IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL, 17, NO. 12, DECEMBER 1995

1177

Optic Flow Field Segmentation and Motion
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Abstract—Optic flow motion analysis represents an important
family of visual information processing.techniques in computer
vision. Segmenting an optic flow field into coherent motion groups
and estimating each underlying motion is a very challenging task
when the optic flow field is projected from a scene of several inde-
pendently moving objects. The problem is further complicated if the
optic flow data are noisy and partially incorrect. In this paper, we
present a novel framework for determining such optic flow fields by
combining the conventional robust estimation with a modified ge-
netic algorithm. The baseline model used in the development is a
linear optic flow motion algorithm [38] due to its computational
simplicity. The statistical properties of the generalized linear re-
gression (GLR) model are thoroughly explored and the sensitivity
of the motion estimates toward data noise is quantitatively estab-
lished. Conventional robust estimators are then incorporated into
the linear regression model to suppress a small percentage of gross
data errors or outliers. However, segmenting an optic flow field
consisting of a large portion of incorrect data or multiple motion
groups requires a very high robustness that is unattainable by the
conventional robust estimators. To solve this problem, we propose a
genetic partitioning algorithm that elegantly combines the robust
estimation with the genetic algorithm by a bridging genetic opera-
tor called self-adaptation.

- Index Terms—motion estimation, optic flow field segmenta-
tion, linear regression, robust estimation, genetic algorithm.

I. INTRODUCTION

N optic flow field results from two successive image

frames in time-varying image sequences that measure the
projection of 3-D scenes. The notion of optic flow field or
displacement field is used in a variety of applications, notably
in rigid motion analysis [14], [27], [28], [38], two-view
matching [32], and image sequence coding {7]. At a prelimi-
nary level, the optic flow motion analysis is to detect or flag
motion(s) in the viewed scene. At a more sophisticated level, it
is. to infer the motion parameters and surface structures of
moving object(s). The optic flow motion analysis basically has
two related stages. The first stage involves the computation of
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the optic flow field from monocular image sequences. The
second stage is to meaningfully interpret the computed optic
flow field regarding the underlying object structures and mo-
tion parameters. There is a large body of literature on optic
flow motion analysis. For a comprehensive overview, the
readers are referred to an excellent review paper by Aggarwal
and Nandhakumar {3]. )

Many previous research. works are confined to the case
where the scene contains one single 3-D rigid body motion.
Along this direction, several researchers have developed non-
linear equations for recovering the 3-D motion and structure
[4], [24], [34] that are solved by iterative numerical methods.
However, this approach does not guarantee unique solution
due to the initial-guess dependence. Longuet-Higgins [19] and
Tsai and Huang [27] are among the first to propose computa-
tionally simpler techniques based on linear equations. The
linear algorithm is subsequently unified by Zhuang and
Faugeras [37] and simplified by Zhuang, Huang, and Haralick
[38]. However, linear algorithms are reported to be sensitive to
noises [27], [33]. This is our initial motivation for developing
robust algorithms to cope with this problem.

The nature of the optic flow motion analysis has also been
studied. It is well known that this inverse problem is ill-posed
in that the observed data do not uniquely constrain the solu-
tion. Thus, various smoothness constraints are proposed. to
remedy this problem [13], {23], [25]. The inherent ambiguities
in recovering the 3-D motion are also investigated [2], {35].
These adversary aspects have raised some concerns about the
suitability of quantitative 3-D motion estimation from optic
flow fields [30]. However, the debate on this topic is beyond
the scope of this paper.

Meanwhile, a more important yet challenging task, i.e., the
determination of optic flow fields containing multiple independ-
ently moving objects, has received much attention. Thompson
[26] presents a segmentation scheme that combines the contrast
information with optic flow field and uses a region growing
method to merge similar velocity patches. Adiv [1} develops a
grouping technique based on a computationally expensive
Hough voting scheme which recovers the 3-D motions and
structures using verified object hypotheses. The optic flow field
is allowed to be sparse, noisy and partly incorrect since the
Hough transform is relatively insensitive to noises and partially
incorrect data. Recently, Markov random fields are utilized to
model dense optic flow fields [11], [21] and the segmentation
corresponds to a global optimal solution. Darrell and Pentland
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[5] apply image constraints to each model in a multimodel regu-
larization network. Wang and Anderson [3 1] combine robust
estimation with A-mean clustering to achieve multiple motion
segmentation. Some alternative approaches that make use of
stereo images pairs or 3-D data have been attempted more
recently. Chen and Huang [5] present a two-stage algorithm
that first matches 3-D line segments and then infers the underly-
ing -multiple objects. Zhang and Faugeras [36] develop a hy-
pothesize-and-verify paradigm to obtain the displacement field
from two 3-D frames. Zhuang and Huang [40] use the MF-
estimator [39] for robust 3-D to 3-D multiple pose estimation.

In this paper, we propose a novel framework for determin-
ing the optic flow field projected by single or multiple 3-D
rigid body motions with noisy and partially incorrect data. Our
original motivation is to extend the linear optic flow motion
algorithm [38] by using robust estimation to cope with par-
tially incorrect data sets. That is, the data sets contain a portion
of outliers which significantly conflict with the underlying
models or structures. Many previous works heavily rely on the
availability of reliable optic flow data. Unfortunately, the task
of acquiring reliable optic flow data is nontrivial. For example,
for monocular image sequences, a matching procedure is usu-
ally used to establish the correspondence of image pixels to
obtain the optic flow field. Thus, the quality of the computed
optic flow field is usually not guaranteed as the matching pro-
cedure may contribute many outliers [10]. In addition, sensor
errors and calibration errors can also cause outliers. As known,
the presence of outliers in motion analysis is disastrous since it
greatly affects the estimation accuracy. Thus, one realistic so-
lution is to incorporate robust estimation methods into the in-
terpretation process so that it can suppress the influence of
outliers. In other words, we want to segment the optic flow
data into a coherent motion group and a portion of outliers,
then estimate the motion using only the relevant data. It is in-
creasingly realized that robust methods are vital to all com-
puter vision problems [20], [39], [41].

When the optic flow field is projected from several independ-
ently moving objects, segmenting it into multiple coherent mo-
tion groups and estimating each associated motion-is a more
challenging task. Interesting enough, however, we find that it can
also be treated as a robust estimation problem. This is because
with respective to one particular motion group, all other motion
groups and the. outliers appear as a larger set of outliers, all of
which conflict. with the first motion group. Once a consistent
motion group is extracted by the robust algorithm, the same pro-
cedure can be applied on the remaining portion of the data set to
further extract other motion groups in a recursive fashion. How-
ever, since the outlier portion may now be very high with respect
to each motion group, we need a robust estimator possessing a
high degree of robustness. That is, it must be able to extract a
consistént motion group without much influenced by a large
portion of other irrelevant data. For example, to handle an optic
flow field equally divided over three motion groups, the robust
estimator needs an outlier tolerance of at least 67%. Unfortu-
nately, the conventional robust estimators, such as Huber’s
M-estimator [16], have a typical outlier tolerance of 5% to 10%,
which is far from satisfactory. .

In the paper, we propose a robust genetlc partmomng algo-
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rithm to achieve the desired high robustness by establishing a
close connection between the robust estimation procedure and
the genetic algorithm [9], [12]. In our algorithm, the optic flow
field is binary partitioned and encoded as chromosomes such
that each chromosome ensemble corresponds to one motion
group. The algorithm alternates between a segmentation stage
and an estimation stage. The segmentation stage is governed
by a modified genetic algorithm which starts with a set of ran-
dom partitions and seeks increasingly consistent partition(s).
The estimation stage uses a robust estimator to decide the cur-
rent motion model and reject respective outliers. These two
stages are bridged by a newly defined genetic operator called
self~adaptation, which updates each partition based on . the
motion estimates. This operator tremendously ‘speeds up the
otherwise slow genetic algorithm. The fitness function of each
partition is determined by two sources, i.e., its compactness
measure and its least-squares fitting. error to the linear optic
flow motion equation. In a departure from some. previous
works, our algorithm does not require spatial connectivity. of a
motion group and allows for sparse optic flow fields. This is
important since, besides being a computational burden, ac-
quiring dense optic flow fields is sometimes difficult if the
feature points are only sparsely available (271, [29]. .

The paper is organized as follows. Section II prov1des a
brief overview of the linear optic flow motion algorithm. In
Section 1II, the statistical properties of the generalized linear
regression (GLR) model are thoroughly explored and the sen-
sitivity of the motion estimates toward data noise is derived. In
Section IV, two conventional residual-based robust estimators,
namely, the Huber’s M-estimator and. Tukey’s biweight esti-
mator are incorporated into the linear regression model. Sec-
tion V provides the skeletons of the basic genetic. algorithm
and then presents our robust genetic partitioning algorithm.
Section VI shows the -experimental results. Section VII is a
conclusion.

II. LINEAR OPTIC FLOW MOTION ESTIMATION

The optic flow motion analysis concerns with the perspec-
tive projection of 3-D rigid body motions onto a 2-D image
domain. Suppose that a rigid body motion takes place in the
half 3-D space in front of a camera, i.e., z < 0. Let p(2) = (x(2),
H2), (D) be an object surface point at tlme t. The ‘instantane-
ous 3-D rigid motion is represented by

PO = (&) % p(t)+ Kk(2), e9)
where the overhead dot represents the time derivétivé “x” 'the
cross product, @(®) = (@), @), @®)" the instantaneous
rotational angular velocity, and k() = (ki(2), k@), k(1) the
instantaneous translational velocity. Let (X(#), ¥(1)) be the 2-D
central perspective projection of p(f) onto image plane z = 1.
Let (u(?), W(t)) = (X(2), Y(¢)) denote the projective instantane-
ous velocity of (X(#), ¥(¢)). The perspective projection estab-
lishes the following relationships:

X =x()/ (0,
Y(6) = y(®)/ z(1),

PO) = 2(DXQ), Y0, 1Y,

@
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and
u(t) = @, (1)~ Y()o, (1)~ {@, (DY (1) - 0, (DX ()} X (1)
+{k (- ky (DX} =(D),
V()= 05X (1)~ 0, ()~ {0, (DY (1) - 0, (XD} (2)
+{ky ()= ks (DY (1)} 2(2).

The element {(X(?), Y(¢)), (u(?), v(#))} is called an optic flow
image point. The optic flow motion analysis is to estimate the
motion parameters o and k, given a finite set of observed optic
flow image points {(X;, Y}), (w;, v)}, i =1, ---, N, at time ¢ (the
time indices are omitted for simplicity). The optic flow data set
size N can be equal to or smaller than the number of image
pixels depending on whether dense or (subsampled) sparse
optic flow field is being considered. Given a pixel location
X;, 1)), the velocity (u;, v;) is usually computed by using opt1c
flow algorithms [13], [3].

It is shown in Zhuang et al. [38] that the motion parameters
can be obtained by solving & from the following set of homo-
geneous linear equations:

a'n=0, for i=1--

©))

. N, @

where
@ = (L, X7, Y2, 2X,%,2X,, 2Y, = viou;, v, viX; -
b= (ho, by, by, s, by, hs, b, by, )
The motion parameters ® and k can then be computed from & as
shown below. It is justified in [38] that at least eight optic flow
image points (N > 8) are needed to uniquely recover the motion
parameters (®, k) when k is nonzero, and that k can only be de-
termined up to a constant scale. In other words, we can only
estimate the motion parameters by (&, IE) with & being colinear

uiYi)T

to k. The depth information, i.e., z;, i =1, ---, N can also be re-
covered once (@, k) is obtained. The following is the procedure
to compute @ and k from the estimated k (see [38] for the
details).
Step 1. Set k = (hg, by, he)" .
Step 2. f (s = |hy]) and (| 2
@ =~y ~ o) ), &, = (2hs
&)3 =(2h4 —hs * &)1 /h6
Step 3. Otherwise, if (|ﬁ,[ > [128 ‘), then

[fg]), then
— by % é,)/ hg, and

&y =(hy — by — )| 2hy), @0y = 2hs — hy * @y)1 by, and
oy =2y —hg * ) Iy,

Step 4. Otherwise,
@, =(hy— by —hy) | 2hg), @, =2hy —hg * @by | by, and
@y = (2hs ~h, % @)/ hy.

To suppress the pixel location factor, the linear optic flow
motion equations can be normalized as follows,

alh=0, for i=1,--,N, ®)

where a; = a;, or in matrix form,

X+,

Ah=o, ©
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with A = (alT ,azT ,'--,af,)T. In practice, the observed optic
flow image points {(X], ¥)), (u;, v;)} may contain noises. Since
the velocity component (;, v;) is usually obtained from the
displacement of (X, Y;) between two consecutive image-
frames, the noises in (%, v;) and (X;, Y)) are relative. Hence, we
may assume that only the velocity components (u;, v;) carry
noises. Thus, according to (5) only the last three components
in @; may carry small noises that are modeled as Gaussian
noises. In the next section, we will present the solution and the
statistical properties of (5) under Gaussian noise condition
while exploring a more geneal linear regression model. In
Section IV, we will incorporate robust estimation methods to
cope with possible outliers in {(X;, ¥}), (u;, v})}.

III. GENERAL LINEAR REGRESSION MODEL

A. Multiple Linear Regression Model

The multiple linear regression (MLR) model is well studied
in statistical literature [22]. It is represented by

Vi =Bo+ Brxy+ Byxy + oo+

where x;; are deterministic measurement variables, and y; are
stochastic response variables, or in matrix form

X, te€, i=1-- N, (7)

prpi

y=XB+e ®
where y = (1, = yn)'s B=(Bor = B> € = (&, - &)', and
X is a design matrix
Loxy xy o Xy
x=|, ©
I xy Xy XpN

Under the assumption that e follows normal distribution
N(o, o2I), and the design matrix has full column rank, the
least-squares solution to (8) is obtained as #=(X"X)"' X7y
[22]. The MLR model finds many applications in economics
and social sciences. But it has a serious limitation that the
measurement variables are deterministic. Thus, the so-called
“measurement-in-error” MLR model, which allows for random
measurement variables, has been investigated under certain
asymptotic assumptions [8].

For our purpose, the foregoing models cannot be directly
utilized since the normalized optic flow linear (5) is homoge-
neous and thus possesses different statistical properties. There-
fore, an effort is made to investigate the statistical properties
of the homogeneous linear equation in a general setting, called
the general linear regression (GLR) represented by

ﬂ0+ﬂ1xli+ﬂ2x2i+ "+ﬁpxpi=€i! i':l"'"N7 (10)
where x; are normally distributed random variables, i.e.,
x5 ~ NGy, 0'5 ), B ; are linear coefficients, and ¢ are mutually
independent random variables (but dependent on the x;;) meas-
uring the a priori model errors. A general assumption for x;; is

def
that o % = cov(x Jis xy) # 0 for all j, &, and cov(x;, xi) = 0
for all i # k. The matrix form of (10) is
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Xp=e (11

For the sake of notational clarity, we should point out that X
and f correpond to A and k in the previous section, respec-
tively. To facilitate the development, we first establish the cor-
responding noise-free model as

Bo+ 5%y + BoXo; + -+ %, =0, i=1-

or in matrix form

N, (12)

XpB=o, (13

where X denotes the mean design matrix. It follows from (12)
that the mean design matrix is 1-degree degenerated, namely,

rank(X" X)=p. 14

Due to the homogeneity of (12), we may assume without loss
of generality that £, = —1 in the following development.

Let 1 denote a N-dimensional vector with each component
being 1. Partition the design matrix as X =[1 |X"], the mean

design matrix as X =1 ])_( *], and the coefficient vector as
B =(-1,5"). By (13), we have

1+ X8 =0, (15)

Let AX" 2 X" — X" 1t follows from the foregoing noise as-
sumption that each row of AX" is independently distributed as
N(o, 2), where X'is a covariance matrix with oy, being its jkth
element. It is then straightforward to wverify that
e~ N(o, BT 38°T).

B. Least-Squares Estimation

The least-squares estimate ﬁ* = (,27’1, ey ,AB p)T of the GLR

model (11) is determined by
2

mﬂin(lXﬂHz = min -1+ X" (16)
which leads to
B =(xTx") " x71 (17)
Due to (15), we can verify that
ﬁ'* =ﬁ*—~(X*TX*)*1X*TAX*ﬂ*. (18)
Therefore, f~ is a biased estimate since
BB =4 - ExTX)TIXTAXT), a9

and the second term is usually nonzero. However, when the
noise factor is small (AX" — o), " is asymptotically unbiased.
It is very difficult to analytically derive the variance of ,3*
because of the complicated random matrix operations in (17).
However, by applying the Taylor expansion at X*, we may
derive an approximation of Var(f") as follows. First,
- e S *
B =p-(x"x") X"ax'p
. (20)
=B - (XTX)'XTAX +o(AX))f".
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When the random factor AX™ is small as compared to the non-
random factor X, we may ignore the higher order terms
o(AX™) and obtain

Var(B*) = BT (X Tx" ). (1)

This equation characterizes the sensitivity of the estimate ﬁ*
with respect to the noise factor 2. It explains the previously re-
ported high noise sensitivity of the linear optic flow motion algo-
rithms [27], [33]. That is, the variance of the linear estimate (and
subsequently the motion parameters) is related to not only the
noise covariance X but also the true motion parameters
(reflected by 8 and the data location (reflected as (X7 X*)™).
Thus, when any of these factors has large numerical values, the
reliability of the motion estimates is reduced.

C. Residual Analysis
The residuals of the GLR model ¢, ---, ey are defined to be
the (post) model fitting errors, ,
€ =_1+:51x1i +ﬂ2x2i +oeeet ﬁpxpi’ i= 15 R N. (22)
Denote e = (e, --, ey) and define the hat matrix H =
X' X"Xy'X'7. We can verify
e=-1+X"f"
=(I+H ),

which meaningfully relates the post model residual e with the
a priori model error €. Since H' is a random matrix, it is diffi-
cult to obtain the exact distribution of e from (23). However,
by using a zero-order Taylor expansion, it can be verified that

Var(e)~(I- H ) 38", (24)

In deriving it, we have used the property that (I — H') is a
projection matrix (both idempotent and symmetric). It follows
that,

23)

Var(e,) = (1= kB 28", 25)
where h;,. is the ith diagonal element of H'. Thus, the distribu
tion of ¢ is related to /; which by definition is a distance
measure of the data point x; from the sample mean.

In conventional robust estimation methods, the residual is
used for weight assignment such that the data points with large
residuals receive small or zero weights and are thus treated as
outliers. By (25), we see that the data location factor h;- can
significantly alter the information conveyed by the residual.
Therefore, in employing residual-based robust estimators, the
residual should be appropriately normalized to eliminate the
data location factor:

e;

. (26)
J1~H;
In the following, the notion of model residual always refers to
the normalized one unless explicitly pointed out.
It is straightforward to apply these results to the linear optic
flow motion (6) since it is a special case of the GLR model
with the last three components of & being random variables.

g
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Therefore, the least-squares motion estimate / and the associ-
ated statistical properties are obtained. As well known, the
least-squares estimation is extremely unreliable with the pres-
ence of outliers. Thus, we discuss robust estimation methods to
cope with the outlier problem in the next section.

IV. RESIDUAL-BASED ROBUST ESTIMATORS

Most robust methods utilize the residual information to
identify outliers since a larger residual indicates larger devia-
tion from the underlying model. In the following, two conven-
tional robust estimators, namely, the Huber’s M-estimator and
Tukey’s biweight estimator are presented and incorporated
into the linear regression model.

A. Huber’s M-Estimator

Suppose there is a location parameter x to be estimated
from a number of observations x;, i = 1, ---, N, which come
from the distribution F(x - ). The principle of the
M-estimator [16] is that the estimate f is chosen such that

N
Z p(xz *,U)

i=l

@7

is minimized, where p(-) is a differentiable continuous func-
tion. It can be shown that the function p(e) = € yields the es-
timate 2 as the sample mean, p(e) = |¢| yields the estimate /z
as the sample median, and p(e) = — log fle), with f(e) being
the density function of the random variable x, yields the maxi-
mum likelihood estimator. Let ¢; = x; — x. Define the influence
Sunction @ as the first derivative of p, i.e., ¢(-) = p'(-). Thus,
minimizing (27) is equivalent to solving

3 ote)=0. 28)
i=]

Huber’s M-estimator [16] uses an influence function defined as

; |e,-| <k

ole) =<k ek
~k e <k,

€;

@9

where k is a predefined constant. Since ¢(-) is a nonlinear
function, (28) usually needs to be solved by iterative numerical
methods. It is easy to verify that solving (28) by using influ-
ence function (29) is equivalent to the following weighted
least-squares minimization:

N
minz we?, 30)
e
where the weights are given as:
1 le,.l <k
w; =3kle €2k (€2))
~kle e <~k

We now incorporate Huber’s M-estimator into the GLR re-
gression model. Based on the weighted least-squares principle
(30), the Huber’s M-estimator for the linear coefficient E in
the GLR model is derived from
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5 o2 = il P
II}I‘DE w;e] I‘I/l’I‘n”W e" .
2

= I%inl—w"zl + WX

where W2 = diag(wll/ 2 .., w}jz) is a weight matrix. Hence,
we obtain the M-estimator of 8 as

B =xTwxy 1 xTm, (33)

where W = W'"?W" = diag(w,, ---, wy). Notice that (33) and

(31) form a recursive procedure to determine appropriate w;

and the linear coefficient f°. The recursion starts with an

identity weight matrix W’ = I The convergence of the
M-estimator has been proved by Huber [16].

B. Tukey’s Biweight Estimator

The Tukey’s biweight estimator is another type of the
M-estimator. It defines the influence function as

e,(1-e2) le|<1
pley=| =) e (34)
0 le>1,
where ¢; is scaled by
¢« —I (35)
€ Cped

with e,,.s being the median of the absolute residuals before scal-
ing and ¢ being a tuning constant (normally between 4 and 12).
Hence, the corresponding weight function can be derived as

v, {(1—e,.2)2 le;| <1 G6)

0 ‘e,-[ >1.
The biweight estimate of A" is thus the same as in (33) except
that the newly defined weight function (36) is substituted.
Thus, a recursive biweight estimation procedure is formed by
(33), (35), (36), starting with an identity weight matrix. This
recursive procedure named as robust estimation cycle will be
utilized in the estimation stage of the following robust genetic
partitioning algorithm.

C. Discussions

In general, the residual-based weighting function is de-
signed to reduce the influence of outliers in the parameter es-
timation. This is accomplished by assigning smaller weights to
larger residuals. The M-estimator uses a predefined constant as
a threshold. The biweight estimator uses an adaptive approach
in that all weights are relatively assigned with respect to the
median residual. The most important aspect of a robust esti-
mator is the tolerance of outliers, or the breakdown points. In
our linear regression application, the breakdown point is typi-
cally 5% to 10% for Huber’s M-estimator and 30% to 40% for
Tukey’s biweight-estimator.

The foregoing robust estimation procedure is adopted so that
we can recover a single 3-D rigid body motion from partially
incorrect motion data. However, the breakdown points of these
robust estimators are not high enough to handle the case where
outlier data occupied the majority or muitiple data structures
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exist. To achieve the high robustness to handle such data sets,
we combine the robust estimator with a genetic algorithm and
propose the following robust genetic partitioning algorithm.

V. A ROBUST GENETIC PARTITIONING ALGORITHM

The genetic algorithm is primarily used for global parameter
optimization by a stochastic mechanism which imitates the
biological systems of natural selection and gene reproduction
[9], [12]. It possesses the power of exhaustive searching meth-
ods for finding global solutions while avoiding their prohibi-
tive computational complexities.

A. Basic Genetic Algorithm

Each parameter being optimized is encoded as a finite-
length binary string of 0s and 1s. The linear concatenation of
the binary strings for all parameters composes a chromosome.
This process represents the discretization of the parameter
space where each chromosome corresponds to a possible solu-
tion. At any time, the algorithm maintains a finite set of chro-
mosomes, called a population or chromosome pool. The
chromosomes compete with each other to reproduce and sur-
vive. The chance for a chromosome to reproduce and survive
is determined by its fitness function, which is defined based on
specific applications. In a manner resembling the natural bio-
logical system development, the chromosomes are allowed to
mate and mutate. Mating of a chromosome pairs by a cross-
over operation results in an offspring chromosome pair which
carries the information of both parents. Mutation of a chromo-
some alters certain bits of the chromosome. In brief, a genetic
algorithm has three basic operations: i.e., reproduction, cross-
over and mutation. The entire optimization process consists of
a number of repeated applications of these operations, called
generations. The algorithm stops after a fixed number of gen-
erations, or after the chromosome pool stabilizes.

The initial chromosome population can be randomly gener-
ated. Their fitness values are then calculated. Denote the fit-
ness value of the ith chromosome E; by f(E,),i=L---,C,
where C is the population size. The chromosome E; gets re-
produced with a probability p{E;) proportional to its fitness
value,

C
pE)=fEII Y FE).

=

(37

By the reproduction operation, the original chromosomes are
replaced by the reproduced chromosomes which compose a
mating pool. Mating is then done by randomly pairing these
chromosomes into couples, and performing crossover of each
couple with a small predefined crossover probability P, as
follows. Suppose E = £& -+ &yand I = % - % are a se-
lected chromosome pair where & and e {0, 1},i=1, --- N.
A crossover position k is randomly determined between 1 and
N. Then with probability P. this chromosome pair generates
their offsprings as ' = & - & ey - and I™ = g - % &y
-- &y. Finally, mutation is performed by altering each bit of a
chromosome with a very small probability P,,.
The reproduction operator ensures the succession of “good”
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solutions; the mating operator passes on “good” information to
the offspring generation; the mutation operator -creates new
solutions and thus avoids local optima. Hence, the parameter
space is searched in an random yet organized manner in ap-
proaching global optima while escaping local optima. Though
the genetic algorithm utilizes only these simple operations, it
has been shown to be a very effective method in many global
optimization applications [9]. The mathematical aspect of the
genetic algorithm is summarized by the Schema Theorem
which is referred to Goldberg [9].

A major practical limitation of the basic genetic algorlthm is
its relatively slow convergence. In contrast, by introducing a
new operator called self-adaptation, our modified genetic al-
gorithm will have a much faster convergence rate.

B. Combining Robust Estimation and Genetic Algorithm

The robust estimation methods can be intimately combined with
the genetic algorithm to achieve the desired high robustness.

B.1 Connection Between Robust Estimation and Genetic
Algorithm

As mentioned, the goal of robust estimation is to exclude
the influence of irrelevant data (outliers) in parameter estima-
tion by assigning appropriate weights. In case of extracting one
consistent motion group from a partially incorrect data set,
each outlier should ideally be assigned a weight of 0, while
non-outlier assigned a weight of 1. This forms an ideal binary
segmentation of the data set. In case of extracting multiple
motion groups from a mingled data set (which may also con-
tain outliers), each consistent motion group also. corresponds
to a binary partition of the data set with each belonging data
point assigned a weight of 1.

To associate the foregoing objective with the genetic algo-
rithm, the key is the chromosome encoding. Since each chro-
mosome is an ensemble of binary bits, it is natural to link it to
the binary partition of the data set. That is, each chromosome
is used to represent a binary partition of the data set with the
chromosome length equal to the data set size N. The three ge-
netic operations can then be used to seek proper partitions of
the data set. From one perspective, we may view it as an opti-
mization procedure performed in the parameter space of binary
weights (which is very small as compared to the ordinary cases
where all parameters need to be quantized in sufficient preci-
sion levels and searched). This procedure is called the seg-
mentation stage. The other parameters (motion parameters /)
are determined by the robust estimation cycle (33), (35), (36),
instead of genetic searching. This procedure is called the esti-
mation stage. The two procedures are bridged by a new ge-
netic operator called self-adaptation.

B.2 Robust Estimation and Self-Adaptation

The self-adaptation operator is applied after the completion
of the other three genetic operators. Let E = £ &, --- & denote
a submitted chromosome, which partitions the original data set
{a1, ---, ay} (see (5)) into a relevant data subset G(E) and an
1rrelevant data subset G(E) by
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G(E)={apj:§p/_ =1,p;€fl,--,Nyand j=1,---, N}

= (38)
GE)= {aqk:é'qk =0,q, €{l,--,Nyand k=1,---, N-N;}

where N is the number of 1 bits in E. Then, the relevant data
subset G(E) is submitted to the robust estimation cycle, such
as (33), (35), 36), for estimating the current motion model h
and computing the associated diagonal weight matrix
W =diag{w,, -, Yoy } where each Wy, < w, < 1) denotes
the resultant weight assigned to a e j= l,.~--, N, by the ro-

bust estimation cycle. The chromosome E is then updated by
using the following two-step self-adaptation operator.

Data Pruning. Reject the outliers detected in G(Z) and keep
the nonoutliers. It amounts to updating the chromosome bits
:fpj,j =1,-:-, N, as follows,

1 if w, >0
€ =Yo ir w, =0’

Data Augmentation. Accept any consistent data points with
respect to the current model i that are originally in the irrele-
vant data set G(Z). This is accomplished as follows. Let the
median of the absolute model residuals obtained in the robust
estimation cycle be e,.,. Compute the residual e for each

€2))

a, € G(E) using (22) by substituting in the current model h.

9k
Then update the chromosome bits &, , k=1,---, N— N, by,

1 if e, 1Se

0 if !eqkl>emed

med

So =€ (40)

A self-adapted chromosome represents a new partition of
the data set which supports the estimated motion model # . In
essence, the self-adaptation operator utilizes the outlier rejec-
tion capability of the biweight robust estimator. Meanwhile,
consistent data points that are originally excluded can now be
included by the data augmentation procedure, ensuring that the
extracted motion group is the largest possible.

B.3 Optic Flow Motion Fitness Function

The fitness function of a chromosome E = £& -+ &y is
evaluated by two sources. Let 4 denote the design matrix
composed by using the relevant data set G(Z), ie,

A :(azl, ey “;N, )T. Let & be the least-squares motion esti-

mate by using G(E). The first fitness source is the normalized
mean least-squares model fitting error £(E), i.e.,

41

This value measures the “goodness” of the relevant data set
G(E) with respect to the motion model 4 . In general, a more
consistent motion group has smaller f, value. Practically, data
points in a coherent motion group are spatially close and share
similar velocities. Thus, the second fitness source is the com-
pactness measure of G(Z). This is reflected as the generalized
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variance (or the determinant) of the sample covariance matrix
§ defined over G(E), i.e.,

L& =8, 42)

where

§=—1 g
N, 141

— 1 N,
a= _]—VT 2 j=1 ap "
Since the two fitness measures may have different numerical

orders, rank statistics [22] are used to define the overall fitness
function as follows,

- [ C—rank(f, (s»))y’ [C—rank(f (a,-)))*’
E))= et + Y 43
TE&) ( c-1 c-1 | “)
where rank(f(E))) and rank(f(E;)) are the ranks of the model
fitting error and compactness measure of Z,, respectively, in

ascending order for a chromosome pool of size C, and ¢ is a
sharpening constant.

(a,, ~@)a, - a)’

B.4 Chromosome Pool Convergence

By repetition of the four genetic operators, the chromosome
pool will converge to certain patterns [9]. In case of one mo-
tion group, the chromosome pool will hopefully become nearly
uniform with each chromosome indicating the same motion
group. In case of multiple motion groups, however, there are
two possible stable patterns. First, the chromosome pool may
still be uniform since each chromosome is attracted to the
same motion group. Then we can apply the same algorithm
recursively on the remaining data portion to extract other mo-
tions. Second, the chromosome pool can be piecewise uniform
in the sense that there exists several repeated chromosome
patterns, each indicating one distinct motion group. In other
words, multiple consistent motion groups are concurrently’
detected in a single application of the algorithm. The occur-
rence of these two situations depends on the respective noise
structures and data compactness among the participating mo-
tion groups. If the motion groups have similar noise structures
and data compactness, their fitness values will be close in
magnitude so that they are equally capable of surviving in the
chromosome pool. Otherwise, the motion group with smaller
noises and more compact data distribution will first dominate
the chromosome pool. ‘

If the chromosome pool fails to converge to a uniform or
piece-wise uniform pattern in a predefined number of genera-
tions, we consider that no more motion group is left out in the
remaining data set. ~

B.5 Robust Genetic Partitioning Algorithm

The robust genetic partitioning algorithm is summarized as
follows:

1) Chromosome Pool Initialization. A set of C chromo-
somes of length N are randomly generated if no other
initial partitioning information is available. ’

2) Reproduction. Collect the relevant data subset G(E;) for
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each chromosome =, compute its fitness value AZ;) by
(43) and its reproduction probability p(E,) by (37). Then,
reproduce E; with the probability p(Z;) and put in the
mating pool.

3) Crossover. Randomly pair off the chromosomes in the
mating pool into couples. With a small probability
P., exchange chromosome pieces split at a randomly se-
lected bit location for each couple (see the basic genetic
algorithm).

4) Mutation. Reverse each bit of a chromosome with a very
small probability P,,,.

5) Self-Adaptation. Collect the relevant data set G(;) for
each chromosome E;. Submit G(E:) to the robust estima-
tion cycle to obtain the estimated motion model # and
the associated weight matrix W. Update the chromosome
Z, by the data pruning step (39) and data augmentation
step (40).

6) Repeat steps 2) to 5) until the chromosome pool converges or
fails to converge after a specified number of generations.

The self-adaptation operator plays a key -role in this algo-
rithm. By using the robust estimation method to reject irrele-
vant data, a consistent data subset can be exfracted from a
large variety of combinations of partially correct partitions. In
contrast, the basic genetic algorithm depends only the pure bit
manipulations of the chromosomes; thus the chances to com-
pose a consistent data subset are rare indeed. In our experi-
ments, the self-adaptive genetic algorithm usually converges in
5-15 generations. The basic genetic algorithm can hardly con-
verge within a reasonable number of iterations.

B.6 Limitations

The proposed algorithm essentially searches through vari-
ous combinations of the input data set. Thus, the computation
cost increases exponentially with the data set size. A more
vigorous analysis of its computational complexity is however
complicated by the fact that the general convergence of the
genetic algorithm is hard to quantify [9].. Thus, we indicate that
from the computational perspective the proposed algorithm is
more suitable for sparse optic flow field with less data points
than dense optic flow field. To relieve this problem when
dealing with a large data set (e.g., dense optic flow field), we
may have two choices: 1) use a divide-and-conquer approach.
That is, the data set can be divided into smaller subsets each of
which is separately handled and the results are appropriated
combined; and.2) subsample the dense optic flow field to re-
duce the data set size. Another related limitation is the number
of multiple motion groups one can handle at a time. To ensure
that each participating motion group is not under-represented
in the data set, the number of motion groups handled simulta-
neously is not expected to be very large. This is related to the
breakdown point of this robust-algorithm. In the experiments,
we find that the algorithm can handle up to four equally sized
motion groups without difficulty. This corresponds to a break-
down point of about 80%. When handling more motion
groups, we also suggest to use the divide-and-conquer ap-
proach in hoping that only a few motion groups are contained
in each data subset. This is analogous to the block- or window-
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wise approaches in many image processing techniques.

VI. EXPERIMENTAL RESULTS

We first present two illustrative examples using synthetic and
real data sets. Then a large number of simulations are conducted
to evaluate the overall performance of the proposed algorithm.

A. Synthetic 3-D Rigid Motion

Fig. 1a shows a synthetic 3-D scene consisting of two- visu-
ally overlapping rigid objects—“drum and stake.” The drum -
undergoes a rigid motion with instantaneous rotational velocity
(0.0, 0.0, 1.7453) and translational velocity (-35.0,
—100.0, 0.0); the stake with instantaneous rotational velocity
(0.4363, 0.0, -1.3089) and translational velocity (25.0,70.0,
0.0). Fig. 1b shows the new scene after 0.2 sec. The true optic
flow field projected by the scene is shown in Fig. 2a where the
data have been subsampled and scaled. Fig. 2b shows the
contaminated optic flow field by Gaussian noises (SNR = 55)
and 20% randomly altered outliers. The robust genetic parti-
tioning algorithm is then applied. Fig. 2c shows the optic flow
field segmentation where [ and o represent the two consistent
motion groups, respectively, and ® the detected outliers.
Fig. 2d shows the recovered optic flow field. The estimated
rotational and translation velocities for the drum are (=0.0008,
—0.0003, 1.7435) and (-35.1054, —99.99603, -0.7338), re-
spectively, and for the stake (0.4393, —0.0045, ~1.3073) and
(24.9984, 0.1112, 0.2573), respectively. It is seen that. the
multistructured and partially incorrect optie flow field is,well
partitioned and interpreted with high accuracy.

(a) Depth map before motion (b) Dépth map aﬁer motion

Fig. 1. The “drum” and “stake” 3D scene undergoing rigid body motion.
(a) The depth map before motion; (b) The depth map after 0.2 sec.

B. Outdoor Vehicle Motion

A motion sequence containing a moving army truck is
retrieved from the image archive used in the 1991 IEEE Work-
shop on Visual Motion [18]. The left monocular image
sequence contains 24 image frames taken by a - fixed-focus
A .M.I/Bronica SQ-AM metric 70 mm cameras with 40 mm
nominal focal length. The world coordinate system is right-
handed with its x and z axes on the ground plane and y axis
vertically upward. The camera is mounted on the ground such
that its optical axis roughly points to the negative z-direction
of the world coordinate system. Several target points had been
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Fig. 2. (a) The true projective optic flow field; (b) The noisy and partially
incorrect optic flow field; (¢) The computed partition of the optic flow field
where [J and o represent two consistent motion groups and ¢ represents the
detected outliers; (d) The reconstructed optic flow field where « represents the
detected outliers.

marked on the truck and the 2-D image coordinates of these.

points were used as input data for motion estimation [17].
Fig. 3a and 3b show the 384 x 512 subimages of 13th and 14th
original image frames in the sequence, respectively. In order to
fit this data set into our experiment, we first have to generate
more target points on the vehicle. This is because that only
four target points are visible in the original frames, which are
sufficient for multiframe based motion estimiation algorithm
[17] but not for our two-view linear optic flow motion algo-
rithm. As mentioned, the linear algorithm requires at least
eight data points to uniquely determine a motion. Hence, 30
target points on the vehicle are selected and their matches are
computed by using an adaptive matching algorithm [15] and
further manually verified. Secondly, the original sequence
concerns only with the vehicle motion. To create a multiple
motion scenario, we treat the background motion (due to cam-
era panning) as the second motion. Again 30 background tar-
get points are chesen and their matches found. All 60 target
points are combinely marked as “+” in Fig. 3a and 3b. Fol-
lowing the procedures in [18], the target points are converted
from pixel coordinates to image coordinates and further cor-
rected by using camera calibration parameters. The mixture
optic flow data set is thus composed by {(X;, ¥)), (u;, v)}, i= 1,
---, 60 where (X, Y) is the image coordinates of the ith target
point in the 13th frame and (u;, v;) is the displacement of the
ith pair of the target points.

The linear optic flow motion algorithm, the biweight robust
estimator and the robust genetic partitioning algorithm are
sequentially tested. We emphasize that the former two algo-
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rithms are supplied with the correct data subset for each mo-
tion; and for the last algorithm, the mixed data set is used as
input data. Table I summaries the estimated motion parameters
for the three algorithms where the rotational velocity
(@,, ,, @3) is converted to the equivalent representation of a
rotation axis plus the rotation angle around the axis.

The established “ground truth” for the vehicle motion has
not been revealed [18)]. Furthermore, it is reported that the
existing two-view point correspondence and three-view line
correspondence algorithms all produce unreliable rotation es-
timates [17] since the angle subtended by the truck is too small
(about 5%). In addition, the target points used by different
algorithms are different. Therefore, we do not attempt to com-
pare our motion estimates with those obtained by long
sequence algorithms [17]. Roughly speaking, in the camera-
centered coordinate system, the background moves to the
right, inducing a major positive x translational component
while the truck moves to the left, inducing a major negative x
translational component. Since the camera also moves down-
wards, we expect the rotation axis to be roughly around the
positive x axis for both motions. The linear algorithm produces
the motion parameters that are basically in keeping with these
observations. The robust algorithm detects a number of out-
liers for each motion group. Most importantly, the genetic par-
titioning algorithm is able to separate the mixture data set into
two coherent motion groups and a small number of outliers;
the estimated motion parameters are consistent with the linear
algorithm and robust algorithm. Fig. 3¢ shows the partition of
the optic flow field where {J and A denote the two motion
groups, respectively, and “+” denote the detected outliers. We
point out that the outliers can be further classified into one of
the motion groups when necessary.

C. Simulation Protocol

Our simulations use the following experimental protocol to
generate experimental data:

Object Points. The 3-D object surface points are randomly
selected within a cuboid, i.e., p; = (x;, y; z)" e (10, 30]
x [10,30] x [30,60],i=1,---, N.

Motion Group. The instantaneous rotational angular velocity
(@, @y, @) and the translational velocity (k;, k;, k3) are
randomly selected, i.e., @ € [0.5, 5.5] and £; € [1.0, 20.0]
fori=1,2,3.

Optic Flow Image Points. The 3-D points p; are projected to
the image plane z = 1 to obtain the 2-D image points
(X, Y)) and the ideal velocities (u;, v;) by (2) and (3).

Noise Process. The optic flow image points are contaminated
by Gaussian noises or outliers. That is, independent identi-
cally distributed Gaussian noises are added to a portion of
optic flow velocities (», v;) and the remaining optic flow
velocities are randomly altered to form outliers.

Control Parameters. There are several parameters to be con-
trolled to simulate various situations. These parameters are
the data sample size N, the outlier proportion ¢, and the Gaus-
sian signal-to-noise ratio (SNR) defined as

SNR=201log{Y, Ju? +vE 1 (N(1= €)o)}
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Fig. 3. Outdoor vehicle and background motions (a) The 13th image frame with marked target points; (b) The 14th image frame with the
corresponding target points; (c) The optic flow field partition by the robust genetic partitioning algorithm where [(J and A denote the two
distinct motion groups, respectively, and “+” denote the detected outliers.

TABLE I
ESTIMATED MOTION PARAMETERS FOR THE OUTDOOR VEHICLE AND BACKGROUND MQTIONS

motion rotation axis la translation :
algorithm ang #outlie
: gop T ng (degree) foutiers)
linear truck 09592 0.0816 -0.2708  1.375¢9  -0.9898 -0.0021 -0.1196 N.A.
background 0.9390 -0.3008 0.1668  0.5109  0.9422 0.3257 0.0772 NA.
o truck 0.9580 0.0840 -0.2708 1.4232  -0.9849 -0.0077 -0.1522 4
OPUSt packground 0.9299 -0.3568 0.0891 05693 09233 0.3750 0.0744 3
;mc truck 0.9588 0.0518 -0.2791 1.3972 -0.9873 -0.0165 -0.1276 “
partition background 0.9286 -0.3693 0.0372  0.4596 0.9311 0.3575 0.036% }

where the summation is taken over nonoutliers and o is the
noise standard deviation.

Result Averaging. For each combination of the control parameters,
100 trials are tested and the averaged results are reported.

D‘ Baseline Model Evaluation

In this set of simulations, the behavior of the linear optic flow
motion algorithm is characterized for recovering single
3-D rigid motion under Gaussian noises. Fig. 4 shows the relative
accuracy of the estimated motion parameters with respective to the
true values under various conditions. As expected, the accuracy
decreases as the SNR decreases, or the sample size decreases.

E. Single Motion Group

In this set of experiments, we test the proposed robust genetic
partitioning algorithm for recovering single 3-D rigid body motion
from' the motion-data sets composed of one consistent motion
group-and 10% to 70% outliers. The size of the chromosome pool
is fixed as 50 in all trials. For each trial, the algorithm usually con-
verges within five generations and takes less than 30 sec in average
on SunSparc LX Workstations. Fig. 5 shows the estimation accu-
racy under various control parameters. As seen, the algorithm ef-
fectively suppresses the influence of outliers and registers only
slightly increased estimation errors as compared to the baseline

model performance. The segmentation errors are summarized in
Table II where the average number of incorrectly partitioned data
is reported. In the table, “rl1” refers to the number of outliers that
are mncorrectly classified as motion data, while “r2” refers to the
number of motion data that are incorrectly classified as outliers.
Note that outliers being classified as motion data can greatly affect
the estimation accuracy. This is partially reflected in Fig. 5 for the
case €= 70% which has much reduced accuracy because the cor-
responding “r1” value is high. On the other hand, motion data be-
ing classified as outliers has unnoticeable impact on the estimation.

F. Multiple Motion Groups

In this set of experiments, we test the proposed algorithm
for recovering two or three 3-D rigid motions from multi-
structured and partially incorrect motion data. The motion
groups are independently generated and mixed as a single mo-
tion data set. For the two-motion case, each motion group oc-
cupied 45% data and the remaining 10% data are outliers. For
the three-motion case, each motion group occupled 30%- data
and the remaining 10% data are outliers.

When applying the algorithm, we find that the two or three
motion groups are mostly sequentially extracted. This reflects
the different noise structures and data compactness among
these motion groups which may be due to the random data
generation mechanism. In order to characterize the different
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Fig. 4. Baseline model evaluation with the motion data contaminated only by Gaussian noises (a) Estimation accuracy of the instantaneous rotational angular

velocity; (b) Estimation accuracy of the instantaneous translational velocity.
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Fig. 5. Single-motion case where the motion data are contaminated by both Gaussian noises and outliers (a) Estimation accuracy of the instantaneous rotational

angular velocity; (b) Estimation accuracy of the instantaneous translational velocity.

average rolation sccuracy
5%
N=100
e=10%
4% from top 0 bottom:
flrst estimated motion
second estimated motion
3%
2%
g
% 20 ) 50 0 sNR@B)

@

average transiation accuracy

40 60
(®)

80  sNR(aB)
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Fig. 7. Three-motion case where the motion data contain three mingled motion groups as well as outliers (a) Estimation accuracy of the instantaneous rotational

angular velocity; (b) Estimation accuracy of the instantaneous translational velocity.
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TABLE Il
AVERAGE NUMBER OF WRONGLY SEGMENTED MOTION DATA POINTS FOR
SINGLE MOTION SEGMENTATION AND ESTIMATION (N = 100)

£=30% e=50%

SNR rl 12 rl 72 rl 2 i 2

80 | 000 [ 0.00 | 000 | 075 | 0.01 | 092 | 0.03 | 158

60 [ 000 | 000 | 001 | 104 | 011 132 028 2.35

40 000 | 0.00 | 003 | 1.88 | 0.14 | 2.15 | 042 | 2.89

20 | 000 { 0.00 | 008 | 2555 | 027 | 327 | 674 | 4.i8

rl: outliers classified as motion points
r2: motion points classified as outliers

TABLE III
AVERAGE NUMBER OF WRONGLY SEGMENTED MOTION DATA POINTS FOR
TwWO-MOTION SEGMENTATION AND ESTIMATION (N = 100)

first motion | second motion

SNR rl 2 rl 2

80 | 002 | 144 | 000 | 000

60 | 026 | 185 | 0.00 | 0.00

40 037 | 2.57 | 0.00 | GO0

20 0.62 | 3.08 | 0.00 | 0.00

L
rl: outliers classified as motion points
r2: motion points classified as outliers

TABLE IV
AVERAGE NUMBER OF WRONGLY SEGMENTED MOTION DATA POINTS FOR
THREE-MOTION SEGMENTATION AND ESTIMATION (N = 100)

first motion | second motion | third motion

SNR rl 2 rl /) rl 12

80 003 |. 145 001 | 153 | 0.00 | 0.66

60 | 030 | 248 ] 0.11] 1.89 | GO0 | 1.05

40 | 046 | 305 | 021 | 249 | 000 | 176

20 | 083 | 431 | 036 | 3.18 | 000 | 234

rl:-outliers classified as motion points
12: motion points classified as outliers

behaviors of the algorithm in sequentially extracting motion
groups, we provide its separate performance statistics at dif-
ferent stages. Fig. 6 and Fig. 7 show the estimation accuracy
for the two-motion case and three-motion case, respectively,
where the “first estimated motion” refers to the average per-
formance of exfracting the first motion group by the algorithm;
“second estimated motion” refers to the average performance
of extracting the second motion group by the algorithm; and so
forth. It is found that the sequentially extracted motion groups
have increasingly higher accuracy due to the removal of the
preceding motion group(s). In these trials, the algorithm con-
verges within 5-15 generations for extracting each motion
group, and the completion of each trial takes 30-120 sec on
SunSparc LX Workstations. The segmentation errors are
summarized in Table III and Table IV, which are consistent
with the estimation accuracy. These results reveal that the pro-
posed algorithm is capable of recovering multiple motion
groups with high accuracy under partially correct conditions.

VII. CONCLUSION

In the paper, we have proposed a robust genetic algorithm
to handle multiple optic flow motions under various adversary
conditions. The proposed algorithm is generally applicable to
other vision problems that can be formulated as general regres-
sion problems. Combining robust estimators with genetic algo-
rithms is a promising line of research and a novel idea. It of-
fers a new framework of determining multistructured data sets,
as well as partially incorrect data sets. These kinds of data sets
are the most realistic ones in many vision problems. We intend
to investigate the convergence properties of the modified ge-
netic algorithm in the near future..
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