on the surface� at the point �a� b�� Under these hypotheses� Verri and Poggio ����
showed that the velocity vector �dxdt �

dy
dt � meets the following equation

Ix�x� y� t�
dx

dt
� Iy�x� y� t�

dy

dt
� It�x� y� t� 
 ��I��� �N�a� b� t� ���

where �� is the angular velocity of the point� �Ix� Iy� is the spatial gradient of intensity� and
It is the time gradient� Thus the left part of this equation links the velocity 
�D vector to the
observed spatio�temporal gradients of intensity in the picture� Conversely� the right part of
the equation depends entirely on the ��D characteristics� which are not easily accessible� It is
worth noting that if the hypotheses made are not veri	ed� then additional ��D characteristics
occur in the right part of the Equation ���� Finally� in support of the Equation ��� only in
the case of a Lambertian surface evenly illuminated� with a constant albedo at all points� and
in a translational motion� we obtain a velocity vector relation independent of the geometrical
and photometric characteristics of the ��D scene�
Restricting ourselves to the observation of intensity spatio�temporal variations� then the

equation obtained is known as the optical �ow equation �u� v�

Ix�x� y� t�u� Iy�x� y� t�v � It�x� y� t� 
 � ���

It has to be underscored that in the general situation� optical �ow �u� v� is di�erent from
the velocity vector �dxdt �

dy
dt �� It is precisely by comparing the two Equations ��� and ���

that it is possible to spot the di�erence between the real motion and the apparent motion�
An eloquent example of this would be a sphere rotating around a central axis ����� Under
the above hypotheses� the time gradient is null� and therefore a null optical �ow vector is
compatible with Equation ���� But the real motion is not null and the second part of the
Equation ��� is not null either�
In addition� Equation ��� provides a single equation for two unknown values� In fact�

this equation permits computing the normal component of optical �ow in the direction of
the gradient vector rI 
 �Ix� Iy�� Provided that k rI k�
 �� we obtain

�v� 
 � ItrI
k rI k� ����

If the spatial gradient is null and It 
 �� we have no motion�related information on such a
point� If the spatial gradient is null� and It �
 �� it is a point where the optical �ow constraint
has not been veri	ed� Such a local impossibility to observe the velocity vector is known as
the aperture problem �Figure 
��
The quantity estimated often is a displacement vector ��x��y�� not the velocity vector�

An equation is then used� which expresses the invariance of light intensity

I�x� y� t� 
 I�x��x� y ��y� t��t� ����

If the �t interval is small� a 	rst order Taylor development around point �x� y� t� permits
obtaining the Equation ��� from �����
Whichever the Equation ��� or ����� these are insu�cient to estimate motion� They

express the observations related to the velocity or displacement vectors� Like all observations�
they are subject to disturbances� Whether explicitly de	ned or not� the disturbance model
most often used is that of a random additional noise� This noise in a way modelizes the
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� The aperture problem

right part of the Equation ��� which is formed by terms that depend on the ��D data that
are unknown� as long as the ��D scene reconstruction inverse problem has not been solved�
This di�culty justi	es modelizing� through a random process� the unknown part of the
observation�

��� Geometrical model

Let us now return to the geometrical model of the velocity two�dimensional 	eld� Be it
�T 
 �TX � TY � TZ� the ��D vector of translational velocity of the point P �X�Y�Z� and �� 

��X ��Y ��Z� the angular velocity in relation to the focus at the origin of the axes �������
�Figure ��� The ��D velocity vector of point P is given by
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Figure �� ��D motion model

dX
dt 
 TX � Z�Y � Y �Z
dY
dt


 TY �X�Z � Z�X
dZ
dt 
 TZ � Y �X �X�Y

��
�

Let us suppose that a surface can be locally approximated by a plane� whose equation is

nXX � nY Y � nZZ 
 � ����

where the plane hypothetically does not cut the origin� A plane cutting the origin represents
a singular case in that it is projected on a straight line of the picture� It can be written from
Equation ������

�
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 nXx� nY y � nZ ����
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using the relations ����� in case of a perspective projection� The 
�D velocity vector is
obtained from Equation ����� and with Equations ����
� and ������ as follows

dx
dt


 �nZTX ��Y � � �nXTX � nZTZ�x� �nY TX � �Z�y
���Y � nXTZ�x

� � �nY TZ ��X�xy
dy
dt 
 �nZTY � �X� � �nXTY ��Z�x� �nY TY � nZTZ�y

���Y � nXTZ�xy � �nY TZ ��X�y�
����

In case of a parallel projection� we can write

Z 

�

nZ
��� nXx� nY y�� nZ �
 � ����

The nZ �
 � condition means that the plane is not parallel to the Z axis� since in that case
it would be projected on a straight line of the picture plane� By using ����� and ����
�� we
obtain the 
�D velocity vector as follows
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It results from the formulas ������ and ������ that di�erential spatial equations can be
obtained on the 
�D velocity vector� The two equations of the ������ formula provide a
linear model of the 	eld of velocities in relation to the �x� y� coordinates�

The following relations are then obtained for the velocity vector �v 
 �dx
dt
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dt
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If rotation �� is neglected� and always for a parallel projection� two 	rst order di�erential
equations are obtained� and a constant model for the velocity 	eld�

��v
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 � ����

These spatial di�erential equations involving the velocity 	eld will be useful for the
estimation of that 	eld� In fact� since the local rigidity and planarity hypotheses� which
made Equations ������ and ������ possible to obtain� are not always totally veri	ed� it
is equivalent to suppose that the above di�erential equations are not homogeneous� but
controlled by random noises which re�ect the model imperfection� whether it is constant or
linear�

� Curvilinear domain

There are a number of reasons for which it would be useful to measure a velocity 	eld in
a curvilinear domain� and more speci	cally in a set of points belonging to a contour which
corresponds to surface ruptures of the scene objects� First of all� the velocity 	eld on a con�
tour of a high light intensity variation is very close to the real motion 	eld ����� This results
from the discussion in Section ������ where the relationship that exists between apparent
motion and real motion is presented� Secondly� the spatial detection and localization of the
contours provide part of the solution to the problem of 
�D velocity 	eld segmentation� This
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is explained in more detail in Section ����� where this question is addressed� The contour
estimated 	eld may latter be used to estimate a dense velocity 	eld in a two�dimensional
domain ����� Finally� it may be of interest in applications where estimation is restricted to
a number of points sensitively lower than the overall number of points which compose the
picture�
In a curvilinear domain� it is possible to measure only the normal component of the

displacement vector of the interested curve� This measurement� used in combination with
a displacement 	eld model� permits solving the estimation problem� These two points will
be addressed in Sections ��
�� and ��
�
� For a better understanding of what follows� it has
to be underlined that� beside the local ambiguity created by the measurement of a single
component of the displacement vector� there is also some global ambiguity in certain curves�
in as much as the motion 	eld of an entire curve may remain undetermined for certain models
of displacement 	elds� This may be result in a delusional perception and interpretation of
the real motion�

��� Measurement of the normal component

Detection of moving contours and measurement of the component of the displacement vector
perpendicular to the contour may be done jointly ���� ����� Nevertheless� and for clarity
reasons� here these two steps are distinguished�
The initial step� which can be considered as pre�processing� consists in extracting the

spatial contours from the intensity picture sequence� This step can be followed by the linking
of the detected points� in order to obtain point lists characterized by an overall order� if the
contour is open� and additionally by a periodicity� if the contour is closed� The 	rst datum
therefore involves the localization and the structuring of the contour points�
The second step is linked to motion� A local operation can only provide a single compo�

nent of the velocity vector for each point of the contour� This component is perpendicular
to the contour� The tangential component to the contour cannot be seen locally� This is
a problem of local ambiguity or inobservability� The only exception to this principle is the
case of strong curvature points� or points of curve discontinuity� such as corners� It is then
possible to measure the two components of the displacement vector locally� The same applies
to the extreme points of an open contour� For all these points� measuring the displacement
vector requires matching the associated points by means of motion� This pertains to the
more general problem of a discrete approach to measure motion by matching visual features
����� Otherwise� for all other points the normal component of the velocity vector can be
measured with Equation ������� It is also possible to measure the normal component di�
rectly from the detected contours� using geometrical method� We shall remain within that
approach to de	ne it further and to analyze measurement errors�
To simplify error analysis� and to remain within general considerations� let us consider

a system of axes linked to the point and de	ned by the normal and tangential directions
of the curve at that point� To simplify further� we suppose that the curve can be approxi�
mated locally� i�e�� in the vicinity of the point� by a circle� whose radius inverse provides the
curvature at that point �Figure ��

x� � �y � r�� 
 r�� r � � �
��

We suppose also that displacement is locally translational� Let �u� v� be the displacement
vector� Given the choice of axes� u represents the tangential component and v the normal
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Figure �� Measurement of the normal component of the displacement vector

component of the displacement vector� The curve at moment t is given by Equation ���
���
We denote C� this curve� At moment t��t� this curve has moved to C�� whose equation is

�x� u�� � �y � r � v�� 
 r� �
��

There are two mostly used possibilities to measure the normal component from these two
curves� the displacement according to the C� curve normal and the distance from the point
to the displaced curve C� ��
�� In Figure ���� this corresponds to v� �resp� v�� for the 	rst
�resp� second� case� The normal distance v� requires one�dimensional search� whereas the
distance from the curve requires search in two dimensions� But the second distance �v�� is
always well de	ned for all the points of the curve� whereas the normal distance is not� This
will be better illustrated by the following analysis of measurement errors�
Under the above hypotheses� we can write

v� 
 r � v �
p
r� � u�� r � juj �

�

The normal distance can be de	ned only if r � juj� which means that curvature must be mild
in relation to the inverse of the tangential component of the displacement vector� We also
observe that there is a systematic measurement error� which is dependent on the curvature
at the considered point and on the tangential component� The error is provided by the
following equation

	� 
 v� � v 
 r

�
���

s
��

�
u

r

	�
A � r � juj �
��

Note that since r is positive� this error is always positive�
Distance v� is given by the following equation

v� 

q
u� � �r � v�� � r �
��

In that case� the measurement error writes as follows

	� 
 v� � v 

q
u� � �r � v�� � �r � v� �
��

The distance is now always de	ned� and the error is always positive� as above� By comparing
the two expressions of the error� it is easily demonstrated that� if v� � � �resp� v� 
 ��� then
	� 
 	� �resp� 	� � 	��� Supposing that the probability distribution of the vector �u� v� does
not vary with rotation� the result is

Pr�v� � �� � Pr�v� 
 �� �
��

�



The consequence of this is that a greater error is more likely with the normal distance than
with the distance to the displaced curve�
Such measurement errors� despite the fact that they are systematic and unavoidable� are

in practice ignored or considered as random� Thus a linear relation can be obtained for the
measurement equation at each point of the curve� If �nx� ny� is the normal vector to the
curve� we can write� by de	nition�

nxu� nyv 
 v� �
��

This equation will be the base for estimating the 	eld of displacement along the curve� Since
the displacement is two�dimensional� this equation is insu�cient to achieve the estimate�
Equation ���
�� is used jointly with a consistency expression of the 	eld of displacement
along the curve� We shall present further some estimation methods that we have classi	ed
into three categories according to the type of processing � iterative� recursive� or parametric�

��� Estimation of the displacement �eld

Let a list of points belong to the curve C�� f�x�k�� y�k��� � � k 
 Ng� If points �x���� y����
and �x�N � ��� y�N � ��� are two adjacent points� the curve is closed� Let v��k� be the
normal component of the displacement vector �u�k�� v�k�� at point �x�k�� y�k��� and the
normal vector of the curve at the same point �nx�k�� ny�k��� Equation ���
�� can write for
each point of the curve �� � k 
 N�

nx�k�u�k� � ny�k�v�k� 
 v��k� �
��

The aim is to estimate the displacement vector f�u�k�� v�k��� � � k 
 Ng over the whole set
of curve points�
According to the iterative method� all the displacement vectors are estimated globally

by successive iterations� By the recursive method� the displacement vector of a point is
estimated from that of the preceding point� in which case it is preferable to use a forward
recursion and a backward recursion� In the parametric method� the displacement 	eld is
assumed to be described by a restricted number of parameters� estimation then amounts to
identifying these parameters�

����� Iterative estimation

Hildreth ���� proposed a regularization method to evade the local ambiguity problem� Some
elements of the regularization theory are given in Appendix �A� This method consists in
de	ning a function of global energy for the 	eld of displacements along the curve� The
energy function proposed by Hildreth comprises two terms� and it is quadratic� in relation to
the displacement vector components� The 	rst term corresponds to the measurements of the
normal component of the displacement vectors over all the points of the curve� The second
term expresses a smoothing constraint of the displacement vector 	eld� so that the 	eld be
as close as possible to a locally translational displacement�
By using the above notation� the energy function is given by

E 
 �
N��X
k��

�
nx�k�u�k� � ny�k�v�k� � v��k�

��

�
N��X
k��

�u�k�� u�k � ���� � �v�k�� v�k � ���� �
��

�



if the contour is open� If the contour is closed� the following term must be added

�u��� � u�N � ���� � �v��� � v�N � ����

The weighting factor � expresses� in statistical terms� the ratio between the smoothing model
variance and that of the measurements� Hildreth proposed using the conjugate gradient
algorithm to minimize the energy function E which� being quadratic� leads to a system of
linear equations� The conjugate gradient algorithm is given in Appendix �B�

����� Recursive estimation

In this approach� the correlation of the displacement 	eld along the curve is expressed by
an auto�regressive model� Using this model and the measurement of the normal component
makes it possible to solve the estimation problem by minimizing the mean squared error�
The auto�regressive model used is derived from the model chosen locally for the displacement
	eld� If the displacement 	eld can be considered as a local translation� then we obtain a 	rst
order model as follows�
u�k�
v�k�

�



�
u�k � ��
v�k � ��

�
� q�k� ����

where q�k� is a two�component vector which represents the noise of the model� We suppose
that this noise is zero�mean� white� and with a covariance matrix ��q II�� II� being the 
 � 

identity matrix� This model is equivalent to the smoothing constraint mentioned in the pre�
ceding paragraph� Let be a linear model of displacement 	eld in relation to the coordinates�
We then obtain the generic expression of the displacement 	eld as follows

u 
 a�� � a��x� a��y
v 
 a�� � a��x� a��y

����

Or we can also write�
u
v

�

 V� �A

�
x
y

�
��
�

where the V� vector and the matrix A are obviously identi	ed� If the A matrix is null� this
model is reduced to that of Equation ������� The A matrix takes rotation and some amount
of curve deformation into account� A few simple calculations from the ������ model provide
a third order auto�regressive model �����

u�k�

v�k�

�

 ���k�

�
u�k���

v�k���

�
� ���k�

�
u�k���

v�k���

�
� ���k�

�
u�k���

v�k���

�
� q�k� ����

using the same noise hypotheses as before� By noting 
�k� as a state vector de	ned as follows


�k� 

h
u�k� u�k � �� u�k � 
� v�k� v�k � �� v�k � 
�

iT
����

we can write


�k� 
 ��k�
�k � �� � ��k� ����

where ��k� is the noise vector induced by q�k� as follows

��k� 

h
q��k� � � q��k� � �

iT
����

�



with q�k� 

h
q��k� q��k�

iT
� The state transition matrix ��k� is given by

��k� 




��������

���k� ���k� ���k� � � �
� � � � � �
� � � � � �
� � � ���k� ���k� ���k�
� � � � � �
� � � � � �

�
��������

����

The measurement equation of the displacement vector normal component can be written as
a function of the state vector as follows

v��k� 

h
nx�k� � � ny�k� � �

i
� ��k� ����

where ��k� is the measurement noise assumed to be zero�mean and white� with variance ��� �
Under all these hypotheses� the estimation problem can be posed as follows � to estimate

the displacement 	eld f�u�k�� v�k��� � � k 
 Ng over all the curve points� taking the normal
displacement values fv��k�� � � k 
 Ng into account� The optimization criterion is the
minimizing of the mean squared error� This problem is known as that of optimal smoothing�
and requires using a Kalman 	lter in the direction of the contour� and a backward 	lter to
correct the initial estimate by using the information from all the measurements� The Kalman
	lter and the optimal smoothing are given in Appendix �C� The Rauch�Tung�Striebel �RTS�
formula ���� which expresses optimal smoothing is the only one given here

�
�kjN� 
 �
�kjk� � P �kjk��T �k�P���k � �jk���
�k � �jN�� �
�k � �jk�� ����

where �
�kjN� is the optimal estimate of the state vector using all the observations� �
�kjk� is
the optimal estimate using observations � to k� as given by the Kalman 	lter� and �
�k��jk�
is the optimal prediction of 
�k � ��� taking account of observations � to k� P �kjk� is the
covariance matrix of estimate �
�kjk� and P �k � �jk� is the covariance matrix of prediction
�
�k��jk�� These matrices� together with prediction �
�k��jk�� are also produced by Kalman
	lter� This method was used for model ������ by Tziritas ���� and by Roug�ee et al� ���� for
model �������
Considering only 	ltering part and supposing that the measurement noise is predominant

on that of the model� and if the model is that of local translation ������� then the stochastic
gradient algorithm could be used� which is presented in Appendix �D� We would then obtain�
�u�k�
�v�k�

�



�
�u�k � ��
�v�k � ��

�

� 	
�
nx�k��u�k � �� � ny�k��v�k � ��� v��k�

� � nx�k�
ny�k�

�
����

This method was used by Bouthemy ��
�� If the curve is closed� recurrence is cyclical�
otherwise� it occurs in forward and backward sense�

����� Parametric estimation

With a parametric model like that of Equation ������� valid for an entire curve or part of a
curve� the estimation problem is reduced to estimating the model parameters� This approach
was used by Waxman and Wohn ���� with an ��parameter model� as follows

u 
 a�� � a��x� a��y � bx� � cxy
v 
 a�� � a��x� a��y � bxy � cy�

����

��



This model results from the perspective projection of a ��D space plane on the picture
plane� as we have described with Equations ������� Therefore� it is only necessary to know
the value of the normal component of the displacement vector over more than � points of
a curve� to obtain a linear equation system that is usually overde	ned� and which provides
the determination of the � parameters by a least�squares method� The conditions for this
equation system to accept a single solution are explained in the following section� where the
issue of global ambiguity is addressed�
Wohn� Wu and Brockett ��
� have used a similar approach involving several parametric

models� the most complex being the ��parameter one ������� The di�erence lies in the use
of several iterations to evade the constraint of describing the entire displacement 	eld with
only � parameters� The displacement 	eld is obtained by successive transformations� The
displacement induced by the curve is applied to any obtained solution and the estimation
is hence renewed from the curve� Eventually� the displacement is the summation of partial
displacements�

��� Global ambiguity of the displacement �eld

There are situations where the displacement 	eld along a curve� as it may result from the
measurement of the normal component and of a global displacement model� is not unique�
Such a situation is designated as a global ambiguity� well distinct from the local ambiguity
involving the normal component at a single point� A clear example is that of a straight line
segment in translationali motion� In the absence of additional information relative to the
segment ends� there are in	nite tangential components that can match the models� The issue
of a unique solution may be relevant to applications which aim at reconstructing the motion
and structure of ��D objects� but also when using contour estimates as a reliable base for
estimating a dense 	eld over the whole picture�
The ambiguities examined henceforth result from the loss of some motion data due to

the projection of ��D objects on a 
�D plane� Thus the ��D space curves which are subjected
to di�erent motions may appear as moving identically� Another cause can be the di�erence
between real motion and apparent motion� even in ��D� Thus the resultant projected contour
of a rotating sphere may appear immobile�
Human perception of motion may involve several known cases of illusion when interpret�

ing motion ����� such as a rotating ellipse or spiral� or a circular helix on a rotating cylinder�
Such illusions result from the choice of one motion interpretation among an in	nity of possi�
ble interpretations� We shall later present curve shapes that may induce ambiguity in motion
interpretation�
Let us now consider the mathematical formulation of the global ambiguity notion� The

motion is ambiguous� if at all points of the curve the tangential vector is proportional to a
displacement vector

dy

dx



v

u
��
�

If the displacement model is translational� and thus independent of �x� y�� it is obvious that
the only solution to the di�erential Equation ����
� is a straight line�
Let us now consider the ��parameter linear model ������ of displacement 	eld� The

following di�erential equation is obtained

dy

dx


a�� � a��x� a��y

a�� � a��x� a��y
����

��



Considering the matrix

A 


�
a�� a��
a�� a��

�
����

and supposing that detA �
 �� A change of coordinates by translation gives
dy�

dx�



a��x
� � a��y

�

a��x� � a��y�
����

with x� 
 x� x� and y
� 
 y � y�� and where

A

�
x�
y�

�



�
a��
a��

�
����

The solution to the di�erential Equation ������ is known ��
�� The results will be given
later� using for simpli	cation and to preserve generality� the �x� y� coordinates� and not
�x�� y��� In any case� any a�ne transformation a curve that satis	es ������ will satisfy a
di�erential equation like ������� It is necessary to distinguish the di�erent cases according
to the eigenvalues of the A matrix�

����� Real and distinct eigenvalues

If the eigenvalues of matrix A are real and distinct� �� �
 ��� then the solution to the
di�erential equation under consideration gives for the curve the following equation

y 
 cx����� ����

Let us take as an example the y 
 cx� parabola� or the xy 
 c hyperbole� In the parabola�
vectors like �u�� 
cxu�� are tangential at all points of the curve� All types of curves matching
Equation ���� are given in Figure ��

Figure �� Curves for the cases of real and distinct eigenvalues

����� Equal eigenvalues

In this case� the curve is given by the equation

y 
 �� � � ln jxj�x ����

This family of curves is illustrated in Figure ��

�




Figure �� Curves for cases of equal eigenvalues

Figure �� Logarithmic spiral

����� Complex eigenvalues

The curve equation is given in polar coordinates�

� 
 c exp�a�� ����

In the general case� this is a logarithmic spiral equation �Figure ��� If a 
 �� this is a circle�
A linear invertible transformation of a circle produces an ellipse� Tziritas ���� provides
examples of ��D motion parameters leading this type of curve into ambiguous 
�D motions�
whether in the general case of logarithmic spiral� or with ellipse or circle�
With regard to the ��parameter quadratic model ������� it is obviously reduced to the

linear model� if b 
 c 
 �� Therefore� any curve which is ambiguous as to motion interpreta�
tion of the linear model� is also ambiguous in the quadratic model� Finally� the increase in
model liberty leads other curve families to a situation of multiple interpretation possibilities�
Since these ambiguities are inherent to the motion under consideration� determining a

unique solution from the displacement 	eld perpendicular to the curve is not possible� except
when reducing the number of degrees of model liberty� For instance� the constant model�
which is the simplest and was used in the iterative approach �paragraph ��
�
�� removes the
ambiguity from all the curves� except straight line segments� A colinearity test would be
su�cient in this model to 	nd out whether a displacement 	eld can be estimated on a given
curve� This test amounts to determining the rank of a 
 � 
 matrix� or to an invertibility
test� Likewise� a � � � �resp� � � �� matrix rank test could be used for the linear �resp�
quadratic� model produced by Equations ������ and �resp� ������
To conclude� except in certain curve families which depend on the motion model used� a

displacement 	eld can be estimated on a spatio�temporal contour� This information could be
enough in image compression to describe motion� knowing that the displacement 	eld inside
a region delimited by occlusion contours is rather continuous and smooth� Thus the motion
data are compacted and reduced to the localization of contours and to the description of
their displacement 	elds� as given in the end in a small proportion of picture points ����� In
addition� the displacement 	eld estimated on the contours may constitute a constraint� or
initial condition� for the estimation of a dense displacement 	eld at all points of the picture
�����

��



� Two�dimensional domain

In this section� we address three major problems of motion analysis in a two�dimensional
domain� First� in paragraph ������ we pose the problem of change area detection based
on di�erences between pictures� Second� in paragraph ����
� we present several methods
to estimate the two�dimensional displacement 	eld� which are more or less used for picture
sequence compression� In reality� the displacement 	eld is not stationary� which adds to the
estimation problem that of the 	eld segmentation� as presented in paragraph ������
This chapter will not include the methods of three�dimensional object structure and

motion reconstruction� either from the two�dimensional velocity 	eld� or directly from spatio�
temporal variations of intensity� This aspect is addressed in Chapter ��

��� Change detection in image sequences

A frequent 	rst step to estimate motion from one picture to another is to detect those
parts of the picture whose intensity has changed� This is of interest only when the sensor
is stationary� like for instance for videophone or videoconference applications� In fact� it is
necessary to distinguish� within the changed part of the picture� that belonging to moving
objects and that formed by the background left exposed by the moved objects� Yet this
distinction will not be made in what follows� and only the methods used to detect temporal
variations of intensity will be exposed� Detection is based on the observation of inter�frame
di�erence

D�i� j� k� 
 I�i� j� k� � I�i� j� k � �� ����

Before presenting the detection methods� it has to be reminded that this quantity was used
in the early systems of inter�frame coding ����� known as conditional replenishment� This in
fact was a predictive coder� where prediction error was quantized and transmitted provided
that it surpasses a certain threshold�
Detection therefore can be achieved by thresholding� which is the simplest manner� or

using more sophisticated methods which take the context of the neighborhood of a point
into account� to decide on the inter�frame change� A number of studies have been dedicated
to that problem ��� ���� ���� ��
� ����� The various techniques are not presented separately
in what follows� but di�erent methods are presented in a uni	ed manner� We shall choose
a probability modelization of the detection problem� which leads to statistically verify the
temporal change hypothesis� Let H� be the unchanged pixel hypothesis� and H� the change
hypothesis� We associate the random 	eld  �i� j� with the events involved in the state of all
the pixels of a picture� For each pixel it can be written

H� �  �i� j� 
 �
H� �  �i� j� 
 �

����

Let p�Dj�� �resp� p�Dj��� be the probability density function of the inter�frame di�erence
under the H� hypothesis� These probability density functions are supposed homogeneous�
i�e�� independent of the point �i� j�� Most often the variable D�i� j� is supposed to be zero�
mean according to the Gaussian or Laplacian laws� The probability density function is
provided in the last case by

p�Djn� 
 �n


exp���njDj��n 
 �� � ��
�

Variance is then linked to the �n parameter by the relation �
�
n 


�
��n
�

��



To determine the hypothesis test� we choose the Bayesian approach� Let us consider
three modelization levels for the process  �i� j�� point� line or one�dimensional� and region
or two�dimensional� The latter two introduce the context notion in the decision process� In
this approach� the decision criterion is the maximizing of the a posteriori probability �MAP��
As to the observations� whichever the modelization level� we suppose that the observation
noise is zero�mean and white�

����� Decision at the point level

The decision strategy that we use requires that the probabilities of two hypotheses are known
in advance� Let P� �resp� P�� be the a priori probability of hypothesis H� �resp� H��� The
absence of a priori knowledge is expressed as P� 
 P��
Under all the assumptions� and using the maximum a posteriori criterion� the decision

test is as follows�

DecideH�� if Pr�H�jD�i� j�� � Pr�H�jD�i� j�� ����

With Bayes theorem� it can be written

Pr�HnjD�i� j�� � Pr�Hn�p�D�i� j�jHn��n 
 �� � ����

Let us consider the case where D�i� j� is a Laplacian random variable� Then ������ and
������ provide the following relation

DecideH�� if
P���



exp����jD�i� j�j� � P���



exp����jD�i� j�j� ����

from which a threshold test is obtained

DecideH�� if jD�i� j�j � lnP��� � lnP���
�� � ��

����

If P� 
 P�� this test is equivalent to the maximum likelihood test� as can be observed with
the relation ������� In the end� the maximum likelihood test is

DecideH�� if jD�i� j�j � ln�� � ln��
�� � ��

����

If D�i� j� is a Gaussian variable� it can be demonstrated in the same way that the maxi�
mum a posteriori probability test is

DecideH�� if jD�i� j�j � ����

vuut
�ln P�
��
� ln P�

��

�
��� � ���

����

where ��� �resp� �
�
�� is the variance of variable D�i� j� under the H� �resp� H�� hypothesis�

Like in all two�hypothesis statistical tests� there are two types of error� false detection and
non�detection� The above tests presume that these two types of error carry the same cost�
The two types of error can be considered distinctly in an approach other than the Bayesian
one� which is that of the likelihood ratio� This approach does not require knowing a priori
probabilities �P� and P��� but only the parameters of one of the two probability densities�
The probability of false detection is set at the chosen level� be it �� The likelihood ratio
provides su�cient statistics for the test� Let us consider the case of a Laplacian variable�

��



then the su�cient statistics is the average absolute value of the inter�image di�erence� The
test is still a threshold one� Let s be the threshold� it is set by the following relation

Pr�jD�i� j�j � sjH�� 
 � ����

With a Laplacian variable� the following equation ensues




Z �

s

��


e���xdx 
 � ����

This eventually leads to set the threshold according to the false detection probability and to
���

s 

�

��
ln
�

�
����

We see that the threshold depends solely on the variance of the no�moving background�
which is linked to the sensor noise� not to the moving object characteristics�
Also� the test becomes more e�ective� if the decision is based on observing the inter�image

di�erence in some amount of the point surroundings� rather than on the point alone� Back
within the method of maximum a posteriori probability� The decision test is as follows

DecideH�� ifPr�H�jD�i� k� j � l� � �k� l� � S�

� Pr�H�jD�i� k� j � l� � �k� l� � S� ��
�

where the S set de	nes the neighborhood of a point and includes ������ An example of such
a set is� S 
 f�k� l� � k� � l� � 
g which includes � points� Let n be the cardinal of the S
set� Following the same approach as that followed for a single point� we obtain the following
test� in the case of a Laplacian variable

DecideH�� if P�

�
��



	n
e
���

P
�k�l��S

jD�i�k�j�l�j

� P�

�
��



	n
e
���

P
�k�l��S

jD�i�k�j�l�j
����

Finally the following test is obtained

DecideH�� if
�

n

X
�k�l��S

jD�i� k� j � l�j � ln�� � ln�� � �
n ln

P�
P�

�� � ��
����

We observe that the role of a priori probabilities is the lesser as the number of points
considered is larger� In exactly the same manner� the following tests is obtained in the case
of a Gaussian variable

DecideH�� if
�

n

X
�k�l��S

�D�i� k� j � l��� � ����
�
�

ln��� � ln��� � �
n ln

P�
P�

��� � ���
����

In the Gaussian case� we also give the likelihood ratio test� which only requires knowing
the variance ��� � which depends on the camera noise� This is a threshold test� the threshold
being set determined by setting the false detection probability� The su�cient statistics is
equal to the sum of the squares of the inter�image di�erences over all the points de	ned by
S� This leads to the following test ���

DecideH�� if
�

���

X
�k�l��S

�D�i � k� j � l��� � s ����

��



The threshold s is determined by setting the false detection probability � using the following
relation

Pr�
�

���

X
�k�l��S

�D�i� k� j � l��� � sjH�� 
 � ����

Under the H� hypothesis� the variable on which the test is based follows the �
� distribu�

tion with n degrees of freedom� whose distribution function is tabulated and is used in the
threshold determination�
Another way to take the neighborhood into account consists to consider the binary pro�

cess classifying a point as belonging or not to a changed area� We have already evoked
the possibility of a one� or two�dimensional context� which will be presented successively
hereafter�

����� Decision at the line level

We suppose that the  �i� j� process is not independent from one point to the other� but
that there is a surrounding relation modelized by a 	rst order Markovian chain� We suppose
therefore that

Pr� �i� j� 
 ��i� j�j��i� l�� l 
 j� 
 Pr� �i� j� 
 ��i� j�j��i� j � ��� ����

Then the process that describes the fact that the points belong to the changed or unchanged
areas is characterized by four probabilities� P��� the probability that a point is unchanged�
knowing that the preceding point is also unchanged� P��� the probability of a transition from
a changed to an unchanged point� and with a respective interpretation of probabilities P��
and P��� The maximum a posteriori probability method �MAP� consists in maximizing� at
all the points of a given line� the following probability

Pr� �i� j� 
 ��i� j�jD�i� j� 
 d�i� j�� j 
 �� �� � � � � N � �� ����

This conditional probability takes into account all the inter�image di�erence observations
made all along the length N of the line i� Applying Bayes theorem� we obtain the maximized
quantity of formula ������ as equivalent to the minimized following quantity

� ln p�d�i� j�j��i� j�� � � j 
 N�� lnPr���i� j�� � � j 
 N �


 �
N��X
j��

ln p�d�i� j�j��i� j�� �
N��X
j��

lnPr���i� j�j��i� j � ��� ����

Under the Laplace law hypothesis ��
� we obtain the following quantity to be minimized

N��X
j��

���i� j����jd�i� j�j � ln��� � ��� ��i� j�����jd�i� j�j � ln����

�
N��X
j��

��� � ��i� j����i� j � �� lnP�� � ��� ��i� j���� � ��i� j � ��� lnP��

���i� j���i� j � �� lnP�� � ��i� j��� � ��i� j � ��� lnP��� ����

��



Minimization is done in relation to the N unknown values f��i� j�� j 
 �� �� � � � � N��g� which
may be equal to � or �� The above quantity can also be written as

N��X
j��

���i� j����jd�i� j�j � ln��P��� � ��� ��i� j�����jd�i� j�j � ln��P���

��i� j��� � ��i� j � ��� ln P��
P��

� ��� ��i� j����i� j � �� ln P��
P��

� ��
�

This leads to the minimization of

N��X
j��

��i� j�

�
lnP���� � lnP����

�� � ��
� jd�i� j�j

	
�
c�� ln

P��
P��
� c�� ln

P��
P��

�� � ��
����

where c�� �resp� c��� is the number of transitions from the unchanged �resp� changed� to
the changed �resp� unchanged� state ����� It is worth noting that in the absence of any
surroundings constraint� i�e�� if P�� 
 P�� 
 P� and P�� 
 P�� 
 P�� we obtain exactly
the same result as when deciding independently at each pixel ������� It has to be noted
also that the larger the ratios P���P�� and P���P�� are� the fewer transitions are detected�
Knowing that the addresses of these transitions have to be coded in some way� we appreciate
the interest of the Markovian modelization and of the Bayesian approach� So far� we have
provided the criterion to be optimized for the detection of inter�frame changes� With regard
to resolution methods� there are two possibilities� Minimizing the sum in ����
� is achieved
by using Viterbi algorithm ���� �
��� Otherwise� by using a method proposed by Askar and
Derin ���� which gives directly the a posteriori probabilities of formula �������

����� Decision at the two�dimensional level

Finally� let us consider the possibility of a two�dimensional neighborhood� hence the mod�
elization of the  �i� j� 	eld using a Markov random 	eld� It has been shown that a Markov
random 	eld is equivalent to a Gibbs distribution� The de	nition and fundamentals of
Markov random 	elds are given in Appendix �E� Let us consider an ��point neighborhood�
We can write� for a frame of M lines and N columns

lnPr� �i� j� 
 ��i� j�� � � i 
 M� � � j 
 N � 
 � ln!�
X
c�C

�c��� ����

where ! is a normalizing constant and �c��� is the potential associated to the c clique� C
being the set of all cliques� As in �
��� we de	ne

�c��� 


�
�� if all ��i� j� in the clique are equal
� otherwise

����

In what follows� we shall only consider 
�element cliques� with the same � parameters for all�
i�e�� no orientation is preferential� The maximum a posteriori principle leads to the following
minimization

� lnPr� 
 ��D 
 d� 
 � lnPr� 
 ��� ln p�dj 
 �� ����

We have simpli	ed the notation� but the above probabilities are to be taken for the whole
picture� The probability density function linked to the observed inter�picture di�erences is

��



obtained by supposing that the noise is spatially independent� We suppose that the inter�
picture di�erence is a Laplacian random variable ��
�� The Gaussian case is handled in the
same manner� We can write

ln p�dj 
 �� 

X

�i�j��S�

�
ln
��


� ��jd�i� j�j

	
�

X
�i�j��S�

�
ln
��


� ��jd�i� j�j

	
����

where S� is the set of unchanged points and S� is the set of changed points� Thus can we
express the quantity to be minimized in ������� Minimization can be achieved by applying
a stochastic algorithm that uses a Gibbs sampler and the simulated annealing method �
���
This method can lead to the global minimum� but only to the expense of gigantic complex�
ity or computation time� For the application in question� it would be preferable to apply
deterministic algorithms� which provide a sub�optimal solution but are far less complex than
the stochastic algorithm� We shall present further two such methods� as proposed by Derin
and Elliot �
�� and Besag ����
Derin and Elliot �
�� propose using Viterbi algorithm for the minimization of the formula

������ quantity� To achieve this� they write it in the recursive form� column by column�

"� 
 ln! �MN ln 

"j 
 "j�� �

P
c�Cj���j �c��� �

P
�i�j��Sj�

���jd�i� j�j � ln���P
�i�j��Sj�

���jd�i� j�j � ln���� � 
 j 
 N
����

where Cj���j is the set of cliques that have two points on column j� or on columns j� � and
j� and Sjn 
 f�i� j� � ��i� j� 
 n� � � i 
 Mg� Finally for j 
 N � � it will be
"N�� 
 � lnPr� 
 ��D 
 d� ����

Using this recursion� it is possible to determine the solution by applying Viterbi algorithm�
This solution will represent the global minimum� But the number of possible states for each
column is 
M � which may prove to be a prohibitive computation quantity� Therefore a sub�
optimal solution will be enough� still using Viterbi algorithm� but applied in a sequential
manner to a part of the column of height L� Then there will be 
L possible states� but as
many scans as there are lines in the picture will have to be performed�
Another method which takes the spatial relations expressed in the markovian 	eld into

account� is that proposed by Besag ���� and is called #iterated conditional modes$ �ICM�� This
method generally provides a sub�optimal solution� for it uses local iterations� The method
consists in starting from a given estimate� and hence update with all the locally available
data� The quantity maximized at each point is the following conditional probability

Pr� �i� j� 
 ��i� j�jD�i� j� 
 d�i� j�� �k� l� 
 ���k� l�� �k� l� �
 �i� j�� ����

This is equivalent to maximizing the following quantity

ln p�d�i� j�j��i� j�� � lnPr���i� j�j���k� l�� �k� l� � V �i� j�� ����

where V �i� j� is the ��point neighborhood of point �i� j�� All the pixels can be updated at each
step� but other implementations can be considered� As a rule� this algorithm is very fast� with
few changes after the 	rst six iterations� The approximation achieved� which corresponds to
the local maximum of a posteriori probability Prf �i� j� 
 ��i� j�jD�i� j� 
 d�i� j�� � � i 

M� � � j 
 Ng much depends on initialization� Initialization with a thresholding resulting
from the maximum likelihood test should provide a good starting point for the #iterated
conditional modes$ algorithm�

��



In Figure � are given results of applying some of the above described methods on #Trevor
White$ sequence� For the case of decision at the point level� the model parameters have been
estimated from the observed statistics of the inter�image di�erence ��� 
 ����
� �� 
 ������
P� 
 ��� and P� 
 ��
�� The same values of parameters �� and �� have been used for the
other two cases�

Figure �� Results of change detection on #Trevor White$ sequence� Top�left� independent
decision point by point� one observation per point �Equation �������� Top�right� independent
decision point by point� nine �� � �� observations per point �Equation �������� Bottom�left�
decision at the line level� Bottom�right� decision at the 
�D level using the ICM algorithm

Before concluding this section on inter�frame change detection� let us remember that this
detection can prove insu�cient insofar as additional partitioning of the changed area can be
sought� into a part belonging to the moving object� and a part of the background decovered
as a result of motion� This would require either a 	ner modelization of the moving object
and background� or using more than one pair of pictures �����

��� Estimation of a ��D apparent motion �eld

In this section we present methods to estimate apparent motion from spatio�temporal vari�
ations� The motion constraint equation� as it has been presented in Section ���� provides
observation at all points of the picture� This measurement is not su�cient to estimate the
apparent displacement vector� which has two components� This is local #unobservability$ or
ambiguity� Additional information has to be supplemented for the estimate to be achieved�
This information generally is the coherence of the apparent displacement 	eld� In practice�
a form of spatial coherence is always provided� In a way� this additional information may
be interpreted as a smoothing constraint within a regularization method� In a probabilistic
expression of the estimation problem� coherence is expressed by an internal model� or state


�



model� of the two�dimensional 	eld of apparent displacements� It is also possible to use a
parametric model for the displacement 	eld in a given region� or to perform the estimation
in a transform domain�
In what follows� we present the main approaches and methods for displacement 	eld es�

timation� Let us start with the simplest parametric model� which consists in supposing that
in a given region displacement is translational� This method has been commonly used for
picture compression� by matching rectangular blocks� We shall later present the recursive
methods most studied and used for picture coding� Iterative methods have hardly been used
for picture compression� and much used for picture analysis� Because of their methodological
standing and their potential use for picture compression� we shall present them in quite some
detail� In contrast� we shall be briefer with the methods that operate by spatio�temporal
analysis within a transformed domain� since they are more cumbersome to implement and
practically never used for picture coding� We shall 	nish with the estimation of the para�
metric models that are assumed to be valid within a given region� A question linked to
these models� and more generally to those expressing displacement 	eld coherence� is that of
displacement 	eld global ambiguity� The question is to determine the conditions� provided
by the motion constraint equation and a displacement 	eld model� under which there is a
single solution to the displacement 	eld within a given region� The answer to that question
concludes this Section on estimation�

����� Translation of a ��D region

Let us consider a region R� i�e�� a subset of connecting pixels� We suppose that this region
moves according to a simple translation in two dimensions� which expresses the coherence of
the velocity 	eld� Let �u� v� be the displacement vector of the region� There are two possible
ways of taking observations into account� from Equation ������ which is linear in relation to
the unknown values� or from Equation �������

i� Linear regression

The resolution of measurement Equations ����� over all the region pixels� is achieved by
a least squares method� which provides the following solution

��u� �v� 
 arg min
u� v

X
�i�j��R

�Ixu� Iyv � It�
� ��
�

where spatial and temporal gradients are computed digitally on the set of pixels �i� j� � R�
Most often the time gradient is merely the inter�picture di�erence� Spatial gradients are
computed on the preceding picture� The solution was provided by Ca�orio and Rocca �����
as follows�
�u
�v

�
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�
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Provided of course that a��a�� �
 a���� If a�� is negligible in comparison with the other
parameters� the following simpli	cation is obtained�
�u
�v

�



�
b�
a��
b�
a��

�
����

This method permits measuring small displacements� Under the same translation hy�
pothesis� but using Equation ������� a method� given hereafter� can be obtained to estimate
greater displacements�

ii� Block matching

The block matching method is generally applied to a rectangular region whose size has
been 	xed� In addition� a search area is de	ned for the displacement vector� Be it

juj � �h and jvj � �v ����

As a rule� the acceptable displacement vectors are multiple integers of the spatial sampling
period� or of a half of this period� If the size of the block is K lines and L columns� the
size of the search area� in the case of integer displacement� is �K � 
�v��L � 
�h�� The
number of possible displacement values� in the same case� is �
�h����
�v���� For instance�
for a vertically and horizontally maximal displacement of � pixels� the number of possible
displacements is 

�� The search area being de	ned� a criterion to be optimized has to be
found� The criteria most frequently used are� the average absolute value displaced frame
di�erence

��u� �v� 
 arg min
�u� v� � Z� �

juj � �h� jvj � �v

K��X
i��

L��X
j��

jIDFD�i� j�u� v�j ����

the average squared displaced frame di�erence

��u� �v� 
 arg min
�u� v� � Z� �

juj � �h� jvj � �v

K��X
i��

L��X
j��

�IDFD�i� j�u� v��
� ����

and the normalized average squared displaced frame di�erence

��u� �v� 
 arg min
�u� v� � Z� �

juj � �h� jvj � �v

K��X
i��

L��X
j��

�IDFD�i� j�u� v��
�

K��X
i��

L��X
j��

I��i� j� k�

����

where IDFD�i� j�u� v� 
 I�i� j� k��I�i�u� j�v� k��� is the displaced frame di�erence� Since
the 	rst criterion is less costly� it is used most often� knowing the weakness of the in�uence
of these criteria on the displacement vector estimation�
Figure � shows results of applying block matching method on #Trevor White$ sequence�

The criterion of average absolute value of the displaced frame di�erence is used� The max�
imum horizontal or vertical displacement is ���� pixels� with an accuracy of a half pixel for
the estimated displacement�







Figure �� Results of block matching displacement estimation on #Trevor White$ sequence�
Top�left� the 	rst frame� Top�right� the frame di�erence �ampli	ed�� MSE 
 
����� Bottom�
left� the displaced frame di�erence �ampli	ed�� MSE 
 ����� Bottom�right� the predicted
frame�

Although the operations necessary to estimate displacement are simple� real time imple�
mentation requires a very large computing capacity� For example� consider applying block
matching to CIF standard format for videophone �Chapter �� with a �� frame%second rate�
Supposing that maximal displacement is � horizontally and vertically� then the total num�
ber of operations per second is ��� 
�� ���� where an operation comprises a substraction�
an evaluation of the absolute value� and an accumulation� Several VLSI designs have been
proposed ���� ���� ����� which meet real time computation requirements�
Also� several algorithms have been proposed� for fast search of the minimum� which are

at least interesting for a computer implementation� The most common ones are presented
hereafter�

a� 
�D logarithmic search ����
This algorithm is based on the hypothesis that the criterium used for minimization is

convex� and therefore that it increases in a monotonous manner with distance� in relation
to the displacement which gives the minimal value� This represents an extension to the two
dimensions of the one�dimensional logarithmic search� At each step� the search is done only
at the 	ve positions that include a middle point and four points in the two main directions�
horizontal and vertical� In the 	rst step� the four points are in the middle� between the
center of the area and its border� If the optimum is at the middle point� among the 	ve
points� then the search area is decreased by half� This procedure continues until a � � �
search area is obtained� In this last step� all nine positions are tested in order to determine
the position of the minimum�


�



b� Increasing accuracy search ����
This algorithm also is based on the criterion convexity hypothesis� In the 	rst step� are

tested displacement vectors over the search area with little accuracy� After determination of
the displacement vector that minimizes the criterion among the nine possible� the process is
pursued with increasing accuracy� until a one�pixel accuracy is obtained�

c� Conjugate direction search ����
Starting from a null displacement� the minimum is 	rst sought in one direction� the

horizontal� for instance� Once the position of the minimum has been determined� the same
search is carried out in the other direction� the vertical in our example� Once this search
is complete� the same procedure is carried out in the direction determined by the point of
origin and the last position of the minimum� A variant of this algorithm consists in skipping
this last step� thus restricting the searching in the two main directions separately�
Figure �� illustrates the three methods for fast search of the minimum for maximal �����

and a given ����� displacements�

a b c

Figure ��� Minimum search for block matching� a� 
�D logarithmic� b� increasing accuracy�
c� conjugate directions �simpli	ed�� for a displacement vector �����

The following table ���� gives the maximal number of points tested by each of these fast
algorithms� and the maximal number of steps necessary in the case of a ��pixel maximal
displacement� which in total would result in ��� points to be tested� exhaustively�

Algorithm Max� number Max� number
of points of steps


�D logarithmic 
� �
Increasing accuracy 
� �
Conjugate directions �simpli	ed� �� �


Table �� Comparison of fast search algorithms for block matching

Santillana Rivero ���� compared the three algorithms of fast search of the minimum�
and he concluded in favour of increased accuracy search� because with results comparable
to those of 
�D logarithmic search� it can be carried out in fewer steps� Furthermore� this
number of steps does not depend on the position of the minimum� but only on the maximal
displacement� It is equal to blog��max��h��v��c� ��
Block matching algorithms provide only an integer accuracy on displacement� To obtain a

sub�pixel accuracy� it is possible to use the same approach as that presented at the beginning


�



of this section� i�e�� the linear regression method� immediately after block matching� Let
�um� vm� be the displacement vector estimated using the block matching algorithm� The
solution is expressed with a formula similar to �������
�u
�v

�



�
�um
�vm

�
�

�

a��a�� � a���

�
a��b� � a��b�
�a��b� � a��b�

�
����

except that in the calculation of fai�jg and fbig� the spatial gradient at the displaced point
is used�

Ix�i� �um� j � �vm� k � �� and Iy�i� �um� j � �vm� k � ��
and instead of the frame di�erence� that of the displaced frame is used

I�i� j� k� � I�i� �um� j � �vm� k � ��
The larger the block� the more e�ective the block matching estimation is� But the larger

the block� the lesser plausible is the hypothesis of an identical translation for all the pixels in
the block� Confronted with such con�icting requirements� Bierling and Thoma ��� proposed
a hierarchical approach for estimation� In the 	rst step� a large block is considered� together
with an important displacement� Later� the size of the block and the maximal displacement
are reduced� and another search is carried out from the results of the preceding step� Bierling
and Thoma ��� 	nally carried out three steps like these to obtain displacement as the sum
of three displacement vectors� To limit computing complexity� it has been proposed to 	lter
and sub�sample the picture for the 	rst steps� this is done in such a way that the number of
points in each block is practically constant� while covering a di�erent part of the picture from
one step to the other� This method relates to those of hierarchical or pyramidal estimation
of motion� which are developed in Chapter ��

����� Pixel�recursive algorithms

Point�by�point recursive algorithmic is also widely used for displacement estimation in pic�
ture coding� In this approach� an initial estimation is made for a given point� by prediction
�so�called a priori estimation�� This prediction expresses the spatial coherence of the dis�
placement 	eld� Prediction is generally made from the preceding point of the same line�
but other prediction patterns are possible� A correction is later carried out according to
the displaced frame di�erence� as computed by a priori estimation� This correction gives
an estimate that can be called a posteriori� Knowing that the measurement equation is
non�linear ������� it may be interesting to perform several local iterations of the correction
procedure� to improve the a posteriori estimate� To present these recursive algorithms of
prediction%correction� let us choose the theoretical framework of internal modelization� or
state variable modelization� of the displacement 	eld� and of the resultant optimal estimate�
namely Kalman 	ltering�
The measurement equation is given in ������� We shall later write it in a form more

suitable for solving the estimation problem�

I�i� j� k� 
 I�i� u�i� j�� j � v�i� j�� k � �� � e�i� j� � n�i� j� ����

where �u�i� j�� v�i� j�� is the displacement vector� e�i� j� is the predictable part of the process
that expresses the di�erence between the two�dimensional displacement 	eld and the optical
�ow �cf� Section ��� and Equation ������� and n�i� j� is an unpredictable white noise� We


�



obliterate the displacement vector� the e�i� j� and the noise n�i� j� dependence on the time
index� because we only use the spatial coherence in the estimation� and the estimation will
be carried out using only the inter�frame di�erence� The state vector which characterizes
the displacement 	eld associated with intensity variations is given by


�i� j� 




�� u�i� j�
v�i� j�
e�i� j�

�
�� ��
�

In what follows� we suppose that the state vector is only recursive in one direction� and
therefore the direction of picture scanning is chosen accordingly� As it as been mentioned�
several choices are possible �

�� �
��� This gives the following state equation


�i� j� 
 ��i� j�
�i � �� j� � q�i� j� ����

where q�i� j� is a model noise vector� Let us 	rst suppose that the state vector is stationary�
in the sense that the transition matrix ��i� j� is invariant for the whole picture� as are the
statistical characteristics of q�i� j�� Later� we shall study the case where these characteristics
depend on position �i� j�� With regard to the rupture�type non�stationarities� these are dealt
with separately in Section ����� on displacement 	eld segmentation with a discontinuity
detector� Back to the stationarity hypothesis� We suppose that

��i� j� 




�� � � �
� � �
� � �

�
�� 
 �� � � � � � ����

and that q�i� j� is zero�mean with

Efq�i� j�qT �l�m�g 




�� ��v � �
� ��v �
� � ��e

�
�� ��i� l���j�m� 
 Q��i� l���j�m� ����

With this model and a non�linear measurement equation� it is necessary to use the extended
Kalman 	lter to estimate the state vector� The solution was given by Jazwinski ������ p� 
����
The a priori estimate of the state vector at point �i� j� is given by

�
��i� j� 
 ��
�i� �� j�� i � �
�
���� j� 
 ��
�N � �� j � ��� j � �
�
���� �� 
 �

����

This recursion� for going from one line to the next� may be advantageous in case of an
homogeneous motion� where the state vector is stationary with regard to both directions�
The case of a rupture may also be taken into account with the discontinuity detector which
will be presented in Section ������ The covariance matrix of the a priori estimate is given by

P ��i� j� 
 �P �i� �� j��T �Q� i � �
P ���� j� 
 �P �N � �� j � ���T �Q� j � �
P ���� �� 
 �Q

����

with �� ��
Taking the intensity observation at point �i� j� into account� we obtain the a posteriori

estimate as follows �

�
�i� j� 
 �
��i� j� �K�i� j�
�
I�i� j� k� � I�i� �u�� j � �v�� k � ��� �e�

�
����


�



where K�i� j� is the Kalman gain value produced by

K�i� j� 

P ��i� j�G�i� j�

GT �i� j�P ��i� j�G�i� j� �R
����

where the G�i� j� vector is the gradient of observation in relation to the state vector compo�
nents

G�i� j� 
 �



�� Ix�i� �u�� j � �v�� k � ��
Iy�i� �u�� j � �v�� k � ��

��

�
�� �����

and R is the variance of observation noise n�i� j��
Finally� the covariance matrix of the a posteriori estimate is computed as

P �i� j� 
 �II� �K�i� j�GT �i� j��P ��i� j��II� �K�i� j�GT �i� j��T

�RK�i� j�KT �i� j� �����

Since the displacement vector estimation has a sub�pixel accuracy� the intensity involved in
formula ������� together with the spatial gradients of ������� have to be interpolated� Most
often two�dimensional linear interpolation from the four nearest points is used� We give its
expression for intensity� its transposition to the spatial gradients being obvious� by masking
the time index

I�i� u� j � v� 
 ��� dv��� � du�I�i� buc� j � bvc�
���� dv�duI�i� buc � �� j � bvc� � dv��� du�I�i� buc� j � bvc � ��
�dvduI�i� buc � �� j � bvc � �� ���
�

with u 
 buc� du� v 
 bvc� dv� and � � du � �� � � dv � ��
From this structure� it is possible� under certain hypotheses� to obtain other estimators

which in general are more simple with regard to computing complexity� Let us 	rst suppose
that � 
 � and ��e 
 �� or equally that e�i� j� 
 �� Then the state vector is reduced to the
displacement vector� and therefore its dimension is reduced to 
� or


�i� j� 


�
u�i� j�
v�i� j�

�
�����

with the state equation


�i� j� 
 
�i� �� j� � q�i� j� �����

q�i� j� being a two�dimensional vector� with the same type of hypotheses as above� The same
type of 	lter is obtained for the estimation with

G�i� j� 
 �
�
Ix�i� �u�� j � �v�� k � ��
Iy�i� �u�� j � �v�� k � ��

�
�����

This estimation algorithm was studied by Stuller and Krishnamurthy ���� and by Mijiyawa
�����
Let us now hypothesize that the two�dimensional vector q�i� j� is not spatially stationary�

but that the covariance matrix of this vector is given by

Q�i� j� 

��vG�i� j�G

T �i� j�

��GT �i� j�G�i� j�
� � 


R

��v
�����


�



This hypothesis means that the normal component variance� in the direction of the gradient�
of the state noise vector is given by

Ef�G
T �i� j�q�i� j���

jjG�i� j�jj� g 
 ��v jjG�i� j�jj�
�� jjG�i� j�jj� �����

Therefore� this variance increases with the spatial gradient� and conversely in small gradient
areas the displacement vector does not vary much� With regard to the tangential component
of the velocity vector� this does not vary from one point to the other under the above
hypothesis� in contrast� the direction of this component obviously may vary�
We observe that with this expression of the covariance matrix of the state noise �������

the solution of matrix equations involving the covariance matrices of a priori and a posteriori
estimates give the following solution

P ��i� j� 
 ��vII� �����

and

P �i� j� 
 ��v

�
II� � G�i� j�GT �i� j�

��GT �i� j�G�i� j�

�
�����

Thus in this context� ��v can be interpreted as the variance of the a priori estimate for each
of the velocity vector components� In addition� the gain for the a posteriori estimation is
given by

K�i� j� 

G�i� j�

�� jjG�i� j�jj� �����

The algorithm thus obtained is that initially and di�erently introduced by Ca�orio and
Rocca ����� The demonstration that this algorithm is obtained in a state model expression
was provided by Pesquet ����� Figure �� shows results produced by the Ca�orio�Rocca
algorithm on #Trevor White$ sequence�
It is also possible to base the a posteriori estimation on more than one observation�

taking into account causally anterior points of the vicinity of �i� j�� Let p be the number
of observations� then we obtain a p � � size observation vector� whose covariance matrix is
supposed diagonal and equal to RIIp� Spatial gradients are given in a matrix G�i� j� 
� p in
size� Supposing� as in the case of a single observation� that

Q�i� j� 
 ��vG�i� j���IIp �GT �i� j�G�i� j����GT �i� j� �����

with � 
 R
��v
� then the gain takes the following form �Appendix �F�

K�i� j� 
 G�i� j���IIp �GT �i� j�G�i� j���� ���
�

which is a 
 � p size matrix� We see that thus we obtained the algorithm of Biemond�
Looijenga and Boekee ��� �Appendix �F��
Going back to a single observation� and supposing furthermore that the variance of the

measurement noise varies spatially according to the spatial gradient

R�i� j� 
 ��vkG�i� j�k� �����

Thus the measurement noise is assumed to be stronger as the spatial gradient is greater�
The following gain is then obtained from �������

K�i� j� 

G�i� j�


kG�i� j�k� � kG�i� j�k � � �����
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Figure ��� Results of recursive displacement estimation on #Trevor White$ sequence using
the Ca�orio�Rocca algorithm� Top�left� the resulting 
�D velocity 	eld �multiplied by ���
Top�right� the predicted frame using the a posteriori estimated velocity 	eld� Bottom�left�
the a priori displaced frame di�erence �ampli	ed�� MSE 
 ������ Bottom�right� the a
posteriori displaced frame di�erence �ampli	ed�� MSE 
 
�����

This corresponds to the algorithm of Walker and Rao �����
This algorithm� as well as that of Ca�orio and Rocca �������� have the advantage of being

less complex than Kalman 	lter� whose gain is given in ������� since there are no matrix
equations to be resolved� i�e�� there are no recursions to be performed on the covariance
matrices P ��i� j� and P �i� j��
To simplify still further� let us suppose that R is spatially invariant� and furthermore

R� ��vkG�i� j�k� �����

From ������� we obtain

K�i� j� 
 	G�i� j� �����

with 	 
 ��v
R � This is the algorithm proposed by Netravali and Robbins ����� Seen from this

presenting angle� the adaptation step 	 must meet the following inequality

� 
 	 

�

max
��i�N���j�M

kG�i� j�k� �����

It is also possible to view this algorithm from a di�erent angle� with less constraints on
the adaptation step size� This framework was chosen by Netravali and Robbins to introduce


�



their algorithm� i�e�� the stochastic gradient� In this precise context� it has been proven ����
that convergence is ensured� if

� 
 	 




EfkG�i� j�k�g �����

This condition for convergence was also given in ����� where mathematical expectation is
replaced by an empirical mean for the whole moving region� Analysis of this algorithm is
e�ected under the hypothesis that the displacement vector is constant� or that motion is a
mere translation along the picture plane� The above�mentioned analysis is carried out on
a linear observation model ������ Moorhead� Rajala and Cook ����� taking the non�linear
observation model into account� obtained a convergence condition closer to the real model�
In any case� a trade�o� has to be found between convergence speed and permanent state
�uctuations� Indeed these two objectives are contradictory� The greater 	 is� satisfying
�������� the shorter the transitory� but the greater the estimation �uctuations� which are
proportional to the adaptation step size ����� A suitable compromise is given by the following
value

	 

�

EfkG�i� j�k�g �����

With regard to the algorithm� whose gain in given in �������� it may be viewed within
the normalized stochastic gradient� It has been shown ���� that under certain� not very strict
conditions� the algorithm converges towards the real displacement vector� when the vector
is constant� These conditions are given in Appendix �D� These results can also be applied�
in practice� to the algorithm of Walker and Rao ��������
For all the pel�recursive algorithms presented in this section� and because of the non�

linearity of the measurement equation� it may be useful to perform several local iterations
at each point in order to improve the a posteriori estimate ��� ���� �����
We end this section by mentioning the existence of VLSI circuits developed for motion

pel�recursive estimators ����� �
���

����� Iterative algorithms

This category of algorithms encompasses the methods which update velocity vectors in par�
allel over the whole frame� convergence being later obtained after a number of iterations�
This type of algorithm is practically never used for coding� but it could be� and it raises great
interest in picture analysis� which justi	es its presence in this book� Within this framework�
the motion constraint equation is used in the linear form ������ A regularization method is
used to minimize jointly the error from constraint�linked measurement of motion on the one
hand� and the error from a model that expresses the coherence of the velocity 	eld on the
other�
Horn and Schunck ���� proposed using a 	rst order smoothing constraint� i�e�� to limit

to the smallest value the gradient module of two components of optical �ow� We 	rst give
the criterion to be minimized in continuous coordinates for a clearer illustration� and the
following development is given in discrete coordinatesRR

��Ixu� Iyv � It�
� � ��u�x � u�y � v�x � v�y��dxdy

where ux� uy� vx and vy are the partial 	rst derivatives of the two optical �ow components�
in relation to the �x� y� coordinates� In the discrete form� it is necessary to minimize the

��



following quantity over a certain region� or the whole frameXX
�Ix�i� j� k � ��u�i� j� � Iy�i� j� k � ��v�i� j� � I�i� j� k� � I�i� j� k � ����

��
XX

��u�i� j� � u�i� �� j��� � ��u�i� j� � u�i� j � ����

��
XX

��v�i� j� � v�i� �� j��� � ��v�i� j� � v�i� j � ����� ��
��

Minimization of this quantity provides the following system of linear equations

��u� &u� � Ix�Ixu� Iyv � It� 
 �
��v � &v� � Iy�Ixu� Iyv � It� 
 �

�
��
��

where all indices have been omitted to simplify notation� In Equations ��
��� &u �resp� &v� is
a linear interpolation of the u �resp� v� 	eld� as given for example by

&u�i� j� 
 ��
��u�i � �� j� � u�i� �� j� � u�i� j � �� � u�i� j � ��� ��

�

The system of Equations ��
�� may also be written

��� I�x��u� &u� � IxIy�v � &v� 
 �Ix�Ix&u� Iy&v � It�
IxIy�u� &u� � ��� I�y ��v � &v� 
 �Iy�Ix&u� Iy&v � It�

�
��
��

and 	nally�
u
v

�



�
&u
&v

�
� Ix&u� Iy&v � It

�� I�x � I�y

�
Ix
Iy

�
��
��

In this form� the system of linear equations can be resolved using the Gauss�Seidel method�
which is very adapted due to the size of the system and the fact that the corresponding
matrix is null outside of an area surrounding the diagonal� Iterations are carried out as
follows�
u
v

�m



�
&u
&v

�m��
� Ix&u

m�� � Iy&v
m�� � It

�� I�x � I�y

�
Ix
Iy

�
��
��

with m the iteration index� In ���� the numerical computing of the spatio�temporal deriva�
tives is di�erent� but it corresponds to velocity vectors not localized at the same points as the
positions resulting from intensity sampling� either spatially or temporally� Figure �
 shows
a subsampled version of the optical �ow 	eld produced by the Horn�Schunck algorithm on
#Trevor White$ sequence�
The smoothing constraint used in ����
�� corresponds to an essentially translational mo�

tion� If spatial relations ������ are used to express the coherence of the two�dimensional
velocity 	eld� then the smoothing constraint is modi	ed� and therefore the resolution algo�
rithm of the linear system is modi	ed too� But the di�erence is limited to the computation
of the 	eld linear interpolation� In the case of a smoothing constraint derived from �������
it is ����

&u�i� j� 

�


�
���u�i � �� j� � u�i� �� j� � u�i� j � �� � u�i� j � ���

�
�u�i � �� j � �� � u�i� �� j � �� � u�i� �� j � �� � u�i� �� j � ���

��u�i� 
� j� � u�i� 
� j� � u�i� j � 
� � u�i� j � 
�� ��
��

��



Figure �
� An optical �ow 	eld for the Horn�Schunck algorithm and the #Trevor White$
sequence

Due to a vertically and horizontally di�erent sample� it may be necessary to introduce
di�erent regularization factors into the two velocity 	eld components� Let �� and �� be these
two factors for u and v respectively� Equation ����
�� is modi	ed as follows
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m�� � Iy&v
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���� � ��I�x � ��I�y
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The smoothing constraint in ����
�� is perfectly isotropic in relation to the frame plane
coordinates� Nagel ���� proposed a smoothing constraint oriented according to the spa�
tial gradient of intensity� More precisely� only the perpendicular component to the spatial
gradient has to vary slightly� This has to be related to the discussion on the covariance
matrix of the state noise given in �������� in the recursive algorithm situation� We only give
Nagel's smoothing constraint for one of the two components� since these two components are
considered to be decoupled in the smoothing constraint�

�I�y�	�u
�
x��IxIyuxuy��I�x�	�u

�
y

I�x�I
�
y��	

A similar solution to ����
�� can be obtained with this smoothing constraint� and the same
type of iterative algorithm can be used to resolve the resultant system of linear equations�
It is also possible� in an iterative method� to take into account the di�erence between the

two�dimensional velocity 	eld and the optical �ow� as illustrated in ����� for example� and
as a part of the recursive method using the observation equation ������� This approach was
proposed by Cornelius and Kanade ����� by introducing an additional smoothing constraint
on e�i� j� in ������

�
PP

��e�i� j� � e�i� �� j��� � �e�i� j� � e�i� j � �����
Thus are obtained three types of equations

��u� &u� � Ix�Ixu� Iyv � It � e� 
 �
��v � &v� � Iy�Ixu� Iyv � It � e� 
 �
��e� &e�� �Ixu� Iyv � It � e� 
 �

���
�� ��
��

�




These equations can also be written as follows

��� I�x��u� &u� � IxIy�v � &v�� Ix�e� &e� 
 �Ix�I
IxIy�u� &u� � ��� I�y ��v � &v�� Iy�e� &e� 
 �Iy�I
�Ix�u� &u�� Iy�v � &v� � ��� ���e� &e� 
 �I

���
�� ��
��

where &u and &v bear the same signi	cance as before� &e is also a linear interpolation of the
same type and �I 
 Ix&u� Iy&v � It � &e� The solution in relation to u� v and e leads to the
following equations
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��� Ix&u� Iy&v � It � &e

��� ���� ��I�x � I�y �
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�Iy
��
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�� �����

It is therefore possible to use the Gauss�Seidel algorithm for the resolution of this system of
equations�

����� Analysis of spatio�temporal frequencies

Estimation methods have recently been proposed� which are based on spatio�temporal 	lters
and which use several pictures� As a result� these methods are of little interest for picture
sequence coding� Therefore they are presented only brie�y� These methods are based on
a fundamental feature of Fourier transformation in a spatio�temporal space� consisting in
concentrating� within the frequential domain� all the energy on a single plane� For spatial
frequencies ��x� �y� and temporal frequency �t� the following equation is obtained for optical
�ow

u�x � v�y � �t 
 � �����

Thus for a spatio�temporal frequency triplet we obtain an optical �ow equation� and therefore
there is a local ambiguity in the frequency domain� Analysis over the whole domain permits
estimating the optical �ow �u� v�� This presentation is more relevant to the principle of the
approach� by supposing that the picture is stationary� In fact� the three�dimensional signal
�
�D�time� is not stationary� it is therefore necessary to perform an analysis simultaneously
spatio�temporal and frequential� Thus Fourier transformation is performed in a limited
part of the 
�D space and time� Several spatiotemporal 	lters are used� which are of the
bandpass type� and which practically cover the whole frequential domain� There are several
alternatives to this spatio�temporal and frequential analysis � local Fourier analysis� Wigner
transformation ����� and Gabor transformation �����

����� Parametric model

In a way� this approach is the generalization of the estimation of a translational displacement
presented 	rst in this section� This time� the motion model may comprise more than two
parameters� Two examples of possible parametering are given in formulas ������ and �������
Then we take formulation of ������� The same approach could be applied to parametering
������ or to any other parametering of the two�dimensional velocity 	eld ���� ���� �����
Parameter estimation is carried out on a region of the frame� as may result either from

segmentation �Section ������ or from the division of the frame in blocks� The model ������
can be written more simply

u 
 a�� � a��x� a��y
v 
 a�� � a��x� a��y

���
�

��



This model was obtained in Section ��� as a result of a certain projection on the picture plane
of the three�dimensional velocity 	eld� but it may be useful in other situations� outside of
the restrictive context that gave the Equations ������� The main point is that this model can
be interpreted as a two�dimensional motion including at the same time translation� rotation
and deformation� Contraction and dilation are examples of deformation�
Restricting ourselves to one region� the criterion to be minimized most often used is the

quadratic mean of the displaced frame di�erence� Taking � as the parametric vector

� 

h
a�� a�� a�� a�� a�� a��

iT
�����

We attempt to determine the following estimation

�� 
 arg min
X

�i�j��R

�I�i� j� k� � I�i� u� j � v� k � ���� �����

To do so� we present hereafter a gradient method �
�� ���� ����� The estimate of � is obtained
in an iterative manner

��m 
 ��m�� � �
X

�i�j��R

�m���i� j�
�
I�i� j� k� � �I�i� j� k�

�
�����

where �I�i� j� k� 
 I�i� �um��� j � �vm��� k � ��� m is the iteration index� um�� and vm�� are
obtained using model ���
�� and �m���i� j� is a vector dependent on the spatial gradients of
intensity� The generic form of this gradient vector is the following

��i� j� 




��������

Ix�i� u� j � v� k � ��
iIx�i� u� j � v� k � ��
jIx�i� u� j � v� k � ��
Iy�i� u� j � v� k � ��
iIy�i� u� j � v� k � ��
jIy�i� u� j � v� k � ��

�
��������

�����

The adaptation step size � must satisfy the inequality � 
 �
�max

� where �max is the great�

est eigenvalue of the matrix
P

�i�j��R ��i� j��
T �i� j�� This therefore is the steepest descent

method�
Another approach is that of the normalized gradient type� This requires performing�

between iterations� a linear approximation in relation to the parameters of the displaced
frame di�erence

I�i� j� k� � I�i� u� j � v� k � �� 

I�i� j� k� � I�i� um��� j � vm��� k � �� � �� � �m���

T�m���i� j� �����

Under these conditions� minimization of the above criterion gives

��m 
 ��m�� �
�
� X
�i�j��R

�m���i� j��
T
m���i� j�



A
��

X
�i�j��R

�m���i� j��I�i� j� k� � I�i� �um��� j � �vm��� k � ��� �����

The iterative aspect of the algorithm is justi	ed by the non�linearity of intensity measure�
ments� Dugelay and Sanson �
�� proposed a simpli	ed version of �������� replacing the matrix

��



P
�i�j��R ��i� j��

T �i� j� by an identity matrix multiplied by the trace of the matrix that con�
tains the gradients� This avoids inverting this matrix� and gives the following iteration

��m 
 ��m�� �

X
�i�j��R

�m���i� j��I�i� j� k� � �I�i� j� k��
X

�i�j��R

�Tm���i� j��m���i� j�
�����

����� Global ambiguity of the ��D velocity 	eld

In this section �����
�� we have raised the question of using various models of 	eld coherence
and di�erent method of coherence exploitation� to estimate the two�dimensional velocity
	eld� According to the model used� there may be an in	nity of solutions compatible with the
observations provided by the motion constraint equation� This may even be critical in the
case where a division or a matrix inversion is carried out to resolve the estimation problem�
as for instance in ������� ������� ������� and �������� This paragraph reviews the situations
where a global ambiguity of the 
�D velocity 	eld may appear in a region�
A global ambiguity of the 
�D velocity 	eld is said to exist if� given a model for the 	eld

and an observation equation of the type

Ixu� Iyv 
 � �����

in a region� there are� beside the obvious solution �u� v� 
 ��� ��� other non�null solutions�
Hereafter we propose conditions for global ambiguity�

Proposition� If the intensity function can be written as I�g�x� y��� where g�x� y� 
 � is
the equation of a curve on the plane that satis	es the Equation ����
�

dy
dx 


v
u

then there is an in	nity of solutions for the whole set of Equations ������� in the region�
Demonstration� Equation ������� writes

Ig�gxu� gyv� 
 � �����

where Ig is the derivative of I in relation to function g� In the case where Ig 
 �� it is
obvious that any �u� v� satis	es the Equation �������� If Ig �
 �� this equation is equivalent
to gxu � gyv 
 �� Knowing that the vector

h
gx gy

iT
is the normal vector to the curve

g�x� y� 
 �� and that this vector is colinear with
h
dy �dx

iT
� we obtain the Equation

����
� of the above proposition�
Let us consider the consequence of this result on two models widely used in this section�

First� the simple translation model� The solution to Equation ����
� is a straight line� which
means that the intensity function takes the form of I��x� �y � ��� As to the linear model
�����
�� the solution to ����
� is given in Section ��
���

��� Segmentation of the two�dimensional velocity �eld

Segmentation of the two�dimensional velocity 	eld is an important step of image sequence
analysis� especially to determine the ��D motion characteristics of the objects present in the
scene� There are two types of spatio�temporal boundaries� occlusion boundaries between
objects� and boundaries between di�erent regions of the same object� i�e�� those points on
the object surface that are characterized by strong ��D curvature�

��



There are two approaches to be used in the determination of these boundaries� The
	rst one operates after estimation of a dense velocity 	eld� The second approach poses
the estimation and segmentation problems jointly� Indeed� all estimation methods use the
spatial coherence of the 
�D velocity 	eld to get away from the indetermination of the 	eld
from measurements alone� It is necessary to know the boundaries between spatio�temporal
regions to apply a predictor or an interpolator of the velocity 	eld� and therefore to correctly
estimate that 	eld� Also� 	eld estimation is necessary for segmentation� This problem
relates to that of the #chicken and egg$� To break that vicious circle� a combined method of
estimation%segmentation is used� Di�erent methods pertaining to this strategy are presented
further� but let us linger on the 	rst approach�
Thompson� Mutch and Berzins ���� considered the case of occlusion boundaries� In that

case� the module and%or the direction of the displacement vector contains discontinuities�
These are detected with a Laplacian of Gaussian operator applied to the two velocity 	eld
components�
Adiv �
� proposed a three�step method to carry out segmentation of the velocity 	eld� In

the 	rst step� a grouping is performed with Hough transformation according to the linear
model �����
�� In the second step� the resultant parts of the 	rst step are merged using the
��parameter model ������� In the ultimate step� the points that were not grouped in the 	rst
step are merged to the region with the greatest coherence with the model �������

����� Pel�recursive algorithmic

In pel�recursive algorithmic� ruptures are detected� rather than proper segmentation is per�
formed� All pel�recursive algorithms include two phases � spatial prediction and correction
according to the displaced frame di�erence� Discontinuity detection 	ts in between the two�
The hypothesis of velocity 	eld spatial coherence is veri	ed as valid or not� To do so� the
predicted velocity 	eld is tested against the hypothesis of a null displacement� Note H�

being the spatial coherence hypothesis and H� the hypothesis of discontinuity� with a priori
probabilities of P� and P�� respectively� We suppose that the displaced frame di�erence of
hypothesisH� is a random zero�mean variable with a variance of �

�� which is supposed known
to determine the test� Under hypothesis H�� we suppose that the inter�frame di�erence is
also a zero�mean random variable with the same variance�
The test is obtained by using the criterion of a posteriori probability maximization� Two

cases are to be distinguished according to the probability law of the inter�frame di�erence�
If this probability law is Gaussian� a discontinuity is detected� if

�I�i� j� k� � �I�i� j� k��� � �I�i� j� k� � I�i� j� k � ���� � 
�� ln P�
P�

���
�

where �I�i� j� k� 
 I�i � �u�� j � �v�� k � �� � �e�� If the law is Laplacian� the following test is
obtained for the same decision

jI�i� j� k� � �I�i� j� k�j � jI�i� j� k� � I�i� j� k � ��j � �p


ln
P�
P�

�����

These tests can apply when the algorithm also estimates the variable e�i� j� as described by
��������������� If the deviation e�i� j� has not been estimated� the above tests are modi	ed
accordingly�
In principle� and for the above tests� detection of a discontinuity results in initialization

of the displacement vector� �u� 
 �v� 
 �� Labit and Benveniste ���� proposed� in case of
prior estimation of the contour motion� and in case of discontinuity detection� to reinitialize

��



the displacement a priori estimate according to the available estimate of displacement on
the contour� This reinitialization can be carried out systematically� or after a test that will
determine to which part the contour belongs�

����� Iterative algorithmic

Iterative algorithms as they were presented in paragraph ����
 smooth the velocity 	eld
across boundaries� between di�erent spatio�temporal regions� Thus the velocity 	eld of a
moving object may be propagated on its 	xed surrounding background� A method to avoid
this type of deformation is to detect the moving areas or the inter�frame changes� and to
apply the iterative algorithm only to that area� But this approach does not 	t any type
of discontinuity� The best approach consists in integrating explicitly in the optimization
criterion the discontinuities of the velocity 	eld ��
� ���� ����� The criterion then becomes
����XX

�Ix�i� j� k � ��u�i� j� � Iy�i� j� k � ��v�i� j� � I�i� j� k� � I�i� j� k � ����

��
XX

��� lh�i� j����u�i� j� � u�i� j � ���� � �v�i� j� � v�i� j � �����
��

XX
��� lv�i� j����u�i� j� � u�i� �� j��� � �v�i� j� � v�i� �� j����

���l� �����

Thus a line process l is introduced� with two components lh and lv� so that lh�i� j� 
 �� if an
horizontal discontinuity exists between lines j� � and j� and likewise for the vertical discon�
tinuity boundaries� This line process has a cost ��l� and can take possible a priori knowledge
on discontinuities into account� This cost is even more justi	ed� since the introduction of
discontinuities everywhere� would lead to the indetermination of the estimation problem� In
summary� the global criterion should lead to the best compromise between estimation and
segmentation� Hutchinson et al� ���� proposed using the following cost function

��l� 
 cc
XX

lh�i� j� � cp
XX

lh�i� j��lh�i� j � �� � lh�i� j � 
��
�cc

XX
lv�i� j� � cp

XX
lv�i� j��lv�i� j � �� � lv�i� j � 
��

�cL�L�l� � cz
XX

�lh�i� j� � lv�i� j���� � c�i� j�� �����

The terms with coe�cient cc correspond to the cost of the line process itself� The terms with
coe�cient cp penalize the formation of very close parallel lines� The term with coe�cient
cL favours the formation of long lines with few intersections� And the last term links the
velocity 	eld discontinuities to spatial discontinuities c�i� j� and penalizes the formation of
discontinuities at points that do not belong to the spatial contours�
Once the criterion so de	ned� estimation of the velocity 	eld and of the line process

provides a solution to the estimation%segmentation problem� This time� the function to be
minimized is not convex� A possible solution is the simulated annealing algorithm already
evoked in Section ������ and for which experimental results are given in ����� But its com�
plexity makes it hardly interesting for the targeted applications� Therefore� deterministic
algorithms are used to obtain the velocity 	eld and the line process by providing the local
minimum of ��������
Hutchinson et al� ���� proposed going through two steps for criterion optimization� The

	rst step consists in minimizing energy ������� for a given line process� Then the criterion is
quadratic and the solution is obtained through a linear equation system� Upon initialization�
the line process is reset to be naught everywhere� The second step consists in determining

��



the line process for a given velocity 	eld� This is achieved by local operations� by accepting
all the discontinuities which reduce energy �������� After a few iterations� the algorithm
converges towards a local minimum of the energy function�
Observation of the energy function ������� reveals that it can be interpreted by Gibbs

distribution or a Markov random 	eld composed of the velocity 	eld and the discontinuity
sites� This choice was explicitly made by Heitz and Bouthemy ��
� ����� They proposed an
energy function di�erent from the preceding one in the local interaction part of the Markov
random 	eldXX

�Ix�i� j� k � ��u�i� j� � Iy�i� j� k � ��v�i� j� � I�i� j� k� � I�i� j� k � ����

��
XX

��� lh�i� j��sgn��v�i� j� � ����v�i� j� � ���

��
XX

��� lv�i� j��sgn��h�i� j� � ����h�i� j� � ���

�cz
XX

�lh�i� j� � lv�i� j���� � c�i� j�� �����

where �h and �v correspond to horizontal and vertical velocity di�erences� respectively�

�v 
 �u�i� j� � u�i� j � ���� � �v�i� j� � v�i� j � ����
�h 
 �u�i� j� � u�i� �� j��� � �v�i� j� � v�i� �� j���

�
�����

Heitz and Bouthemy ��
� proposed using a deterministic relaxation algorithm to minimize
the energy function �������� This algorithm is that of the #iterated conditional modes$
proposed by Besag ��� and already evoked in Section ������
An approach very di�erent from the preceding ones was proposed by Schunck ����� Dis�

continuities are detected at the level of the motion constraint equation ������ This equation
de	nes a straight line in plane �u� v� �Figure ���� For a given point� we consider the inter�

�

�
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Figure ��� The motion constraint line

sections of the motion constraint line at this point� and the motion constraint lines of the
neighbouring points� Surroundings within a square centred at the given point �� �� �� � or
�� � �� in size� are reported� Thus with a � � � surroundings� there will be 
� intersection
points all located on the same straight line of plane �u� v�� Velocity vector estimation also
uses velocity 	eld coherence� by choosing in the vicinity� the most coherent group of points�
instead of all the points� This grouping is achieved by determining� on the motion constraint
line of the point� the shortest interval containing half of the intersection points� The middle
of this interval provides the estimate of the velocity vector of the point� On the velocity
	elds so estimated by using selective coherence� discontinuity detection is performed using
a gradient algorithm on the two velocity 	eld components� The last step is an iterative
smoothing algorithm which takes the previously detected boundaries into account�

��



����� Parametric estimation

In this paragraph� we present methods for the segmentation of the velocity 	eld when es�
timation is made with a parametric model� The model may be very simple� such as the
two�parameter model of 
�D translation� or more sophisticated� such as the six�parameter
linear model �����
�� or still a �� or �
�parameter quadratic model �������
Two categories of approaches to segmentation are to be distinguished� The 	rst one

consists in using a given structure for the region shape� either rectangular or square� relying
on a tree�like structure for picture description� either binary or quaternary� and using splitting
and%or merging type methods for segmentation� The second approach imposes no shape for
spatio�temporal regions� These approaches are presented hereafter in that order�
Formation of the quadtree for picture description is achieved by dividing� at each level�

each part of the picture into four parts of equal sizes� With a binary tree� the division is
carried out successively along the horizontal and vertical axes� To apply a merging and%or
splitting type algorithm� it is necessary to perform an homogeneity test on a region� Thus
a region� if not satisfying the homogeneity test� is divided� and two contiguous regions are
merged� if their union satis	es the test� In order to provide such a statistical test� what
follows is set in a probabilistic context�
Taking hypothesis H� as that of spatio�temporal homogeneity of a region R� and H� the

hypothesis of heterogeneity� We suppose that under the homogeneity hypothesis� we have

H� � I�i� j� k� 
 I�i� j� k � �j�� � n�i� j� �����

and under the heterogeneity hypothesis we have

H� � I�i� j� k� 
 I�i� j� k � �j�� � �� n�i� j� �����

where � is the vector that includes all the parameters of the model to be estimated� �
is a deviation from the motion constraint equation� resulting from the heterogeneity of a
region� and n�i� j� is a assumed to be Gaussian noise� zero�mean and white� whose variance
is unknown� To determine the test� we use the likelihood ratio method� and the ratio takes
the following form

max
�� ��

L�I�i� j� k� � �i� j� � Rj�� ���

max
�� �� ��

L�I�i� j� k� � �i� j� � Rj�� �� ���

H�

�


H�

�� �����

where it is implicitly supposed that the picture at moment k� � is given� Under all assump�
tions� we obtain the following test

" 


P
�i�j��R�I�i� j� k� � I�i� j� k � �j������P

�i�j��R�I�i� j� k� � I�i� j� k � �j����� ����

H�

�


H�

� �����

where ��� �resp� ���� are maximum likelihood estimators of � under hypothesis H� �resp� H��
and �� is the estimator of �� Thus� under hypothesis H�� these estimators are as they were
presented in ����
� As to hypothesis H�� this is a joint estimation of �� and ���� which can be
carried out iteratively as follows

��� 
 arg min
P

�i�j��R�I�i� j� k� � I�i� j� k � �j���� ����
�� 
 �

card	R

P

�i�j��R�I�i� j� k� � I�i� j� k � �j�����

�
���
�
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Initialization is performed with �� 
 �� then the two equations in ������� are applied itera�
tively until the solution converges� Minimization in the 	rst equation in ������� is similar to
that in hypothesis H�� The threshold � in ������� can be determined by allowing for a prob�
ability of error� such as false detection of heterogeneity� i�e�� an error entailing the division of
a region that is in fact uniform� Prf" � �jH�g� A common value for this error probability
is ����� It is only necessary to know the probability distribution of " to determine �� Under
the previously mentioned assumptions on inter�frame di�erence� the variable N��

N " obeys
to the Snedecor law with �N�N � �� degrees of freedom� where N is the number of points
of the region� Thus the threshold depends on the region size� and is higher as the region is
smaller�
Bouthemy and Santillana Rivero ���� proposed another statistical model� by supposing

as known the noise variance� to decide� using the corresponding likelihood test� whether a
region is homogeneous or not� The test obtained uses a threshold unrelated to the size of the
region� Nicolas and Labit ���� proposed using a threshold test that uses only the numerator
of the ratio in ��������
In the other category of methods� no tree�like structure is imposed� Such a method

has been proposed by Murray and Buxton ����� using a Markov random 	eld to modelize
the possible interpretations of the velocity 	eld� An interpretation involves an homogeneous
region characterized by the � parameters of ������ formulas� A line process is also introduced�
to take into account the interactions that exist between the points pertaining to the region
boundaries� Given a segmentation into spatio�temporal regions� the model parameters are
estimated for each region by a least squares method� A quadratic error function measures the
	tting of the parameters in relation to the measured values of the normal component on the
velocity vector contour� Once the global energy function is determined� then an algorithm
of simulated annealing is used for the optimization� which however has the disadvantage of
being very complex� Another weak point of the method is that the number of regions has to
be pre�set� but some remedies have been proposed to escape this constraint�
In the following chapters� we present picture compression methods which make use of

the results of this chapter on motion detection� estimation and segmentation�
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� Appendices

��� Appendix �A� Regularization method

The regularization theory permits to make well�posed an ill�posed problem� A problem is
well�posed when its solution exists� is unique and continuous ��
�� The last property means
that the solution depends continuously on the observation� Well conditioned problems are
still more interesting because numerical stability is then ensured� The following presentation
is limited to the ill�posed problems concerning a linear system

Ax 
 b �����

where the matrix A is� either singular� or near the singularity�
The principal idea of the regularization theory consists in providing an a priori knowledge

on the set of admissible solutions ��
�� A method for obtaining a regular solution is the
introduction of a quadratic criterion� which simultaneously contains the closeness to the
data and a regularizing term� like the following one

J 
k Ax� b k� �� k Px k� �����

The matrix P renders the existing knowlegde on the physics of the problem� The quadratic
criterion is chosen for mathematical simplicity reasons� but also because this corresponds to
an observation disturbed by an additive white Gaussian noise�
The matrix P results from the discretization of a linear functional of the derivatives of

the function� whose the discretization gives x� In the one�dimensional case often only the
	rst derivative is used� and in the multi�dimensional case only the 	rst partial derivatives�
Thus for the 
�D case we could have the following criterion

J 
k Ax� b k� ���k D�x k� � k D�x k�� �����

where D� and D� are the operators of the 	rst partial derivatives according the two principal
directions�
It is obvious that the minimization of ����� or ����� is given by the solution of a system

of linear equations� Let us consider the 	rst of these minimization problems to 	nd

x 
 �ATA� �P TP ���AT b �����

where direct or indirect� and always in practice iterative� methods permit the numerical
solution of the system�
A regularizing operator� like the 	rst derivative� used in a quadratic criterion ����� leads

to smoothing� not only the perturbations� but also the discontinuities� In the presence of
discontinuities� which is in practice always the case� the optimization criterion should be
modi	ed so as to relax smoothing on discontinuity points� Such criteria and methods are
proposed in ���� �����
The tutorial review ��� discusses implications of the regularization approach to many

problems arising in computational vision�

��� Appendix �B� Conjugate gradient method

The conjugate gradient method is an optimization method of a multi�variable function using
a gradient linked to the considered function� We only consider here the case of quadratic
functions

J�x� 

�



xTQx� bx �����

��



where the matrix Q is symmetric and positive de	nite� and the vector x is n�dimensional�
The minimization of J�x� is equivalent to the resolution of a system of linear equations

Qx 
 b �����

Two vectors d� and d� are called Q�orthogonal� if d
T
�Qd� 
 �� In the space R

n the set of
n Q�orthogonal vectors constitutes a complete base� Thus the vector x� which is solution of
the equation ����� can be written

x 

n��X
i��

�idi �����

with �i 

dT
i
Qx

dT
i
Qdi



dT
i
b

dT
i
Qdi
� i 
 �� � � � � n� ��

It is then possible to prove the following theorem� called the conjugate direction theorem
�����
Let fdi� i 
 �� � � � � n � �g be a set of n Q�orthogonal vectors� For every initial vector

x� � Rn� the sequence fxk� k 
 �� � � � � n� �g given by
xk�� 
 xk � �kdk �����

with �k 
 � �Qx�b�T dk
dT
k
Qdk

converges to the solution of the system ����� after n steps�

The conjugate gradient algorithm applies the above theorem by simultaneously generat�
ing the directions dk� and it is shown that it converges in at most n steps� The algorithm
follows�

Initialization� x�� d� 
 b�Qx�
For k 
 �� � � � � n� �� do

Correction in the direction of dk

xk�� 
 xk � �kdk� with �k 

�b�Qxk�

T dk
dT
k
Qdk

Determination of the new direction

dk�� 
 b�Qxk�� � �kdk� with �k 

�Qxk���b�

TQdk
dT
k
Qdk

In practice the number of iterations might exceed n because of rounding errors� The
conjugate gradient algorithm is more attractive in the case of sparse matrices� because of low
computation complexity� the more expensive operation being the multiplication of a square
matrix by an n�dimensional vector� A sparse matrix is got in the case of the discretization
by the method of 	nite di�erences� as it is the case of estimation in paragraphe ��
�
�

��� Appendix �C� Kalman �ltering

The objective of Kalman 	ltering is the optimal estimation� minimizing the mean squared
error� of the state of a system� A dynamic model of the system state is admitted� and an
observation related to the system state is provided� The formulation of the model in the case
of a linear system is given below� Let us note that the knowledge of the state dynamic model
supposes an order on the indexes of the state� We here consider only the one�dimensional
case� where order is natural� or at least it is uniquely determined� The one�dimensional space
may also be constituted by any curve on the 
�D plane�

�




Let X�k� be the n�dimensional vector describing system state� A linear di�erence equa�
tion describes a stochastic linear dynamic system

X�k � �� 
 ��k�X�k� �G�k�w�k�� k 
 �� 
� � � � �����

with an initial condition on the vector X���� The sequence of vectors fw�k�g is supposed
random� zero�mean and white

Efw�k�wT �j�g 
 Q�k���k� j� ���
�

where ��k� j� is Kronecker's delta� The dimension of the vector w�k� may be di�erent from
that of the state vector X�k�� The state cannot be directly observed� However measurements
linearly linked to the state are available

z�k� 
 H�k�X�k� � v�k� �����

The sequence of measurement noise is random� zero�mean and white

Efv�k�vT �k�g 
 R�k���k� j� �����

In addition� state and measurement noises are not correlated�
Given the model just described� Kalman 	lter gives the optimal linear estimator of the

state X�k�� which minimizes the mean squared error� knowing the measurements fz�j�� j 

�� � � � � kg� An initial condition is given on the state X���� which is supposed random with
mean �X��j�� and covariance matrix P ��j��� We note �X�kjl� the estimator of the state X�k�
knowing the observations until index l� Kalman 	ltering is obtained in two stages� prediction
and correction%	ltering� For each of these stages a covariance matrix of the corresponding
estimation error should be computed� Thus the following algorithm is obtained�

Initialization� �X��j��� P ��j��
For k 
 �� 
� � � �

Filtering%correction
�X�kjk� 
 �X�kjk � �� �K�k��z�k� �H�k� �X�kjk � ���
with the Kalman 	lter gain
K�k� 
 P �kjk � ��HT �k��H�k�P �kjk � ��HT �k� �R�k����

Covariance matrix of the estimation error
P �kjk� 
 P �kjk � ���K�k�H�k�P �kjk � ��

 �I �K�k�H�k��P �kjk � ���I �K�k�H�k��T �K�k�R�k�KT �k�

Prediction
�X�k � �jk� 
 ��k� �X�kjk�

Covariance matrix of the prediction error
P �k � �jk� 
 ��k�P �kjk��T �k� �G�k�Q�k�GT �k�

The computation of 	lter gain supposes not only the knowledge of the state transition
matrix ��k� and the observation matrix H�k�� but also the knowledge of the covariance
matrices of the state and measurement noises� For real�time applications this supposes
learning methods for the model parameters� otherwise a conservative approach should be
adopted using a low 	lter gain� to avoid 	lter divergence� There exist some techniques for
verifying 	lter divergence by estimating the model parameters ���� ��
��
For some applications we deal with in Chapter � for displacement estimation� we have a

	nite number of observations fz�k�� k 
 �� 
� � � � � Ng and we have to estimate the state vector
for all indexes from � to N � To solve this smoothing problem the above forward Kalman

��



	lter should be used� followed by a backward 	lter which corrects the forward estimation�
The backward 	lter given between others in ���� is the following

�X�kjN� 
 �X�kjk� � C�k�� �X�k � �jN� � ��k� �X�kjk��� fork 
 N � �� � � � � �
where C�k� 
 P �kjk��T �k�P���k � �jk��
Finally the system model might be non�linear� We here consider uniquely the case where

the observation vector is a vector of non�linear functions of the state

z�k� 
 h�X�k�� k� � v�k�

By linearization we obtain

H�k� 


�
�hi�X�k�� k�

�xj�k�

�

where hi��� is a component of the vector of functions� and xj�k� is a component of the state
vector X�k�� The 	ltering equation is modi	ed as follows

�X�kjk� 
 �X�kjk � �� �K�k��z�k� � h� �X�kjk � ��� k��
All the other equations of the Kalman 	lter remain unchanged� The 	lter in this way obtained
is called the extended Kalman 	lter �����

��� Appendix �D� Adaptive �ltering

The objective of the adaptive 	ltering is the identi	cation of the state of a system fX�n��n 

�� 
� � � �g given an observation� here supposed scalar� of the output of the system
y�n� 
 h�X�n��n� � z�n� �����

where z�n� is a white noise� The criterion used is the minimization of the mean squared
error� and the algorithm resulting is called the Least Mean Square �LMS� algorithm� which
is described by the following equation ����

�X�n� 
 �X�n� �� � �H�n��y�n�� h� �X�n� ���n��� n 
 �� 
� � � � �����

�X��� 
 �

where the vector H�n� is the gradient vector of the function h���� and � is a positive constant
gain� the adaptation step size�
The above described algorithm converges to a steady state under a condition on ��

provided that the function h��� is linear and the vector H�n� is stationary ����

� 




EfkH�n�k�g �����

The speed of convergence is proportional to the adaptation step size �� but �uctuations
also are proportional to this parameter� convergence not being strict� A good choice for the
adaptation step size is the following ����

� 

�

EfkH�n�k�g �����

��



Another more fast adaptive algorithm is the Normalized LMS �NLMS�� which in com�
parison with the LMS algorithm alters the gain� more precisely the magnitude of the gain
without changing its direction� Two versions may be considered

�X�n� 
 �X�n� �� � �
H�n�

kH�n�k� �y�n�� h� �X�n� ���n�� �����

with kH�n�k� � 	� or

�X�n� 
 �X�n� �� � �
H�n�

�� kH�n�k� �y�n�� h� �X�n� ���n�� �����

The last algorithm converges to a steady state provided that � 
 � 
 
� for a linear
function h��� and for a stationary process H�n� �����

��	 Appendix �E� Markov and Gibbs random �elds

At 	rst we give the de	nitions of discrete Markov and Gibbs random 	elds on a lattice�
which is a set of pixels

L 
 f�m�n� � � � m �M� � � n � Ng �����

A Markov random 	eld fX�m�n� � �m�n� � Lg is de	ned using a local property
PrfX�m�n� 
 x�m�n�jX�k� l� 
 x�k� l�� �k� l� �
 �m�n�g


 PrfX�m�n� 
 x�m�n�jX�k� l� 
 x�k� l�� �k� l� � V �m�n�g ���
�

where V �m�n� is a set of pixels in the neighborhood of �m�n�� It is supposed that the set
V �m�n� is de	ned in an homogeneous way for all pixels� A common example of neighborhood
is that of � nearest pixels�
A Gibbs random 	eld provides a global description of the 	eld

PrfX�m�n� 
 x�m�n� � �m�n� � Lg 
 e�U�x�

!
�����

where x is a vector of MN elements� The function of MN variables U�x� is called the
energy function� and normalizing constant ! 


P
e�U�x� is called the partition function� An

important and interesting class of Gibbs random 	elds is that where the energy function is
composed from local interaction models� To this aim a clique is de	ned in a neighborhood
system� A clique is a set of pixels containing� either one pixel� or neighbor pixels� Figure ��

Figure ��� ��pixel neighborhood and associated cliques

gives an ��pixel neighborhood and the associated cliques� We are only interested on Gibbs
random 	elds such that

U�x� 

X
c�C

�c�x� �����

��



where C is the set of all cliques on the lattice L� and �c�x� is called the potential of the
clique c� In ��� a proof �via the Hammersley�Cli�ord expansion� may be found that a Gibbs
random 	eld satisfying Equation ����� is equivalent to a Markov random 	eld� Often for
the ��pixel neighborhood� only at most pairs of pixels are considered to have a non zero
potential� An example of potential for a pair of pixels� which can be used for segmentation
purposes� is the following �
��

�c�x� 


�
��c if the two pixels have the same value
�c otherwise

�����

Let us now consider the problem of estimating a Markov or Gibbs random 	eld given an
observation fY �m�n� � �m�n� � Lg of the 	eld disturbed by an independent noise� It is then
supposed known the following conditional probability

PrfY �m�n� 
 y�m�n�jX�k� l� 
 x�k� l�� �k� l� � Lg

 PrfY �m�n� 
 y�m�n�jX�m�n� 
 x�m�n�g �����

The estimation problem is solved by a Bayesian approach� by obtaining the 	eld maximizing
the a posteriori probability

PrfX�m�n� 
 x�m�n�jY �m�n� 
 y�m�n�� �m�n� � Lg
�

Y
�m�n��L

PrfY �m�n� 
 y�m�n�jX�m�n� 
 x�m�n�g

PrfX�m�n� 
 x�m�n� � �m�n� � Lg �����

This is also equivalent to minimizeX
�m�n��L

�c�x�m�n��

�
X

�m�n��L

lnPrfY �m�n� 
 y�m�n�jX�m�n� 
 x�m�n�g �����

The simulated annealing algorithm is used in �
�� to obtain the minimum of the above func�
tion� The computational cost of this algorithm� in spite of its convergence to the global
minimum of the function� prevents its use in image communication applications� Alterna�
tives are the ICM �Iterated Conditional Modes� algorithm ���� dynamic programming �
���
maximization of posterior marginals �MPM� ����� and mean 	eld annealing �
���
A more extensive treatement of Markov and Gibbs random 	elds may be found in �
��

and �
���
For joint estimation%segmentation problems a suitable Markov random 	eld contains two

components� one of a� possibly continuous variable� 	eld described by a local property like
that of Equation ���
�� or the equivalent clique potential� and a line process� for which local
interactions may also be introduced �
��� The line process represents possible edge elements
and the corresponding sites are placed midway between pixels on the principal directions�
The line process is often considered binary� the value (�' noting the existence of an edge
element� An example of cliques for the line process is shown in Figure �� �
��� all the
rotations of these cliques should also be considered�

��



Figure ��� Cliques of the line process

��
 Appendix �F� Equivalence of a Kalman�based and a Wiener�based

estimator

Under hypothesis ������� the Kalman 	lter gain and the covariance matrices must satisfy
the following equations

	 	lter gain

K�i� j� 
 P ��i� j�G�i� j��GT �i� j�P ��i� j�G�i� j� �RIIp�
�� �����

	 covariance of estimation error

P �i� j� 
 �II� �K�i� j�GT �i� j��P ��i� j� �����

	 covariance of prediction error

P ��i� �� j� 
 P �i� j� � ��vG�i� j��G
T �i� j�G�i� j� � �IIp�

��GT �i� j� �����

It is obvious that the above equations admit as solution ����

P ��i� �� j� 
 P ��i� j� 
 ��vII� ���
�

From this solution results

K�i� j� 
 G�i� j�

�
GT �i� j�G�i� j� �

R

��v
IIp

	��
�����

and

P �i� j� 
 ��v

�
II� �G�i� j�

�
GT �i� j�G�i� j� �

R

��v
IIp

	��
GT �i� j�

�
�����

Equation �����
� is therefore demonstrated� and by putting p 
 � we obtain also ������� to
��������
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