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Short Papers

The Performance of Camera Translation
Direction Estimators From Optical Flow:
Analysis, Comparison,
and Theoretical Limits

A. Mark Eamnshaw and Steven D. Blostein

Abstract—A noniterative method using optical flow to recover the
translation direction of a moving camera has been previously proposed
in [4]. We present a detailed explanation of the bias in this algorithm
and compare methods for eliminating this bias, as well as presenting a
comprehensive error analysis. This analysis includes a necessary
modification to the Cramér-Rao lower bound (CRLB). We propose a
simple iterative modification to the algorithm which produces unbiased
translation direction estimates that approach the CRLB. Numerical
results are used to compare the various techniques on synthetic and
real image sequences.

Index Terms—Translation direction estimation, linear constraints,
optical flow, error analysis, performance comparison.

*

1 INTRODUCTION

ONE approach for recovering the motion parameters of a mobile
camera in a stationary environment uses the observed optical flow
data. Heeger and Jepson [4] illustrated how the estimation of
translation, rotation, and depth could be decoupled into separate
problems which could be solved in order. They later reformulated
the original iterative translation recovery method as a noniterative
problem [6]. However, the resulting translation direction estimates
> tended to be biased towards the optical axis. Jepson and Heeger
[7] performed a preliminary bias analysis and proposed a solution
for eliminating it.

This paper presents a detailed error analysis of the bias which
includes alternative methods for overcoming it. We explain why
bias compensation is not as straightforward as initially thought
since asymptotically unbiased estimators are not necessarily unbi-
ased in the case of a finite number of samples. The error analysis
contained here is of significance since it is applicable to general
least-squares problems in other research areas.

There are other methods for recovering camera motion pa-
rameters such as the investigation of an optimal motion and
structure estimation algorithm in [13]. However, their technique is
feature-based rather than using optical flow. In addition, their
optimal method requires the iterative optimization of a motion
vector which is computationally expensive. Conversely, the tech-
niques compared in this paper are noniterative in nature, with the
exception of our “optimized” algorithm which only requires the
solution of a single variable.
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2 MOTION RECOVERY ALGORITHMS

2.1 Optical Flow Observations

The instantaneous optical flow at a point on the image plane of a
moving camera is:

u = %AiT +BQ
I-f 0 «x REST _(1+xi2) Y
A= [0 ~f yi:l b= (1 + %2) —XY; —X; .

where T and Q represent the translational and rotational velocities
of the camera, (x; y,) specify the image plane coordinates of the ith
pixel, and Z; is the corresponding unknown depth. Note that A;
and B; are completely defined by the camera geometry.

Our measurement noise model assumes additive Gaussian
noise with an identical distribution over the entire image. These
terms are assumed to be independent with identical Gaussian

distributions N(0, O'i). The standard deviation of the noise o, is a

specified percentage p of the average flow vector length and is
assumed constant over the image.

2.2 Original Biased Method (Jepson and Heeger)

The observed optical flow may be used to derive linear constraint
vectors 7; which are (in the noiseless case) perpendicular to the
translation direction T. These 7; vectors are calculated as a convo-
lution over a local patch of twisted flow vectors, q;. Each g; is the
cross-product of an optical flow vector u; with the corresponding
sampling direction vector s;.

7= Zcijqj @
j
q; =u; Xs, 3)

(x;, y) specify image plane coordinates, and f is the focal length of
the camera lens. The ¢; represent a set of 2D filter coefficients,
centered at position i, whose sum-of-squares is normalized to
unity. These coefficients are selected to ensure that the constraints
remain perpendicular to the translation direction in the noiseless
case regardless of the value of Q (see [2] or [7] for details). Typi-
cally, the same symmetric filter mask is used for all i.

If the number of constraint vectors # is larger than 3, T may be
found via least-squares to be the eigenvector corresponding to the
minimum eigenvalue of the matrix D where:

D= 11 )
i=1

When noisy optical flow measurements were used, the recov-
ered translation directions were noticeably biased towards the
optical axis. Jepson and Heeger [7] explained this by illustrating
that the covariance matrix E?i for a noisy constraint 7; repre-

sented a flattened ellipsoid rather than a sphere. The covariance
matrix for a noisy twisted flow vector is:
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(p"x)i (p"?)i
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If (x;, ;) are the image plane coordinates of the center of the ith
patch (ie., the coordinates of ?i) and a symmetric convolution

(p-.) o0 ~fx;
(Pe) =00t 0 F ©)
(r..), —fr. ~fy (=) ()

mask is used, then the relevant covariance matrix is:

(6.), (34),

(&xz )i f2 0

i —fx;
g, = (6W)i (6w)i (6w)i =0, _?Xi _ff; a:li%ﬁi

(), (32), (62,
8= 2ol 9] 0

If the same filter coefficients are used for calculating each 7, f§ will
be a constant.

2.3 Dithering Method (Jepson and Heeger)
The covariance matrix in (7) represents a flattened ellipsoid which
is much narrower in the mean sampling direction s; than at right
angles to s;. Jepson and Heeger [7] reasoned that by adding extra
noise or dithering, the covariance matrix could be altered to ap-
proximate a sphere and this would eliminate the observed bias.
This noise is added only along s; since it is this dimension of the
- ellipsoid which is much smaller than the other two.

The expected value of the dithered least-squares matrix can be

approximated as:

E[D] = D +x1, ®

where the value of k depends upon the amount of noise. If {A;, A, A5}

are the eigenvalues of D, {4, + K 4, + K A3 + &} will be the eigen-
values of D. Thus, the relative ordering of the eigenvalues will not
be changed. Both D and E[D] will have the same eigenvectors.

2.4 Unbiasing Algorithm (Kanatani)

The expected value of the noisy least-squares matrix Decan be
shown to be [2], [9, eq. 56]:

ED]=D+X =, ©

The Z. terms are the covariance matrices of the constraint vectors
1
as given in (7).
Clearly, D provides a biased estimate of D. Now consider:
D=D- 2 % 10

which is an unbiased estimate of D. D can be obtained from the
observed optical flow, and the X, terms can be calculated from

known or estimated quantities. Thus, D may be easily computed
and used to generate an estimate for T. This operation was pro-
posed by Kanatani [8, eq. 9] to obtain unbiased estimates in a least-
squares situation.

2.5 Whitening Method (MacL.ean and Jepson)

The main disadvantage of the above two algorithms is their
requirement for an accurate estimate of ¢,. To overcome this,
MacLean and Jepson [10] defined:

1
M= ?22a an
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Let M2 be the matrix square root of M. From (9) and (11):
£ M—1/26M—1/2] = M~1/2(D + O'iM)M_l/z

=M’ DM +olI=ED] (12

Since D is symmietric, adding a multiple of the identity matrix will
not affect its eigenvectors or the ordering of its eigenvalues. Con-
sequently, the eigenvectors of E[D] are independent of the noise
variance so o> need not be estimated. If T is the minimum eigen-
value eigenvector of D, the translation estimate in the original
coordinate frame may be calculated as:

T=M""T (13)
Note that T must be renormalized or scaled to have unit magni-
tude since M™/? is not a length-preserving transformation.

2.6 Rotation and Depth Calculation

If p, is a unit vector chosen perpendicular to the vector AT in @

where T is the translation estimate, a least-squares estimate for
the camera’s rotational velocity may be obtained [4]:

1
Q:{ZB?P,-P?BJ [ | B?Pipfui}

i

(14)

Once the quantities T and Q have been estimated, a relative
depth map can be reconstructed from the optical flow data using
least-squares:

RN PR
,__af(a)
Z,=— ~ 15)
(A1) (v -BQ)

2.7 Estimation Optimization
During simulations, it was observed that the T estimates were not
always particularly accurate. Conversely, the maximum eigen-

value eigenvectors v; were always almost exactly perpendicular to
the true translation direction. Thus, it seemed as though the linear
constraint technique could identify the plane containing T, but not
necessarily T itself. Jepson and Heeger's method seems to break
down when using a narrow viewing angle [2].

The original motivation for developing the linear constraint al-
gorithm was to bypass the need for iteratively optimizing an error

function over the entire possible range for T (i.e., the unit sphere).

However, since v is known to be almost exactly perpendicular to
T, it is possible to constrain the translation direction estimate to lie

in the plane defined by v; and v,. In fact, T can be written in

terms of a single unknown rotation angle ¢around v;.
T = cos(¢)v, +sin(p)v, (16)

We can determine an appropriate value for ¢ by using an iterative
approach to minimize the summed squared differences between
the observed and expected optical flow.

3 [ERROR ANALYSIS
3.1 Least-Squares Matrix—Unbiasing Method

The means of the least-squares matrices D and D have already
been calculated.

E[B]=D +2i,z:%i E{[l)} =D

Now suppose D is rewritten as a vector d with the columns of D

a7
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being stacked vertically. It is then possible to calculate a covari-
ance matrix for d .

%, =[8,,] = E[dd"] - d]ea"]

For illustrative purposes, we shall only consider one entry in the co-
variance matrix—the remaining entries may be calculated in a similar

fashion. Letting 7, = [xi Y zi]T and AT, = [&xi dy, &i]T, it can
be shown that [2]:
826 = Hd;| - Ed, JH4
= 2 inij[Syi&j] + xiZjE[S%Sy/] + %‘ij[Sxiaz;] + infE[&xi&/j]
i

(18)

{Zetlpa) [{Sentnlp) [ {Zecso S, | 9

~

Since the T vectors are calculated as a weighted local sum of
twisted flow vectors, there will be dependency between 7; and 7,
if their convolution masks overlap. In such a situation, the result-
ing “cross-covariance” can be calculated with the following for-
mula [2]:

(20

E[axiayj] = ;Cikcjk(pxy)k

where the p,, terms are defined in (6).
For the unbiased vector d , the covariance matrix Z& will be the
same as X since subtracting a constant vector simply shifts the

mean and does not affect the covariance.

3.2 Least-Squares Matrix—Dithering Method
The mean of the dithered least-squares matrix D can be shown

to be [2]:
E[D]=D+ Z{Z?i + Zfi} @D

X represents the covariance matrix of the undithered 7; vector as -
1

given in (7). . is the covariance matrix of the dithered component
1

which may be easily derived from the standard deviation of the

dithering noise for %,(07 ;) and the direction in which it is applied.

(au)f (Exy),- (312)1' 5 xf xy, xf
O,

2, = (a-ry)v (EW)' (ayz)} =W Xy ¥ uf
! ! ! Ty +f 2

(G..). (EW)V (G..). xf wf f
Noting that A7, and AT; are mutually independent and that the

individual dithering terms are independent, the sample covariance
matrix entry can be shown to be:

Cop =0y + ;{xkyk(ayz)k +xkzk('6'w)k + ykyk(a—xz)k + ykzk((_)-x"_y)k
+ (6xy)k(ay2)k +(6ﬂ)k(aw)k * (&yy)k(axz)k + (a-yi’-)k(aw)k
+(3),(3), + @(Gu) }

3.3 Least-Squares Matrix—Whitening Method

(22)

(23)

Let my, represent the (k, ) entry of the symmetric matrix M~/ Tt
can easily be shown that entry (i, /) of D may be calculated as:
3 3

dy = Zmilmkjdlk

; @4
k=1 I=1

If the least-squares matrix is converted to vector form, this can be

written as:
‘ d=Nd (25)
where N is a symmetric 9 X 9 matrix defined as:
N = [ni].] = [mwm,t]
p=((-1)mod3)+1  r="floor{(j+2)/3}
g=((j-1)mod3)+1 ¢t =floor{(i+2)/3} (26)

The covariance matrix of d may now be found to be:

%, = E[dd"] - fldJgd"] = NE[&HT]NT - NE[&T}E[&T]NT =NZ.N' (27)

3.4 Translation Direction—Covariance Matrix
It is possible to approximate the covariance matrices for the eigen-

vectors of D using matrix perturbation theory [15]. Weng et al.
[14] used a Taylor series expansion to derive the first-order per-
turbation terms for the eigenvectors as:
T
Av; = ov, = VAV Aﬁvi (28)
where the columns of V are the eigenvectors of the true D, Aﬁ

represents the perturbation in the D matrix, and A, is defined as
(A, and A, are defined similarly):

A, = diagf0,(A, - 2,)7, (A, - 2,) "} (29)
Note that Agv; may be equivalently rewritten as:
Agv, = [(vx)il3 (o)) 15 (vz)i13:| A =UA, 30)

where Aa is the perturbation in d . The first-order eigenvector
perturbations are zero-mean. The covariance matrix for ¥; may
therefore be approximated as [2]:

I, ~ VAVTUZUVAV' 31

The corresponding covariance matrices for the unbiasing and
dithering approaches may be found by substituting Zd or X,

respectively, for Ea. Unfortunately, since the T estimate must be

renormalized after whitening, the approximation is not applicable
for that situation.

3.5 Translation Direction—Mean Vector

During simulations, it was observed that the translation estimates
were still somewhat biased, despite using unbiased estimates of
the least-squares matrix. It is simple to show that T is asymptoti-
cally unbiased as the number of 7; vectors becomes large. How-

ever, an unbiased estimate of D does not necessarily imply that the
corresponding estimate of T is unbiased.

3.5.1 Second-Order Eigenvector Perturbations
It can be shown [2] that extending the method of Weng et al. [14]
leads to the expected values of the second-order perturbations of

T
the eigenvector v, = [vx v, vz]

&'v,| = GEv, -GG Ry, (32)

where G, = VA1VT is defined in terms of quantities specified in
Section 3.4, E, is a symmetric 3 X 3 matrix with the o;s corre-
sponding to the antibiasing technique used:
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€11 = 811011 1 822022 ¥ 835033 12812012 12813015 128,50,3
€1 = 811012 T 812022 1 813023 82,1015 + 82,2055 1823035

+ 831016 ¥ 83,2026 1833056
€3 = 811013 T 81,2025 1 8130335 7821016 T 82,2026 T 82,3035

+ 83,1019 T 852029 ¥ 85305,
€22 = 811022 T 82055 T 833966 T 2812025 72813026 + 282305,
€3 = 811023 T 812053 7813063 T 82,1026 1 822056 T 82,3066

+ 83,102,907 832059 1 855069 .
€55 = 811053 + 852066 + 853095 +281,05 6 + 2813035 +28,305, (33)

and F, is the symmetric 3 X 3 matrix:
2

— 2 2
fl,l =0,0,,+0,0,5+0,0,,+ vavydm +20,0,0,, + QUyUZGm
_ .2 2
fia =005, + 0,055 +70,055 +2vxvyo‘2'2 +20,0,0,, +2vyvzo-2,6
i

_ .2 2
fz,z = 0,05, 0,055 +0

2. 2
0,031 + 0,035 + 0,034 +20,0,05, +20,0,05 5 +20,0.0,,

2
z
2
z
2
z
2
z

O5q+ ZUX‘UyGSIZ +20,0,05, + 2vyvz(7516
— 2 2
fo3 =006, + V065 + 0,045 + ZUZ”UyGG,Z +20,0,0, 5 + 2%7]1%,5
2 2 2
fis =000, + U,045 + 0,09 +20,0,05, +20,0,0, 5 +20,0,04¢ (34)

The first-order eigenvector perturbations are linear functions of
the perturbation in the least-squares vector d. Since this latter
quantity is zero-mean, the expected values of the first-order per-
turbations will also be zero. However, the expected values of the
second-order expansion terms are clearly nonzero. The biased
mean of the recovered translation direction vector can thus be
approximated reasonably accurately as (in unnormalized form):

E[T] = v, + E[6"v, ]

The first term on the right-hand side represents the desired value,
whereas the second term represents an unwanted bias. Conse-
quently, an unbiased estimate of the least-squares matrix D does not
necessarily imply an unbiased estimate of the translation direction T.

3.5.2 Whitening Renormalization

From Section 2.5, it is necessary to renormalize the whitened
translation direction estimates after transforming back to the
original coordinate space. Since the lengths of the resulting vectors
depend on their orientations, each vector must be scaled by a dif-
ferent value to have unit magnitude. Thus, the estimates are not
weighted equally when the mean is calculated. The result is that
the renormalization process introduces yet another bias.

Due to the nature of the renormalization equation, it is not pos-
sible to derive an analytical estimate of this bias. However, nu-
merical estimation can be used to yield a value which agrees rea-
sonably well with simulation data. By sampling a large number of
evenly distributed candidate vectors over the unit sphere in whit-
ened space, transforming each back to original space, renormaliz-
ing, and finally taking their average with each vector weighted by
its corresponding pdf value, we can generate a suitable estimate of
the biased mean.

3.6 Cramér-Rao Lower Bound

Since the T estimates are constrained to have unit magnitude, it is
necessary to modify the standard CRLB as detailed by Gorman
and Hero [3]. We have calculated the appropriate CRLB for our
application [2], although the derivation is too lengthy to be repro-
duced here.

4 [EXPERIMENTAL RESULTS

4.1 Results From Simulated Data ‘
The simulated camera had a focal length of 16 mm and an imaging

(35 -
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array measuring 6.4 mm (or 64 pixels) on each side. The horizontal
and vertical spacing (S) between adjacent 7; vectors was varied
between four and eight pixels to investigate the effects of reducing
the number of constraint vectors. A 7 X 7 convolution mask was
used to generate the 7, vectors. Each simulation run consisted of
1,000 trials—this number was selected to ensure that sufficiently
accurate sample statistics could be computed. The optical flow
noise was randomly generated for each trial. The mean vector and
covariance matrix for the translation direction estimates from each
algorithm were determined, and the corresponding predicted val-
ues were calculated via the methods outlined in Section 3. The
noise percentages tested were 5% and 10%.

The first data set used a translation of T = [—10 0 20]

(cm/s) normalized to T = [—0.4472 0 0.8944] and a rotation of

Q= [—0.05 0.0 —0.1] (rad/s). Table 1 contains the mean transla-

tion estimates for the five methods with a spacing of eight pixels.
Additional simulation results may be found in [2]. The error column
contains the Euclidean distances between the tips of the estimated .
and ideal translation direction vectors. As expected, the biased esti-
mates are noticeably biased towards the z axis. Unbiasing performs
slightly worse than dithering for this particular example, whereas
whitening is somewhat better. Optimizing provides the best esti-
mate out of the five methods at lower noise levels.

Tables 2 and 3 show predicted (from Sections 3.4 and 3.5) and
simulated mean vectors and covariance matrices for the transla-
tion estimates using 5% noise and a spacing of four pixels. All
other parameters are the same as before. The predicted means are
biased as discussed in Section 3.5. The constrained CRLB has been
calculated assuming a biased estimator mean equal to that of the
unbiasing technique. As a consequence, this bound.is only ap-
proximate when applied to the other antibiasing algorithms. The
unbiasing and whitening methods have smaller covariance matrices
than the dithering method. Optimizing has the smallest covariance
matrix, which is also close to the CRLB. In addition, it is the least
biased of the five estimation algorithms. Thus, optimizing appears to
produce the best results for this particular case, although it is com-
putationally more expensive than the other techniques.

One problem noticed during experimentation was that the prob-
ability distributions of the two smallest least-squares eigenvalues
often had significant overlap. This implied that in a number of trials
the wrong eigenvector was selected as the initial value for T in the
iterative optimization search. This caused problems since only the
local neighborhood of the initial T value was considered as the al-
lowable search space. By evaluating the error between the observed

and expected optical flow using both v, and v, as estimates for T, the
eigenvectors could be swapped if necessary to select the best initial

T . The optimized translation estimates with eigenvector swapping
in Table 1 showed a significant improvement.

4.2 Results From Real Data -

The algorithms were applied to the synthetic Yosemite Valley im-
age sequence [1] and a real sequence of moving columns [11]. In
the former sequence, the flow fields were cropped to eliminate the
moving clouds since their motion was independent of the camera
translation.

The translation estimates are listed in Tables 4 and 5. The flow
was estimated using Uras et al.’s [12] and Horn and Schunck’s [5]
methods, respectively. Since the correct flow fields were available,
appropriate values for p (Section 2.1) could be obtained. When the
true flow was used as noiseless input, p was set to zero and thus
the biased, dithering, and unbiasing methods (B/D/U) were all’
identical. The optimized estimate (Section 2.7) was taken to be the
true translation for the Yosemite sequence. The true translation for
the -columns sequence was calculated from the camera transfor-
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TABLE 1
SAMPLE MEAN TRANSLATION ESTIMATES FOR SIMULATED OPTICAL FLOW (7 X 7 MASK, S = 8)
Method Noise | # Swaps Mean Translation Estimate Error
Biased 5% = —.2963 .0045 .9551 0.1627
10% — -.1371 .0201 .9904 0.3253
Dithered 5% - -.4270 -.0010 9042 0.0224
10% - —.2829 .0145 .9590 0.1771
Unbiased 5% - -.5074 -.0018 .8617 0.0685
10% - —.1401 .0139 .9900 0.3220
Whitened 5% - —-.4632 —.0005 .8863 0.0180
10% - -.3665 —.0030 .9304 0.0884
Optimized 5% = —.4447 —.0001 .8957 0.0028
10% - -.3073 .0102 9516 0.1515
Optimized 5% 2 —.4478 —.0004 .8941 0.0008
(Swapping) 10% 313 —.4420 —.0043 .8970 | 0.0072
TABLE 2
PREDICTED AND SIMULATED TRANSLATION DIRECTION ESTIMATES (5% NOISE, S = 4)
Method Pred/Sim Mean Translation Estimate
Ideal P —0.4472 0.0000 0.8944
Biased P —0.2739 0.0046 0.9617
S -0.2740 0.0045 0.9617
Dithered P —0.4431 —-0.0000 0.8965
S —0.4491 —0.0013 0.8935
Unbiased P —0.4841 —0.0012 0.8750
S —0.4865 -0.0013 0.8737
Whitened P —0.4570 -0.0010 0.8895
: S —0.4582 —0.0007 0.8889
Optimized S —0.4469 —0.0002 0.8946
TABLE 3

PREDICTED AND SIMULATED COVARIANCE MATRICES FOR T ESTIMATES (5% NOISE, S = 4)

“Method Covariance Matrix (x 107
Predicted [ Simulated
0.1470 0.0125 0.0404 0.1666 0.0120 - 0.0484
Biased 0.0125 0.0169 0.0034 0.0120 0.0180 0.0035
0.0404 0.0034 0.0111 0.0484 0.0035 0.0143
4.0900 0.0951 2.0291 4.8203 0.0836 1.8541
Dithered 0.0951 0.1604 0.0472 0.0836 0.15646  0.0543
2.0291 0.0472  1.0067 1.8541 0.0543  1.3659
1.0290 0.0624 05145 1.2491 1.0648 0.8102
Unbiased 0.0624 0.08390 0.08312 0.0648 0.0480 - 0.0427
0.5145 0.0312 0.2573  0.8102  0.0427  0.5600
0.5584 0.0588 0.3157
Whitened 0.588 0.0425 0.0326
0.3157 _ 0.0326 __ 0.1835
0.0044 0.0032 0.0022
Optimized 0.0032 0.0373 0.0016
0.0022 0.0016  0.0011
0.0290 0.0016 0.0161
Constrained 0.0016  0.0243  0.0009
CRLB 0.0161  0.0009  0.0089

mation matrices for the images. The nonzero errors for the correct
flow in Table 5 are due to inexact knowledge of the camera cali-
bration parameters.

5 DISCUSSION

We have compared approaches for eliminating the bias in transla-
tion direction estimates obtained using linear constraints. Whit-
ening produced the best results of the noniterative antibiasing
methods. An error analysis indicated that dithering should result
in the largest covariance matrix for the translation estimates. This

prediction was supported by the simulation results. We intro-
duced a new simple iterative search technique for optimizing the
motion estimates. This method possessed the smallest covariance
matrix of all five translation estimation methods and approached
the constrained CRLB in simulation experiments.

An important result from the error analysis is that an unbiased
estimate of a least-squares matrix does not necessarily yield unbi-
ased eigenvalue and eigenvector estimates.
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TABLE 4
RESULTS FOR YOSEMITE VALLEY SEQUENCE (p =0.148, 31 x31 MASK, S =32)
Flow Type Method Translation Dir. Estimate Error
B/D/U —0.0041 0.3552 0.9348 0.0080
Correct Whitened | -0.0041 0.3552 0.9348 0.0080
Optimized 0.0032 0.3582 0.9336 0.0000
Biased | —0.1647 | 0.1387 | 0.9765 | 0.2797
Dithered —0.1780 0.1325 0.9751 0.2924
Estimated Unbiased | —0.1639 0.1410 0.9763 0.2773
Whitened | -0.0611 0.3992 0.9148 0.0785
Optimized | —0.0829 0.3481 0.9338 0.0867
TABLE 5
RESULTS FOR COLUMNS SEQUENCE (p= 0.314, 11 x 11 MASK, S = 8)
Flow Type Method Translation Dir. Estimate Error
B/D/U -0.4756 —0.1427 0.8680 0.0270
Correct Whitened —0.4756 —0.1427 0.8680 0.0270
Optimized —0.4752 -0.1426 0.8683 0.0265
Biased —0.2447 —0.0860 0.9658 0.2324
Dithered -0.3289 | -0.1233 0.9363 0.1396
Estimated Unbiased | -0.3088 | -0.1112 0.9446 0.1621
Whitened | -0.5024 | —0.1878 0.8440 0.0836
Optimized | —0.4599 -0.1708 0.8714 0.0439
[14] J. Weng, T.S. Huang, and N. Ahuja, “Motion and Structure from
Two Perspective Views: Algorithms, Error Analysis, and Error
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