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- Estimating Motion and Structure
from Correspondences of Line Segments
between Two Perspective Images

Zhengyou Zhang

Abstract—We present in this paper an algorithm for deter-
mining 3D motion and structure from correspondences of line
segments between two perspective images. To our knowledge, this
paper is the first investigation of use of line segments in motion
and structure from motion. Classical methods use their geometric
abstraction, namely straight lines, but then three images are nec-
essary for the motion and structure determination process. In this
paper we show that it is possible to recover motion from two
views when using line segments. The assumption we use is that
two matched line segments contain the projection of a common
part of the corresponding line segment in space, i.e., they overlap.
Indeed, this is what we use to match line segments between differ-
ent views. This assumption constrains the possible motion be-
tween two views to an open set in motion parameter space. A heu-
ristic, consisting of maximizing the overlap, leads to a unique
solution. Both synthetic and real data have been used to test the
proposed algorithm, and excellent results have been obtained with
real data containing a relatively large set of line segments.

Index Terms—Motion, structure from motion, line segments,
epipolar geometry, perspective images, overlap, dynamic scene
analysis. B

I. INTRODUCTION

T HE problem of estimating motion and structure from two
or three images has been studied for a while in the com-
puter vision community. We can trace it back to the late sev-
enties: Ullman {22} assumed an orthographic camera projec-
tion model and showed that three views are necessary to re-
cover the motion and structure from point correspondences;
Roach and Aggarwal [18] used a full perspective projection
model and thus two views are sufficient from point correspon-
dences. Since then, many approaches have been proposed to
solve the problem using either linear or nonlinear methods.
The reader is referred to [1], [12] for a complete review, and
to [16] for a theoretical study. )
Essentially, two types of geometric primitives have been
used in solving motion and structure problem, namely points
and straight lines. When points are used, two perspective
views are. sufficient to recover the motion and structure of the
scene. When straight lines are used, three perspective views
are necessary. Closed-form solutions are available either for
point correspondences [14], [21] or for line correspondences

Manuscript received Oct. 25, 1994; revised May 31, 1995. Recommended
for acceptance by S. Peleg.

The author is with INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93,
F-06902 Sophia-Antipolis Cedex, France; e-mail: zzhang@sophia.inria.fr.

To order reprints of this article, e-mail: transactions@computer.org, and
reference IEEECS Log Number P95141.

[20], [13]. Algorithms using both points and lines are also
available [19]. However, another important type of geometric
primitives, namely that of line segments, has been since long
ignored in motion and structure from motion!, although the
importance of line segments in computer vision has never been
underestimated (as a matter of a fact, straight lines are merely
the geometric abstraction of line segments by ignoring their
endpoints). The overlook of line segments in the domain of
motion and structure from motion is probably due to the lack
of mathematical elegance in representing line segments.

To our knowledge, this paper is the first investigation in
computer vision on motion and structure from correspon-
dences of line segments. Unlike the case of straight lines, we
show that two views are generally enough to recover the mo-
tion and structure of the scene. The only assumption we use is
that two matched line segments contain the projection of a
common part of the corresponding line segment in space (and
we say that the two 2D line segments overlap). Indeed, this
assumption is minimal, and is what we use to match line seg-
ments between different views.

We do not address the problem of matching line segments
here. This can be done by tracking [5], [9] or other techniques
[4]. This paper is organized as follows. Section II describes the
problem we want to solve and shows why we can recover 3D
motion and structure from corresponding line segments be-
tween two images. Section III presents the algorithm for solv-
ing the motion problem. The epipolar constraint is first de-
scribed and the concept of overlap between two matched line
segments is then introduced based on the epipolar constraint.
The motion problem is finally solved by maximizing the over-
lap between two sets of lines segments. Section IV addresses
the issue of 3D reconstruction of line segments proyided the
motion is estimated. Section V provides the experimental re-
sults with real data. Section VI terminates the paper with sev-
eral discussions.

II.- STATEMENT OF THE PROBLEM

In this section, we describe the geometry of line segments in
motion, introduce the minimal amount of notation required,
and define the problem we want to solve.

1. 3D line segments, reconstructed by a stereo system, have been used in
motion analysis by Zhang and Faugeras [25], but the problem there is differ-
ent from the one addressed here. .
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A. Notation

We use bold low case letters a, b, ¢, --- for co[umn vectors
and for points in image plane, capital letters 4, B, C, --- for

points in 3D space, and bold capital letters A, B, C, --- for
matrices. The superscript © denotes the transpose of a vector or
a matrix, and thus a” is the row vector corresponding to a, and
A’ is the transpose of A. The cross product of two vectors a
and b is denoted by a x b. The dot product of a and b is de-
noted by a - b or a’b.

The coordinates of a point a in image plane are [u, v]%; for
the reason that will become clear sooner, we use a={uv, 1]T,
i.e., adding 1 as the last element to a. Similarly, for a point
M=[x,y,z]"in 3D space, we have M =[x, y, z, 1].

Additional notation will be introduced in the following sub-
sections.

B. Geometry of the Motion Problem of Line Segments

We consider a calibrated camera, which is modeled as a
standard pinhole. The relation between each point M in space
and its corresponding point m in image plane is linear projec-
tive, and is described by a perspective transformation, i.e.,

sm = PM, )]

where s is an arbitrary scalar and P is a 3 x 4 matrix known as
the perspective projection matrix. To each camera is associ-
ated a coordinate frame Cy,y,p; (see Fig. 1), in which the po-
sitions of the image points are measured.

KE]

Ve
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Fig. 1. The pinhole camera model.

The optical center of the camera is at C. The optical axis is
aligned with the y; axis. The image plane is parallel to the yy,
plane and is at y; = 1 (i.e., the focal length is equal to 1). Thanks
to camera calibration, PP has the following simple form:

[FD = [RWC) tWC]3
where R,,, and t,. is the rotation and translation which de-
scribes the transformation from the world coordinate frame, in
which the 3D points M are measured, to the camera coordinate
frame.

The geometry of the motion problem of line segments is il-
lustrated in Fig. 2, where the measurements related to the sec-
ond camera are identified by a prime ‘. The transformation
from the coordinate frame associated to the first camera to that
associated to the second is described by (R, t): given a 3D
point x expressed in the coordinate frame associated to the first
camera, it is equal to Rx + t in that associated to the second
camera.
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Fig. 2. The geometry of the motion of line segments.

An image line segment 1 is represented by its starting point s
and its endpoint e. We assume that line segmeénts are orien-
tated, which can be obtained from the intensity contrast infor-
mation. For example, we can define an. orientation signing
convention such that the intensity changes from a low value to
a high one when we cross the line segment from left to right.
As we observe later, the orientation information is dispensable
in the motion and structure problem. However, in general this
information is available, and has usually already been used in
the matching process.

We are given two line segments, 1 in camera 1 -and I' in
camera 2, in corresponderice. The basic assumption we will
use in this paper is that they are projections of two portions of
a line segment SE in space and that the two portions share a
common part (i.e., they overlap), We do-not assume that the
starting points (s and s’) and the endpoints (e and e") are in
correspondence. Indeed, these points are not reliable, mainly
for three reasons:

1) The first is purely algorithmic: because -of noise in the
images and because somietimes we approximate contours
which are significantly curved with line segments, the
polygonal approximation may vary from frame to frame,
inducing a variation in the segments endpoints. :

2) The second is physical: because of partial occlusion in
the scene, a segment can be considerably shortened or
lengthened, and the occluded part may change over time.

3) The third is photometric: because lighting and surface re-
flection often change when the view point.changes, the
segments endpoints may vary from frame to frame.

However, the location and orientation of a line segment can
generally be reliably determined by fitting a line to a set of
linked edge points [10].

Now, the problem to be solved in this paper can be stated as
follows:

Given two sets of line segments, (Gi,U)h'=l
which are in correspondence,

Estimate the camera motion parameters (R, t), and
eventually determine the structure of the
scene.

s s n},
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C. Projective Lines and Points in Image Plane

Let n be the normal vector of the plane which passes
through the line segment 1 and the optical center C (which is
sometimes called the projection plane of the line segment, see
Fig. 2). The vector n actually defines the infinite line support-
ing the line segment. More precisely, n is the projective repre-
sentation of the line 1 in image plane (without ambiguity, we
use 1 to denote both the line segment and its supporting line).
As the image plane is parallel to y,y, plane in the coordinate
frame associated to the first camera, the coordinate frame at-
tached to the image plane is Oy,y,. For a point a = [«, v]' in
the image plane, we use a = [u,v, 1]7 to denote the same point
in Cy,y,y; coordinate frame, and its projective coordinates will
be Aa for any nonzero scalar 4. Without loss of generality, a
is also used to denote the projective coordinates. For any point
m = [u, v]" on the infinite supporting line 1, we have the fol-
lowing relation:

n'm = 0.

As one can observe in the above equation, points and lines
play a symmetric role. This is known as the principle of dual-
ity. In the sequel, if there is no ambiguity, when we talk about
an image line 1, the vector 1 is the projective representation n
of the line, i.e., 1=n.

Working with projective coordinates provides us with sim-
ple mathematical tools. In particular, we will need the follow-
ing two elementary operations [7]: the line defined by two
points a and b is represented by 1 =& x b; the intersection
point of two lines 1, and 1 is represented by m =1, x 1,. Di-
viding the first two elements of m by the third element gives
the Euclidean coordinates of the point in the image plane.
Thus, the infinite line supporting the line segments defined by
points s and e is represented by n = § x €.

D. Unlike Supporting Lines, Line Segments Can Constrain
the Motion

It has been well known that motion cannot be determined
from two views of straight lines [13], [7]. Geometrically, it is
obvious: Let us fix the position and orientation of the first
camera. Now we move the second camera to another position
and orientation. For each image line, its corresponding 3D line
must lie on the plane (called the projection plane of the line)
passing through the optical center and the image line. For each
pair of lines in correspondence, we have a pair of projection
planes, whose intersection determines the 3D line in space.
The structure of the scene can so be determined. However, any
two planes define a line. We can move the second camera to
an arbitrary position and orientation, and we still obtain a 3D
structure consistent with the two images. In other words, two
sets of lines do not constrain the motion of the camera. If a
third image is available, the motion and structure can in gen-
eral be uniquely determined because three projection planes
generally do not define a line.

When line segments are considered, the motion of the sec-
ond camera can no longer be arbitrary. Indeed, each line seg-
ment defines a generalized triangle in space with the first side
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passing through the optical center C and the starting point s of
the line segment, the second side passing through C and the
endpoint e, and the third side at infinity (see Fig. 3). Two such
triangles generally do not intersect. By requiring a pair of
matched line segments to overlap in space, we add a constraint
on the family of feasible motions. The set of all constraints for
all correspondences of line segments define an open set in
motion parameter space. The larger the number of correspon-
dences is, the smaller the extent of the open set is, and the
more the motion is constrained. If we have only a few corre-
spondences of line segments, the motion might not be well
constrained and the corresponding reconstruction of the scene
geometry will vary widely.

Fig. 3. Motion and structure from line segments.

III. SOLVING THE MOTION PROBLEM
BY MAXIMIZING THE OVERLAP OF LINE SEGMENTS

In this section, we present the algorithm for solving the mo-
tion problem by maximizing the overlap of line segments. The
epipolar constraint, as the base of the algorithm, is described
first.

A. Epipolar Constraint

Refer to Fig. 4. Given a point m in the first image, its corre-
sponding point M in space must be on the semi-line CM_
passing through m, where M__ is a point at infinity. Letting the
world coordinate frame coincide with the coordinate frame
associated to the first camera, and letting m = [u, vY’, then
point M can be represented as

u
M=2an=Av| Ae(0,x).
1
This is in fact the parametric representation of the semi-line

CM_. If we express this point in the coordinate frame of the
second camera, we have

M'=RM+t=ARm+t, 4 €(0, ).



1132

The projection of the semi-line CM_ on the second camera is
still a line, denoted by 1;,, on which the corresponding point in
the second image of point m must lie. The line I, is known as
the epipolar line of m. The above constraint is known as the
epipolar constraint.

Fig. 4. Epipolar geometry.

The epipolar line can be defined by two points. The first
point can be obtained by projecting M’ with A= 0, which gives

p' = %t, where #; is the third element of the translation vector

t, or projectively, p’ = t. This is in fact the projection of the
optical center C of the first camera on the second camera. The
second point can be obtained by projecting M with 4 = oo,

’

which gives m, = —=-Ri, where r; is the third row of the
3

rotation matrix R, or projectivefy m,, = Rm. As described in
Section II.C, the epipolar line 1, is projectively represented by
I, =p ' xm/ =t x Rm. 2

We introduce the antisymmetric matrix [t]

X

[t =16 0 -4,
-, 4 0

defined by a vecfor t = [41, t, 15]7. The matrix {t], is such that
[tlx =t x x for all vector x. Letting E = [t] R, (2) can be re-
written as

I, = Exn.

The matrix E is the well-known essential matrix [14].

It is easy to see that all epipolar lines in the second image
pass through the single point p’. Indeed, the epipolar lines in
the second image are the projections of the pencil of semi-lines
all starting at the optical center C of the first camera, and they
necessarily go through the point p’ which is the projection of
C. The point p’ is thus called the epipole in the second image.

If now we reverse the role of the two camera, we find that
the epipolar geometry is symmetric for the two cameras. In-
deed, the epipole p in the first image is the projection of the
optical center of the second camera, which is given by
p=-R%t.Fora given point m’ in the second image, its cor-
responding epipolar line in the first image is

1))
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Ly = —(R7t) x (RT) = ~R7[¢] i’ = BT’

It is seen that the transpose of matrix E, E”, defines the epipo-
lar lines in the first image.

B. Overlap of Two Corresponding Line Segments

Let us consider the situation illustrated in Fig. 5. We are
given a pair of line segments (1, I') in correspondence. The line
I in the second image is the epipolar line of s, i.e., I = Efs;
the line I is the epipolar line of e, i.e., 1, = E€. We denote
the intersection of Iy with line I' by §” =1 x I}, and the inter-
section of 1, with line I' by €” = 1" x 1.

'
\
U
e | €
\
\
o
’
. e
\
g Lo
H
image 1 image 2

Fig. 5. Overlap of two line segments in correspondence

Provided that the epipolar geometry (i.e., matrix E, or the
motion (R, t)) between two images is correct, then s and s"
correspond to a single point in space; so do e and e”’. Thus, the
statement that two line segments 1 and I share a common part
of a 3D line segment is equivalent to saying that line segment
s"e" and line segment s'e’ (i.e., I') overlap. In order for ¢’
and s"e" to overlap, one of the following two conditions must
be satisfied:

1) Either s” or e’ or both are between s* and e’.
2)s" and ¢’ are both between s’ and e,

This implies that only when (here | stands for the or logic)

(s"—s")-(e'=5")> 0 ” (e"~s")-(e"-e")>0

C))
” (s'=s")-(e"~s") >0 “ (e'=s")-(e"—e') > 0,

the two line segments s'e’ and "¢’ overlap.

The above constraint does not use the fact that the line seg-
ments are oriented. The configuration in Fig. 6 satisfies the
above constraint, but does not satisfy the orientation congru-
ence. If the rotation between two images is not very big, then
the orientation of the projected line segment in image cannot
change abruptly. In order to assure the orientation congruence,
we must impose another constraint:

3) Line segments s'e’ and s’e”’ should be oriented in the
same way. This implies:
(el — sl) . (eH — s/l) > O .

Note that it is here that the orientation information of a line
segment is used. Remove this constraint, and the proposed
algorithm will work for line segments which are not oriented.

Thus, the problem of motion and structure from correspon-
dences of line segments can be solved by nonlinear program-
ming such that the above two constraints are satisfied for each
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correspondence. However, we can only obtain a feasible re-
gion in the motion space, and we rather need a unique solu-
tion. In the next, we solve the problem by maximizing the
overlap of line segments.

Fig. 6. Two incongruent line segments in orientation.

C. Estimating the Motion by Maximizing the Overlap

We first define a measure of overlap, which we will call the
overlap length, for two line segments in correspondence. The
overlap length is positive if two line segments overlap; other-
wise, it is negative.

If the two constraints described in last subsection are satis-
fied, the two line segments overlap, and we can easily see that
there exist only four configurations of overlap as illustrated in
Fig. 7.

[ d
e > e
.
r
.
»

e e

o &

é g o ¢ ] s

Fig. 7. Four configurations of two line segments with overlap.

The overlap length, denoted by £, is defined as the length
of the common segment, which is given by

&)

If two segments do not overlap (i.e., the inequalities in Sec-
tion II1.B are not satisfied), we define the overlap length as

L= .——min(||e' _ S”Hv Heu _ S,H)’ (6)

which corresponds to the gap between the two segments. The
reader is referred to {24] for more details.

The above overlap measure of a given pair of line segments
is defined in the second image. We have no reason for one
image to prevail over another. In order for the two images to
play a symmetric role, we can compute the overlap length in
the first image, denoted by £, exactly in the same way.

Since a small overlap length for a short line segment is as
important as a large overlap length for a long line segment, it
is more reasonable to use the relative overlap length, and thus
we should use L/I; and L]/I] to measure the overlap of a pair
of line segments (1;, 1), where /; and I are the length of the

L = min(le’ - 57, le” ~ 7. lle’ - "1 [le” - 51D
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line segments I; and 17, respectively. The relative overlap
length takes a value between O and 1 when two segments
overlap; otherwise it will be negative. Now we can formulate
the motion problem as follows: Given n correspondences of
line segments, {(I;, I}}|i=1,..., n}, estimate the camera mo-
tion parameters (R, t) by minimizing the following objective
function

Vi =i((l'ﬁiﬂi)z+(1—£,~’/l,~’)2). 0

D. Implementation Details

The minimization of the objective function (6) is conducted
using a downbhill simplex method [17].

The rotation R is represented by a 3D vector r = [ry, ry, 13]7,
whose direction is that of the rotation axis and whose norm is
equal to the rotation angle. The vector r is related to the matrix
R by the Rodrigues formula [25]:

R =1+ 520 + O,
4 9
where I; is the 3 x 3 identity matrix, and &= ||r].

Because the magnitude of t is inherently unrecoverable, the
translation t may be assumed to be of unit length, and hence is
represented by a point on the unit sphere. The spherical coor-
dinates (¢, 6) is used to represent t.

As the problem is nonlinear, an initial guess of the motion is
required. We have tried to estimate the motion by assuming
the correspondences of endpoints or midpoints, but the results
are useless. For the solution that works best, we choose to
sample the parameter space to obtain a global minimum. The

space of rotation can be thought of as a solid ball of radius 7.

Assume that the motion between two successive views is

small, we sample the range [——7’{—, %] with step equal to % in
3

each direction. The maximum rotation angle is ——41717 (i.e., 78°).

This range is sufficient for most applications of motion analy-
sis. It is rare that the rotation angle goes beyond 60° between
successive views. We have thus 5° = 125 samples of rotation.?

The samples of translation are obtained through a uniform
partition of a Gauss sphere based on the icosahedron {3]. The
icosahedron has 12 vertices, 20 faces, and 30 edges. Basically,
we obtain 20 samples of 3D directions. Adding its dual
(vertices) yields in total 32 samples. To obtain more samples,
we further divide each icosahedral edge into 7 equal lengths
and construct n* congruent equilateral triangles on each face,
pushing them out to the radius of the sphere for their final po-
sition. In particular, for n = 2, we have 80 samples; for n = 3, we
have 180 samples. From our experience, we found that 80
samples are sufficient for solving the problem in hand.

As a matter of fact, we do not need to use all 80 samples
because of the following proposition. We only need half of

2. This sampling is not uniform. A better way may be the following. The
solid ball of radius 7 is first sampled by a set of spheres of radius from 0 to 7
with step equal to, say, % Each sphere can then be quasi-uniformly sampled

as we will do for translation. This technique is inspired from the comments of
an anonymous reviewer.
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them, i.e., the samples from a hemisphere.
PROPOSITION 1. We consider two given sets of points
(m;, m})} (the same for line segments) in correspondence.
If R, t, {M}}) is a solution of the motion and structure, then
R, —t, {-M}}) is also a solution.

PROOF. Under the pinhole model, we have

{sirﬁi = [1oM;, =M, (for the first image)
sm’ =

[Rt]i;, =RM,+t (for the second image)
where s; and s] are arbitrary scalars. It is evident that if
(R, t, {M;}) is a solution to the motion and structure prob-
lem, then (R, —t, {-A4}) is also a solution. This is because if
s; and s, are the scale factors for the first solution, we ob-
tain the second solution with scale factors —s; and —s;.
Both solutions are compatible with the observed data. 1

It is thus inherently impossible to determine geometrically
the sign of the translation vector from two perspective images.
So we only need to sample a hemisphere for the translation.
The ambiguity can be resolved by imposing some physical
constraint, e.g., the reconstructed points should be in front of
the cameras (i.e., they have positive depth). If their depths are
negative, it is sufficient, from the above proposition, to multi-
ply t and {A;} by —1 to obtain the physical solution.

In passing, if we do not impose that matrix R is a rotation
matrix, then (-R, t, {~M;}) and (-R, —t, {M;}) are two other
solutions. However, if the original solution R is a rotation, i.e.,
detR = 1, then these two solutions correspond to a reflection of
the camera coordinate frame because det(—R) = —1. They are
thus excluded on physical grounds.

To summarize, we have 125 x 40 = 5,000 sample points in
the motion space. We evaluate the objective function for each
sample, and retain 10 samples which yield the smallest values
of the objective function. All 10 samples are used as the initial
guess to carry out the minimization procedure independently.
At the end, the one which produces the smallest value of the
objective function is considered as the solution of the motion.
To give an idea of the time complexity, it takes about 4.3 sec-
onds on a SPARC 10 station to perform a complete run of the
algorithm for 35 line segments correspondences.

It is well-known that the relative position of two cameras is
determined up to a # radians twist about the line joining the
two optical centers [16]. The reader may wonder why we do
not consider this ambiguity in the above sampling technique.
The reason is that we have assumed a small rotation (less than
7/2) between two cameras. In that case the twisted solution
never appears in our sampling range because its corresponding
rotation is always bigger than 772, and it is not a physical so-
lution. If we do not restrict the rotation angle between the two
cameras, then we need to consider the twisted pair ambiguity
to find the physical solution. As suggested by one of the re-
viewers, the property of the twisted pair can be used to cut the
number of rotations by half, thus halving the search space.
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IV. RECONSTRUCTING 3D LINE SEGMENTS

Once we have an estimate of the motion between two im-
ages, we can reconstruct the 3D line segment for each pair of
image line segments (I, I) in correspondence. -

We first compute the infinite 3D line, which is the intersec-
tion of the two projection planes. The line can be represented
by its direction vector u and a point x on it, say, the point
which is closest to the origin of the coordinate frame of the
first camera. For the direction vector u, we have

n‘u=0 (u is in the first projection plane)
n'"(Ru) =0 (uis in the second projection plane)
which gives
u=nx(Rn).

For the point x, we have

n’x =0 (x is in the first projection plane)
n'"(Rx+t) =0 (xis in the second projection plane)
u'x =0 (x is the point on the line closest to C)

The solution is:

0
X =[n R'n’ nx (an,)]‘T ~t'n’ |,
0

It is then trivial to recover the point on the 3D line corre-
sponding to each endpoint of the image:line segments, and we
have two 3D line segments. It remains the choice of the appro-
priate 3D line segments. Due to the reasons described in Sec-
tion II.B, a 2D line segments is only an observation of a por-
tion of the real line segment in space. Two segments are con-
sidered to be matched if they have a common part. Their cor-
responding segment in space can be expected not to be shorter
than either of the two segments. That is, the union of the two
segments can be reasonably considered as a better estimate of
the corresponding segment in space. In passing, our trinocular
stereo algorithm [2] uses the intersection strategy, that is, only
the part of line segment which is perceived by all of the three
cameras is reconstructed in space. :

V. EXPERIMENTAL RESULTS

The proposed algorithm has been tested with both synthetic
and real data. The reader is referred to [24] for the results with
synthetic data.

For comparison reason, we have also tried to apply a point-
based method [7] to the endpoints or midpoints of line seg-
ments, but the results are useless. For example, for the Modig
scene described below (Figs. 8-12), the motion estimated when
applying the point-based method to the endpoints is:

r=[-2.244¢ -2, -2.284¢ ~ 2, 1.224e — 4],
t=[3.577e -1, 8.368¢ — 1, 4.146¢ — 117,

which is completely different from that obtained through ste-
reo calibration:
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r=1[6.250e - 2, -7.196e — 2, 2.109¢ - 2],
t=[4.757e~1,8.661e—1,1.536e ~ 1] .

The difference in the rotation angle is 5.164°, but the angle
between the rotation axes is as high as 89.25° and the angle
between the translation vectors is 18.55°. The 3D reconstruc-
tion provided by the point-based method is meaningless, and is
thus not shown here. This is why we resort to the sampling
technique described in Section III.D for searching an initial
estimate of motion.

At the time of writing, we have tested our algorithm with
success on more than ten real image pairs, except for one
which contains many line segments aligned with the epipolar
lines (the latter case is well known to cause problems for bin-
ocular stereo). This is because our algorithm computes the
overlap from the intersections of line segments with their cor-
responding epipolar lines, and the intersections will be unsta-
ble when they are almost aligned. One solution to this would
be to compute the angles between line segments and their cor-
responding epipolar lines, and we could just discard those line
segments that form a small angle with the epipolar lines.

In the following, we describe four sets of real data which
were extracted from a trinocular stereo system [2]. We have
chosen the stereo data because the stereo system has been cali-
brated which serves as a ground truth [8].

The first set of real data is an image pair of a scene named
Modig because it contains a painting by the Italian painter
Modigliani (see Fig. 8). There are 121 line segments matched by
the trinocular stereo (see Fig. 9), among which there exist a few
false matches. One can also notice several multiple matches: sev-
eral segments on the painting are fragmented in one view, and the
fragments are matched to a single segment in the other view.
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Fig. 9. Matched line segments of the Modig image pair.
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We searched for the initial motion estimate by sampling as
described in Section IIL.D. The 10 best samples all converge to
the good solution. The best solution is the one which mini-
mizes (6). The final motion estimation is:

r=[8.481e - 2, ~8.545¢ — 2, 2.064¢ — 21",
t=[4.847¢- 1, 8.665¢ — 1, 1.199¢ — 1]7,

which should be compared with the estimation through stereo
calibration already given at the beginning of this section. The
difference in the rotation angle is 1.406°; the angle between the
rotation axes is 4.642° the angle between the translation vec-
tors is 2.002°.

To better understand how the proposed algorithm works, we
have extracted the intermediate results for one selected hy-
pothesis of motion. Recall that our algorithm tries to maximize
the overlap of two sets of line segments. Fig. 10 shows how
the overlap of the two sets of line segments of the Modig
scene evolves during the optimization process. The four pic-
tures correspond to the results obtained with the initial motion
estimate and those obtained after five, 10, and 24 iterations.
The first set of line segments are projected onto the second
image using the motion estimate as described in Section IILB,
and are shown in Fig. 10 as solid lines. The second set of line
segments are shown as dashed lines. The matched line seg-
ments are shown to be collinear because of the way of the
projection performed. As can be observed, the overlap by the
initial motion estimate is very bad. Significant improvement is
achieved after five iterations. Very good result is already ob-
tained after ten iterations. Later on, the improvement is small,
as can be asserted from the comparison of the two pictures of
the lower row in Fig. 10.

ll '\‘U A _ ;
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tenth iteration

twenty-fourth iteration

Fig. 10. Evolution of the overlap of the line segments of the Modig scene
during the optimization process: They correspond to the resuits of the initial,
fifth, tenth and 24th iteration.
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The 3D reconstruction produced by the algorithm described
in this paper is shown in Fig: 11, where the picture on the left
is the perspective view from the first camera and the one on
the right is a top view. This result should be compared with
that reconstructed by our trinocular stereo which uses three
images (note that only two images are used for the other algo-
rithm) and whose geometry has been previously calibrated (see
Fig. 12). The two results are comparable. Because of use of
the union strategy described in Section IV, the 3D reconstruc-
tion shown in Fig. 11 appears more complete than that shown
in Fig. 12.

Fig. 11. 3D reconstruction of the Modig scene by the structure from motion
technique described in this paper: back projection on the first camera and
projection on the ground plane.
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Fig. 12. 3D reconstruction of the Modig scene by a classical trinocular stereo:
back projection on the first camera and projection on the ground plane.

The second set of real data is an image pair of 2 RobotLab
scene (see Fig. 13). Forty-five line segments have been
matched by our trinocular stereo system,? as shown in Fig. 14.
One can notice several false matches.

Through searching for the initial motion estimation by sam-
pling as described in Secttion IIL.D, six among the 10 best
samples converge to the good solution. The motion estimation
given by the algorithm described in this paper is:

r=[1.859¢-1,1.218¢ — 1, 3.707¢ - 21",
t=1[-5.939¢ -1, 6.34le— 1, -4.951e— 1},
‘while the estimation through stereo calibration is:
r=[1.927e—-1, 1.195¢ - 1, 3.407¢ - 21,
t=[-5.927e—1,7.325¢~ 1,-3.349¢ — 1]7.

3. The stereo can in fact match more line segments, but we have imposed a
tighter epipolar constraint to limit the number of matches for this example.
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The difference in the rotation angle is 0.228°; the angle be-
tween the rotation axes is 1.682° the angle between the trans-
lation vectors is 10.788°. The translation is not very well esti-
mated. The overlap of the two sets of line segments given by
the final motion estimate is shown in Fig. 15.

Fig. 13. Image pair of a RobotLab scene.
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Fig. 14. Matched line segments of the RobotLab image pair.

Fig. 15. Overlap of the two sets of line segments given by the final motion
estimate.

The projection on the ground plane of the 3D reconstruction
based on the technique described in Section IV is displayed on
the left in Fig. 16. This result should be compared with that re-
constructed by our trinocular stereo which uses three images and
whose geometry has been previously calibrated (see the picture
on the right in Fig. 16). Essentially, almost the same result can
be observed. The two very long, almost vertical line segments in
the left picture of Fig. 16 correspond to two false matches on the
floor. As we use the wnion strategy in 3D reconstruction, the
reconstruction of the false matches becomes outstanding.
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Fig. 16. Comparison of the 3D reconstruction of the RobotLab scene by the
structure from motion technique described in this paper (left) and that by a
classical trinocular stereo (right): projection on the ground plane.

The third set of real data is an image pair of a scene named
Room (see Fig. 17). Ninety line segments have been matched
by our trinocular stereo system, as shown in Fig. 18. One can
easily notice two false matches located at the lower right cor-
ner near the border of the table.

Fig. 17. Image pair of a Room scene.
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Fig. 18. Matched line segments of the Room image pair.
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The same algorithm has been applied to this set of data.
Probably because of the gross error made in matching, only six
of the ten best samples converge to the good solution. The
final motion estimation is:

r=[1.124e -1, 1.807¢ - 1, 1.850e — 2)",
t=[-7939% —1,5.904e - 1, -1.451e - 1",
while the estimation through stereo calibration is:

r=1[9.965¢ -2, 1.584¢ — 1, 2.226e - 2]",
t=[-7.768¢—1,6.182¢ — 1, -1.198¢ — 11".
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The difference in the rotation angle is 1.445°; the angle between
the rotation axes is 1.839° the angle between the translation
vectors is 2.366°. The overlap of the two sets of line segments
given by the final motion estimate is shown in Fig. 19.

Fig. 19. Overlap of the two sets of line segments given by the final motion
estimate.

The projection on the ground plane of the 3D line segments
reconstructed by our algorithm are shown on the left in
Fig. 20, while those reconstructed by the trinocular stereo are
shown on the right in Fig. 20. The reconstruction correspond-
ing to the two false matches is easily identified to be the iso-
lated line segments near the bottom edge of the picture.

Fig. 20. Comparison of the 3D reconstruction of the Room scene by the
structure from motion technique described in this paper (left) and that by a
classical trinocular stereo (right): projection on the ground plane.

The fourth set of real data is an image pair of a scene named
Table because it contains a turntable (see Fig. 21). There are
128 line segments matched by the trinocular stereo (see
Fig. 22). As usual, there exist a few false matches. We also
notice that the border of the turntable is differently segmented
because of curvature.

Again, we searched for the initial motion estimate by sam-
pling. For each sample, we evaluated the cost function (6), and
ten best samples were retained for further optimization. Five
among these 10 samples converge to the good solution. The
final motion estimation is:

r=[-8.924¢ —3,2.194¢ ~ 2, 2.224¢ - 2V,
t=[~5517e-1,-7.523¢ -1, -3.601e - 1]",
while the estimation through stereo calibration is:
r=[-8.520e - 3, 2.660¢ ~ 2, 2.140¢ — 2]”,
t=[-5.784¢ ~ 1, -7.355¢ ~ 1, =3.527¢ — 1}".
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The difference in the rotation angle is 0.155° the angle between
the rotation axes is 6.643°% the angle between the translation
vectors is 1.856°. The overlap of the two sets of line segments
given by the final motion estimate is shown in Fig. 23.

Fig. 21. Image pair of a Table scene.
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Fig. 23. Overlap of the two sets of line segments given by the final motion
estimate.

The projection on the ground plane of the 3D reconstruction
produced by our algorithm is shown on the left in Fig. 24,
while that produced by the trinocular stereo is shown on the
right in Fig. 24. The two results are comparable, but the 3D
reconstruction corresponding to false matches with our method
is easier to be remarked, e.g., the two very long, almost verti-
cal line segments in the middle. This is because we use the
union strategy in 3D reconstruction, while the trinocular stereo
reconstructs only the part common to all three images which
usually produces much shorter 3D line segments for false
matches.
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Fig. 24. Comparison of the 3D reconstruction of the Table scene by the
structure from motion technique described in this paper (left) and that by a
classical trinocular stereo (right): projection on the ground plane.

VI. SUMMARY AND DISCUSSIONS,

We have shown for the first time that both 3D motion and
structure can be computed from two perspective images using
only line segments. Classical methods use their geometric ab-
straction, namely straight lines, but then three images are nec-
essary. We have tried to apply a now well-known point-based
method [7] to the endpoints or midpoints. of line segments.
However, because of the instability of these points due to the
reasons described in Section IL.B, we have not obtained any
meaningful results with all of the real line segments that were
tried. The algorithm we proposed in this paper is based on the
assumption that two matched line segments contain the pro-
jection of a common part of the corresponding line segment in
space. Indeed, this is what we use to match line segments be-
tween different views. This assumption has been implemented
through the use of the epipolar geometry, which is of course
unknown. Because a closed-form solution is not available, we
have proposed a solution which samples the motion space
(which is five-dimensional). Both synthetic and real data have
been used to test the proposed algorithm, and excellent results
have been obtained with real data containing about one hun-
dred line segments. The results are comparable with those ob-
tained with stereo calibration.

As described in Section II.D, by requiring a pair of matched
line segments to overlap in space, we add a constraint on the
family of feasible motions. It is this constraint that allows the
computation of motion from correspondences- of two sets of
line segments. If we have only a small set of matches, the fea-
sible motion may not be well constrained, and the result will
be poor. From our experience, we observe that in order to ob-
tain a usable result, we need a relatively large set of corre-
spondences of line segments (say 50). To alleviate this re-
quirement, we can use points and line segments in combina-
tion, and the investigation of this issue is currently under way.

The proposed algorithm tries to find the motion by maxi-
mizing the overlap of line segments. This is a heuristic and a
biased estimate may be obtained if the variation of the line
segments is not random. When a large set of line segments are
used, this problem is not severe because the motion is well
constrained, as we have seen from the results with real data.

Another problem we encountered with the proposed algo-
rithm, as already mentioned in Section V, arises when line
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constrained, as we have seen from the results with real data.

Another problem we encountered with the proposed algo-
rithm, as already mentioned in Section V, arises when line
segments are aligned with the epipolar lines. This is because
the overlap is computed from the intersection of line segments
with their epipolar lines, and the intersections are instable
when they are almost parallel. This case is also well-known to
cause problems for binocular stereo. One solution to this
would be just to discard the line segments that form a small
angle with the epipolar lines.

Recently, many researchers have worked with uncalibrated
images using points or straight lines [6}, [11], [15], [23}. The
algorithm proposed in this paper can easily be extended to
estimate the epipolar geometry between two uncalibrated im-
ages using line segments. The only problem is that we need to
sample a higher parameter space (seven dimensions now) to
find an initial estimate. ‘
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