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Robust Reweighted MAP Motion Estimation
Dong-Gyu Sim, Student Member, IEEE, and Rae-Hong Park, Member, IEEE

Abstract—This paper proposes a motion estimation algorithm that is robust to motion discontinuity and noise. The proposed
algorithm is constructed by embedding the least median squares (LMedS) of robust statistics into the maximum a posteriori (MAP)
estimator. Difficulties in accurate estimation of the motion field arise from the smoothness constraint and the sensitivity to noise. To
cope robustly with these problems, a median operator and the concept of reweighted least squares (RLS) are applied to the MAP
motion estimator, resulting in the reweighted robust MAP (RRMAP). The proposed RRMAP motion estimation algorithm is also
generalized for multiple image frame cases. Computer simulation with various synthetic image sequences shows that the proposed
algorithm reduces errors, compared to three existing robust motion estimation algorithms that are based on M-estimation, total least
squares (TLS), and Hough transform. It is also observed that the proposed algorithm is statistically efficient and robust to additive
Gaussian noise and impulse noise. Furthermore, the proposed algorithm yields reasonable performance for real image sequences.

Index Terms—Motion estimation, regularization, MAP estimation, robust statistics, LMedS.

——————————   ✦   ——————————

1 INTRODUCTION

N early vision problems, a solution may not exist at all
nor be unique. Even if a unique solution exists, it may be

sensitive to noise. Because some early vision problems are
ill-posed, they are sensitive to noise, and their solutions
might be incorrect if the actual observations do not fit the
model assumed [1]. To implement a robust computer vision
algorithm, a stable system effectively coping with noise and
distortions in the input is required [2], [3]. In spite of the
usefulness of the motion field, conventional motion estima-
tion methods suffer from such problems [4], [5]. This paper
proposes a motion estimation algorithm robust to motion
discontinuity and noise.

Because of ill-posedness, it is difficult to find a solution
in all cases [6]. Generally, such a problem has been solved
by using additional constraints [7], [8], [9], [10]. To obtain a
solution having a physical meaning, conventional ap-
proaches based on regularization or maximum a posteriori
MAP scheme [11] were presented. Although these two ap-
proaches were derived from different points of view, they
used a similar framework for data fusion. Regularization
obtains a smooth solution approximating observation data
sets. But discontinuities in a solution and the corresponding
observations occur in real applications, resulting in poor re-
sults. To overcome this problem, a variety of constraints have
been proposed in the regularization [1], [6], [11], [12], [13],
[14], [15], [16]. Also recently, a MAP scheme generalizing the
regularization has been widely used for many applications,
however its performance is still degraded if actual observa-
tions do not fit to an assumed model or contain outliers that
are anomalous data far away from the assumed error distri-
bution. Thus, several conventional algorithms have been

proposed by replacing each part of the MAP estimator by a
robust estimator commonly used in robust statistics [12], [17].
On the other hand, least squares (LS) algorithms based on
maximum likelihood (ML) were also employed in computer
vision problems [18]. While these algorithms are optimal for
Gaussian noise, their performance is severely deteriorated by
a few outliers, which is common in practical computer vision
applications. To cope with this problem, M-estimators based
on ML were applied to some computer vision problems [19],
[20], [21], [22]. Also, a robust least median squares (LMedS)
algorithm having a high breakdown point was successfully
applied to visual reconstruction problems [23] and moton
estimation [24], where the breakdown point denotes a per-
formance measure representing the percentage of outliers
that an estimator can deal with.

In this paper, we present a robust motion estimation algo-
rithm based on the reweighted robust MAP (RRMAP). It is
constructed by applying a median operator and reweighted
least squares (RLS) in robust statistics to the MAP motion
estimation technique. To explain the concept of the proposed
algorithm, we first briefly present regularization and MAP
estimation methods. The proposed algorithm is introduced
to accurately estimate the smooth and discontinuous motion
field by combining the LMedS method as local optimization
and the MAP approach as global optimization.

The rest of the paper is structured as follows. In Section 2,
a number of estimation methods and existing robust mo-
tion estimation algorithms are discussed. In Section 3, the
proposed RRMAP motion estimation method is presented.
In Section 4, experimental results and discussions are pre-
sented and finally conclusions are given in Section 5.

2 VARIOUS ESTIMATION METHODS AND EXISTING
ROBUST MOTION ESTIMATION ALGORITHMS

In this section, we briefly describe the robust regression that
is fundamental to the proposed algorithm. Also we briefly
present regularization, MAP estimation, and existing mo-
tion estimation methods based on robust statistics.
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2.1 Robust Regression
Regression determines a set of parameters of a model that
effectively fits observation data sets. In general, a linear

model given by y x e i ni ik k ik

p
= + � �

=Í q
1

1, , has been

widely used, where both yi and xik represent observation

data, and ei denotes the error in observation data. The ob-

servations xi1, xi2, ..., xip are denoted by a column vector 
r
xi ,

and similarly observations y1, y2, ..., yn are represented by a

column vector 
r
y . Parameters qks should be estimated. An

estimated parameter vector is given by a column vector
r
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where r y yi i i= - $  represents the estimation error assumed as

zero-mean Gaussian. The parameter vector 
r
q*  is estimated

by minimizing the summation of squared errors. But this
method has a drawback that a single outlier included in ob-
servation data can severely deteriorate the estimation result.

Robust statistics introduces the finite sample breakdown
point e defined by

e T y
m
n m T y, min ; ; ,

r r1 6 1 6= �
%&'

()*bias is

where bias m T y; ,
r1 6  is represented by sup T y T y� -

r r1 6 1 6 ,

T y
r1 6  equals 

r
q , and n denotes the number of observations

[22]. The vector 
r
y  represents an observation vector, and �

r
y

denotes an observation vector generated by deleting m out-
liers from 

r
y . The breakdown point is defined by the mini-

mum outlier ratio of m and n when the estimation error
with m outliers in n observations is infinite. Any estimator
with the breakdown point equal to e can reliably estimate
parameters if the outlier ratio is less than e. Note that the
breakdown point of an LS estimator is 1

n , i.e., the perform-
ance may be severely degraded by a single outlier in n ob-
servations. To overcome this drawback, M-estimator was
proposed based on ML estimation, by replacing a square
cost function in (1) by a convex symmetric cost function r to
discriminate inliers from outliers. M-estimator is effective

when outliers are included in observation yi. The break-
down point of M-estimator is defined by 1

1p+ . Thus, as p

increases, the breakdown point decreases. If p is equal to
two in the case of translational motion estimation, the
breakdown point becomes at most 33 percent. Furthermore,

only one outlier in observation xik works as a leverage point,
in which the breakdown point decreases to zero [20], [22], [25].

Other robust estimators have been proposed in robust
statistics. LMedS estimator [25] is one of the robust estima-
tors having a high breakdown point. Its breakdown point is
equal to ([n/2] - p + 2)/n, where p represents the number of
unknown parameters and n is the number of observations,

with [z] denoting the largest integer less than or equal to z.
Its breakdown point can be as large as 50 percent. Charac-
teristics of LMedS are explained from theoretical and ex-
perimental points of view [25]. LMedS is derived by re-
placing a sample sum in (1) by a median operator. Because
LMedS has a high breakdown point, it yields good results
in discontinuous regions that contain many outliers [23],
compared with other estimators. As a modified version, the
least trimmed squares (LTS) scheme was proposed to in-
crease the breakdown point and the RLS scheme was pre-
sented as a two-stage algorithm to improve the statistical
efficiency, where the statistical efficiency represents the ra-
tio between the lowest achievable variance and actual vari-
ance produced by the given method depending on the
noise distribution. For instance, the mean estimator has an
asymptotic statistical efficiency of one whereas median es-
timator’s statistical efficiency is 2/p = 0.637 for Gaussian
noise distribution [23]. While the LTS yields good results in
homogeneous regions because of the good statistical effi-
ciency, M-estimator does not produce good results. Higher
breakdown point and better statistical efficiency of LTS
have been theoretically justified in robust statistics [25].
Also recently R-, L-, and total least squares (TLS) estimators
in robust statistics have been proposed for various com-
puter vision applications [26], [27].

2.2 Regularization and MAP Estimation
Various low-level vision problems can be solved by regu-
larization, a generalized tool that obtains a smoothed solu-
tion by approximating given observations. But this ap-
proach yields an oversmoothed solution at discontinuous
regions. To alleviate this artifact, many approaches have
been presented [4], [5], [6]. On the other hand, MAP esti-
mators using a Markov random field (MRF) with line proc-
ess were proposed for various applications [12], [17].

Regularization converts ill-posed or ill-conditioned
problems into well-posed ones by constraining the solution
with a priori assumption. The energy function J(Q, a) in
Tikhonov’s regularization is defined by [1], [6]

J A yi i i
yi

Q,a a a q0 5 = + = + -
¶

ÍS D S
Y

r r

r

2

where S and D represent smoothness and data terms, re-
spectively, and Q denotes the parameter field to be esti-
mated. Note that the smoothness term can be the norm of

the first or second derivative of the parameters. Ai is deter-
mined depending on the given application and may be ob-
servations. The smoothness of a solution depends on a and
can be adaptively determined according to a priori knowl-
edge. This energy function defines the error as a linear
combination of smoothness of a solution and the sum of the
squared differences between observation 

r
yi  and estimated

value Ai i

r
q . By minimizing this energy function, the solution

Q QQ
* = arg min ,J a0 5  is obtained. Recently, the motion

estimation method [24] was proposed based on LMedS.
This algorithm calculates the optic flow by solving the
over-determined linear equations within local image
patches.
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2.3 Existing Robust Motion Estimation Methods
To reduce the sensitivity of motion estimation to discon-
tinuities and noise, regularization and MAP based on
M-estimator were proposed recently [12], [17], [28], [29],
[30], [31], [32]. Among them, motion estimation methods
based on global optimization were derived by replacing the
stabilizing term of the regularization or a priori probability
distribution of the MAP estimator by Huber’s min-max
function or the Lorentzian. Also an algorithm embedding
M-estimation into both stabilizing and motion constraint
terms was proposed to preserve discontinuities [28], [29].
But discontinuities can be preserved when the initial solu-
tion is almost exact. Its proper scale cannot be easily esti-
mated because the initial solution is not known for most
motion estimation problems. Also the M-estimation method
can not effectively cope with leverage data [25], resulting in
poor performance in many cases. As a local regression ap-
proach, the motion estimation method based on the TLS [26]
was proposed without the constraint of motion continuity.
However this algorithm requires a large amount of memory,
for example, memory for ten input image frames and 30 fil-
tered frames. Also the estimated motion field is smoothed at
motion discontinuities because of the large window size em-
ployed. In Bober and Kittler’s M-estimation method based
on the Hough transform [33], the breakdown point decreases
in proportion to the number of parameters and an exhaustive
search results in high computational complexity because of
the large Hough space. So the method using a variant of the
multiresolution and gradient search on discrete grid was
proposed to reduce the computation time. They also pro-
posed the robust motion estimation algorithm based on
Hough transform and multiresolution MRF (MMRF) for the
global interpretation of the local estimates [34].

It is important to have a robust motion estimation
method with a high breakdown point because the percent-
age of outliers is high in many regions such as boundary
and corner regions. In boundary regions, there exists ap-
proximately 50 percent inliers in practice. Furthermore,
there may be much less inliers in some regions containing
corner points. Also a single outlier in terms of gray level may
yield three outlier observations (Ex, Ey, and Et), where Ex, Ey,
and Et represent partial derivatives of gray-level E with re-
spect to x, y, and t, respectively. The motion estimation
problem is very unstable, especially, at boundary and noisy
regions. So a robust motion estimation method with a high
breakdown point is required to cope with this problem. We
propose an effective hybrid algorithm, a robust MAP motion
estimation algorithm, by combining MAP as a global optimi-
zation method and robust regression as a local optimization
technique. The proposed algorithm is also extended to multi-
frame motion estimation cases and can also be applied to
other applications, such as surface reconstruction or stereo
vision. On the other hand, a number of methods to model the
motion in multilayers have been proposed [7], [9], [10], [16],
[18]. These algorithms yielded good results by computing the
multiple models of motions in multiple layers.

3 PROPOSED RRMAP MOTION ESTIMATION
METHOD

In this section, the RRMAP motion estimation method is
proposed. At first, we describe it with a pair of image
frames, then extend it for multiple image frame cases.

3.1 RRMAP Motion Estimation With Two Image Frames
The energy function proposed by Horn and Schunck [35] for
motion estimation is used in the global optimization method
that consists of a motion constraint equation and a smooth-
ness constraint. Their energy function J(Q, a) is defined by

      J Q,a0 5 =
E u E v E u v u vs x s s y s s t s x s x s y s y

s S
, , , , , , ,+ + + + + +�

�
�
�

¶
Í 4 9 4 92 2 2 2 2a

where S, a set of sites in the N � M image space, is denoted
as {s = (i, j) | 0 � i < N, 0 � j < M}. The motion field Q is rep-
resented by 

r
q q qs s su v s S= = ¶1 2, ,2 7 2 7= B, assuming the

motion vector at a pixel is 2D translational. The constant a
is a regularization term, Es represents the gray level at site s,

and Es,x, Es,y, and Es,t are partial derivatives of Es with re-
spect to x, y, and t, respectively. By minimizing J(Q, a), a
smooth motion field is estimated because of the smoothness
constraint. A large number of algorithms based on Horn
and Shunck’s algorithm have been presented [28], [36],
however, they all tried to preserve discontinuities in the
gray-level and motion field.

We apply the concept of LMedS to motion estimation.
Because of ill-posedness, motion estimation cannot be
solved by simple regression alone, so we embed the robust
operator into the MAP estimator using a priori knowledge
such as smoothness constraints. Because the proposed algo-
rithm can discriminate outliers from inliers by using the
robust estimator, it is effective at discontinuous regions. We
define an a posteriori likelihood probability distribution,
P(Q|Ecur, Eprev), given a degraded image sequence, as

P E E
P E E P E

P E E

cur prev

cur prev prev

cur prev
Q

Q Q
,

,
4 9

4 9 4 9
4 9

=             (2)

where observation image frames Ecur and Eprev represent the
gray level of the current and previous images, respectively.
Assuming that the prediction error follows Gaussian prob-
ability distribution, the likelihood probability distribution
P(Ecur|Q, Eprev) for ML-type motion estimation is defined by

P E E Z E Ecur prev

ML
n
cur

n
prev

n N ss S
s

s

Q, exp4 9 = - -�� ��
�
�
��

�
�
��-

¶ °¶
ÍÍ1 2

r
q

where Ns represents the neighborhood of any site s and ZML

denotes a normalizing constant. Note that P(Ecur|Q, Eprev) de-
pends on the sum of the squared differences between the ob-
served current image En

cur  at site n and an image E
n
prev

s-
r
q  pre-

dicted by the motion vector 
r
q s  at neighborhood sets Ns and s.

Because the translational motion within Ns is considered in
this paper, we obtain the ML-type conditional distribution:
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P E Ecur prevQ,4 9 =
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by neglecting higher-order terms in the Taylor series ex-
pansion and by assuming small 

r
q s . Also, an a priori distri-

bution of the motion field given Eprev is defined by

P EprevQ4 9 =
1 2 2
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where ZAP is a normalizing constant and the constant cs n
Eprev

,

denoted by

c
E E

s n
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controls smoothness. Thus, an a priori distribution con-
strains the available motion field space with respect to
changing motion and gray level. By putting (3) and (4) into

(2), we can express P(Q|Ecur, Eprev) as

P E Ecur prevQ ,4 9 =
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where ZT = ZMLZAP represents an overall normalizing con-
stant. Note that (5) is formulated by considering the local
and global optimization, where MAP estimator corresponds
to a global optimization method if the second summations
in the exponential terms are removed. The second summa-
tion term corresponds to LS regression estimator of a local
optimization method. Equation (5) corresponds to MAP
estimator as a global optimization method consisting of
local regression estimators at every site s in the image
space. By simplification of (5), P(Q|Ecur, Eprev) is rewritten as

P E Ecur prevQ ,4 9 =
exp , , , ,− ∑ + + − ∑ − + − ��

�
��

�
��
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s s
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E u E v E c u u v v

P E E

4 9 2 7 2 74 9
4 9

2 2 2α .

Next, as in the derivation of the LMedS [25], if we replace
the summation of errors by the median of errors, the pro-
posed a posteriori probability distribution is given by

P E Ecur prevQ ,4 9 =
exp , , , ,− + + + − + − ()*

�
��

%&'
�
��

�
��
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��∈ ∪∏ medn N s n x s n y s n t s n
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cur prev

s
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E u E v E c u u v v

P E E

4 9 2 7 2 74 9
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2 2 2α

The above equation signifies that LS as local regression is
replaced by LMedS. Maximization of the a posteriori prob-

ability is converted into a minimization problem. Because

P E Ecur prev4 9 is independent of the estimated parameters,

the energy function J Q,a0 5 can be rewritten as

J E u E v En N s n x s n y s n t
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where Js  represents the local energy function at s, rs n,  signi-

fies the regularization error at n of s, and 
r
q s  denotes the

motion vector u vs s,2 7  at s. In this energy function, if the a
priori knowledge term is removed, it can be considered as a
cost function for the ML-type LMedS motion estimator. By
adopting an a priori distribution to convert the ill-posed
nature of motion estimation into well-posed one, we can
obtain the continuous motion field. Also, by employing the
median operator, the proposed algorithm is robust to mo-
tion discontinuities and noise.

The energy function of the proposed algorithm is not
convex because of the median operation and local interac-
tion between neighboring pixels. A noniterative optimiza-
tion solution can not be derived, thus, a deterministic algo-
rithm is employed by assuming a possible solution at local
minimum. With the assumption of local interaction, the
motion field is iteratively estimated by minimizing Js ,
which is defined by

J E u E v Es s n N s n x s n y s n ts

r
q a, , , ,3 8 4 9= + +%&' +¶ °med

2

ac u u v vs n
E
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.

A relaxation equation for local optimization is defined by
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k

s
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- -1 2 1 2
                   (6)

where the superscript (k) represents an iteration index, 1 �
k � K. It is not possible to get a closed form solution for (6),
so we obtain a solution by the same sampling scheme as
used in LMedS estimation [25]. This sampling scheme at
first selects n observation sets each of which consists of p
observations, where p denotes the number of parameters to
be estimated. With the parameters estimated for each ob-
servation set, errors are calculated for all observations.
Then the parameters giving the minimum median error is
selected.

In the proposed motion estimation, the set of observa-

tions E E E u vx y t, , , ,4 9 is considered, where observations Ex

and Ey  are obtained from forward, backward, and central

differences, and observation Et  at each set of eight neigh-
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boring sites. u and v are individual components of the esti-
mated motion vector in neighborhood region of s. With
these observation sets, we can construct a large number of
combinatorial samples. Because the computation time is
proportional to the number of samples and motion estima-
tion is iteratively calculated, it is necessary to reduce the
number of samples. Considering the consistency of locality,
nine observation sets

{(Ex, Ey, Et, u, v)} =

{ (Ex,(b), Ey,(b), Et,(1), u(1), v(1)), (Ex,(c), Ey,(b), Et,(2), u(2), v(2)),

(Ex,(f), Ey,(b), Et,(3), u(3), v(3)), (Ex,(f), Ey,(c), Et,(4), u(4), v(4)),

(Ex,(f), Ey,(f), Et,(5), u(5), v(5)), (Ex,(c), Ey,(f), Et,(6), u(6), v(6)),

(Ex,(b), Ey,(f), Et,(7), u(7), v(7)), (Ex,(b), Ey,(c), Et,(8), u(8), v(8)),

(Ex,(c), Ey,(c), Et,(mean),umean, vmean)}

are selected as observation samples at each site in the pro-
posed algorithm, where the subscripts (b), (c), and (f) repre-
sent backward, central, and forward, respectively, and the
subscript (n), 1 � n � 8, denotes the nth neighboring site
around s, numbered clockwise from the top left pixel. The
subscript “mean” represents the mean value of observa-
tions at the eight neighboring sites. With these observation
samples, the residual errors are computed, and the pa-
rameters minimizing the median error are determined as
the solution of the robust MAP based on the LMedS. In the
proposed algorithm, the uniform sampling scheme is used.
Note that the probability giving a good estimate with a
small number of samples for LMedS is close to one. Be-
cause the order of samples is arbitrary for each patch, the
uniform sampling yields the results similar to those of the
random sampling. Furthermore, the proposed system can
reliably estimate a reasonable solution by using the
reweighted LS.

To improve the statistical efficiency, we apply a RLS
scheme [25] to the proposed robust MAP, resulting in a
reweighted robust MAP (RRMAP). With the parameters
estimated by a sampling scheme, an initial scale [25] is
computed by

scale Js
k

s s
1 5 1 6 3 8= +1 4826 1. ,b q a

r

where b represents a term compensating for the finite sam-
ple effect. We consider b as a parameter because it cannot
be mathematically determined because of the a priori dis-
tribution of the motion field. Weights are determined as

w
r

s n
k

s n

s
k

,

,, .

,

1 5 1 5= �
%
&K

'K
1 2 5

0
scale

otherwise

based on the statistical criterion that distinguishes inliers
from outliers. With the selected weights, the final motion
vector is estimated as

u v w rs
k

s
k

u v s n
k

s n
n N s

s s
s

* *

¶ °

= Í1 5 1 5 1 54 9, arg min , , , .                (7)

Our algorithm can be summarized as follows:

for all k {
for all pixel s {

for all samples {

       compute u vs
k

s
k1 5 1 54 9,  by (6)

                     compute error with u vs
k

s
k1 5 1 54 9,  for all samples

                      store the median value of errors }

select u vs
k

s
k1 5 1 54 9,  that minimizes the stored median

value

compute u vs
k

s
k* *1 5 1 54 9,  by (7) } }

Compared with Horn and Schunck’s algorithm, the pro-
posed algorithm requires additional computation of motion
vector estimation, the computational complexity of which
depends on the number of samples.

High computational complexity is required for pixelwise
motion estimation of an entire image. The sampling scheme
also requires large computational resources to guarantee
convergence. To reduce the computation time, a coarse-to-
fine control scheme is adopted, with three-level hierarchy in
both the image space and motion field. A 4 � 4 Gaussian
filter, sampler, and interpolator are used for either down-
sampling or upsampling by a factor of two in horizontal
and vertical directions. At first, three-level image pyramids
of a pair of frames are constructed by using the Gaussian
filter and sampler. Next, optical flow is computed from
coarse level to fine level, in which optical flow estimated in
higher level is interpolated in the next lower level with the
upsampling rate equal to two in both directions.

3.2 RRMAP Motion Estimation With Multiple Image
Frames

Most conventional robust motion estimation methods use a
pair of images. A recursive robust optical flow estimation
algorithm was proposed by Black [31]. It computes the cur-
rent optical flow by prediction with optical flow computed
in the previous frame, based on the temporal continuity of
optical flow. We extend the proposed robust motion esti-
mation algorithm to multiple-image frame cases. For mul-
tiple image frames, Weber and Malik adopted a TLS regres-
sion scheme, assuming that the motion field is continuous
during short time intervals [26]. Thus, their algorithm is not
robust to scene changes. Whereas, the proposed algorithm
detects outliers in motion vectors and copes well with scene
changes in an image sequence, resulting in an algorithm
robust to scene changes. Also it is efficient for image se-
quences having a smooth motion. Note that it is difficult
to apply the proposed RRMAP algorithm directly to mul-
tiple image frames because of the high computational
complexity, and of motion discontinuities or scene
changes in successive image frames. The RRMAP algo-
rithm is extended to multiple frame cases by separating
inliers from outliers using the motion field estimated be-
tween two successive image frames. That is, the proposed
motion estimation algorithm with multiple frames can be
considered as a two-stage algorithm. At first, the motion
field estimated from two successive image frames is cal-
culated by (7). Next, the multiframe weight at pixel s is
determined by
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according to the estimated residuals, where the superscript
l represents a sequential ordering of the residual field that is
computed between a pair of image frames, the subscript
n l s+

r
q  denotes a motion trajectory in terms of l based on

the first-order prediction at the neighboring pixel n of s, and
K is the maximum number of iterations. With these
weights, the motion vector at s is calculated by
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in multiple-image frames, where 2F + 2 image frames are
used and l = 0 represents the two center frames among the
2F + 2 image frames. Because of the reweighting scheme in
multiple image frame cases, the proposed algorithm shows
robustness to abrupt scene changes.

4 EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we show the effectiveness of the proposed
algorithm by computer simulations with several synthetic

and real image sequences. With the synthetic image se-
quences, the performance of the proposed algorithm is
compared with that of three existing robust methods in
terms of two error measures: angle average error (a.e.) and
angle standard deviation (s.d.) [37], where the angle error
represents arccos

r r
q qt e¿3 8  between the true 3D unit velocity

r
q t  and the estimated 3D unit velocity 

r
q e . Note that the 3D

unit velocity 
r
q t  is defined by 

r
q t

u v
t t

T

t t

u v=
+ +
1

12 2
1, ,2 7 , where

ut  and vt  represent the components of the true motion
vector. Similarly, 

r
q e  is defined. Existing methods compared

in experiments include Black and Anandan’s algorithm [32]
based on M-estimation, Weber and Malik’s algorithm [26]
based on TLS, and Bober and Kittler’s algorithm [33] based
on the robust Hough algorithm. Also the performance of
these algorithms against additive Gaussian noise and im-
pulse noise is compared.

Fig. 1 shows synthetic and real image sequences used in
the experiments. Fig. 1a (256 � 256 Circle sequence consist-
ing of 10 frames) shows the previous image synthesized
from the current image using the specified motion. For an
upper circle, the motion field is specified by

u x y R y, sin1 6 4 9= -p 100
180  and v x y R x, sin1 6 3 8= -p 100

180 , where R

    
                                                                             (a)                                                                             (b)

    
                                                                            (c)                                                                          (d)

Fig. 1. Synthetic and real image sequences used in experiments. (a) Synthetic Circle sequence (256 � 256). (b) Synthetic Yosemite sequence
(316 � 252). (c) Synthetic Tree sequence (150 � 150). (d) Real SRI Tree sequence (256 � 233).
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denotes a zooming parameter and (x, y) = (0, 0) corresponds
to top left position of an image. For a lower right circle, the
motion parameter is specified by (dx, dy, dw) = (R, R, 0),
where dx and dy denote translation parameters along the x
and y axes, respectively, and dw signifies the clockwise ro-
tation angle. Fig. 1b (316 � 252 Yosemite sequence consist-
ing of 15 frames) and Fig. 1c (150 � 150 Tree sequence con-
sisting of 30 frames) illustrate realistic synthetic images.
Images from synthetic image sequences are shown in Figs.
1a, 1b, and 1c, and they are employed to compare the
quantitative performance of each method, whereas the real
image sequence shown in Fig. 1d (256 � 233 SRI Tree se-
quence consisting of 20 frames) is used to compare the
qualitative performance. We synthesize the test sequence in
Fig. 1a and other three test sequences are obtained from ftp
site (ftp.csd.uwo.ca/pub/vision) [37].

For performance comparison of each algorithm, Fig. 2
and Fig. 4 show motion estimation errors for the synthetic
data, subsampled by a factor of four in both directions,

whereas Fig. 6 illustrates horizontal motions estimated for
the real sequence. Motion estimation error is defined by the
vector difference between the estimated motion vector and
the true one that is known a priori.

The parameter values for each method are experimentally
determined. Small changes in these parameter values do not
affect the final results much. In Black and Anandan’s algo-
rithm, the Lorentzian function is used as error norm. Also
three-level pyramid using a six-stage continuation method

[32] is used, in which the scale sD for the data term varies

linearly from 18 2  to 5 2  and the scale sS for the
smoothness term changes linearly from 3 2  to 0 03 2. . We

use the weight lD = 5 for the data term and the weight lS = 1
for the smoothness term in simultaneous over relaxation
(SOR). Also the number of iterations at each level of the
pyramid is set to 100. In Weber and Malik method, the
number of scales is set to five and the number of bands per
scale is set to six, where 30 spatiotemporal bandpass filters
are used. The initial scale of the bandpass filter is set to 0.5

    
                                                                 (a)                                                                                        (b)

    
                                                                    (c)                                                                                  (d)

Fig. 2. Comparison of motion estimation errors for the synthetic Circle sequence (R = 3). (a) Black and Anandan’s algorithm. (b) Weber and
Malik’s algorithm. (c) Bober and Kittler’s algorithm. (d) Proposed algorithm.
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and the ratio between adjacent scales is set to 2 . Also
arithmetic progression is employed as a scale progression
scheme, a spatial ratio of filters is set to 1.5, and the border
size to nine. In Bober and Kittler’s algorithm, a four-
parameter model is used in a 15 � 15 block. The motion
vector is calculated pixelwise based on the search method
and subpixelwise based on the gradient descent method.
Because Weber and Malik’s algorithm cannot estimate the
motion vectors at border regions of the image, these regions
are excluded in computing error measures. Motion vectors
at pixels not defined are interpolated to fairly compare the
performance of different algorithms, and the performance of
each algorithm is evaluated in terms of two error measures.
In the proposed algorithm, we use a = 10, b = 0, and K = 200.
All algorithms except for Weber and Malik’s algorithm use
a pair of image frames. Any prefiltering scheme is not em-
ployed to fairly compare the performance of algorithms.

The computation time of algorithms based on the re-
laxation scheme depends on the number of iterations.
Computer simulation is done with MIPS R-4000 worksta-
tion. For the Yosemite sequence with parameters mentioned
above, Black and Anandan’s algorithm takes about 16 min-
utes. Bober and Kittler’s algorithm takes about 28 minutes
with an exhaustive search whereas the proposed algorithm
takes 70 minutes. Also the noniterative method, Weber and
Malik’s algorithm takes 87 minutes. Most of existing and
proposed algorithms are based on robust statistics, requir-
ing high computational complexity. So the reduction of the
computation time is to be investigated.

For the Circle sequence, all algorithms except for Weber
and Malik’s algorithm estimate the motion field between
the fifth and sixth frames whereas Weber and Malik’s algo-
rithm requires 10 frames with the fifth and sixth frames in
the middle of a total of 10 frames. For the Yosemite and Tree
sequences, the motion fields between 10th and 11th frames
are estimated. Also the motion fields between the 10th and
11th frames are estimated for the SRI Tree sequence.

4.1 Motion Estimation Results for Synthetic Image
Sequences

Table 1 shows comparison of motion estimation results for
the Circle sequence with varying motion parameter R.
Because the test sequence contains abrupt discontinuities
of gray level and motion, accurate motion estimation is
difficult. Table 1 shows that the proposed algorithm yields
better performance than the existing methods simulated,
in terms of quantitative error measures. The proposed
algorithm adopts the robust MAP based on the LMedS
scheme, thus it can estimate accurately not only discon-
tinuous but also smooth motion field. Black and Anan-
dan’s algorithm based on M-estimation is degenerated by
leverage data, where the breakdown point is at most 33
percent. Weber and Malik’s algorithm can estimate con-
tinuous motions because of regression with several image
frames, however, discontinuous motion field is smoothed
and is severely deteriorated if a large window is em-
ployed for regression. The proposed algorithm based on
the median operator has a high breakdown point, thus its
performance is not affected much by leverage data.

Fig. 2 shows the error of the motion field estimated by
each method, for the synthetic Circle sequence with R = 3.
Because the proposed algorithm can preserve motion dis-
continuities by embedding LMedS having higher break-
down point into MAP, it yields smaller error near occluded
regions than the existing algorithms. The proposed algo-
rithm estimates the motion field based on hierarchical
RRMAP, thus it also yields smaller error than other robust
estimation algorithms in homogeneous regions as shown in
Fig. 3a. The proposed algorithm is based on a reweighted
scheme and it has higher statistical efficiency than other
existing ones, thus in homogeneous regions, it yields good
results similar to Horn and Schunck’s [35]. Fig. 3b shows

the sum of weights Í ¶ °n N s s n
K

s
w ,
0 5  of the last iteration at s by

the reweighted scheme for the Circle sequence, because it is
difficult to show all weight values at neighbors of s. Black
regions, motion boundaries, represent pixels containing
outliers, while white regions do not contain outliers.

Table 2 shows the performance comparison of the mo-
tion estimation results for the Yosemite and Tree sequences.
The Yosemite sequence is a realistic synthetic sequence gen-
erated by translation of a camera in depth. The clouds in
this sequence is produced by the fractal brownian motion.
It has large divergent flow vectors and shows the discon-
tinuous motion field between mountains and clouds. Be-
cause the motion for the cloud region is stochastic, it is dif-
ficult to estimate the motion field. There is no true motion
field in this area, thus the error in this area is ignored in the
numerical comparison. As shown in Table 2, the proposed
algorithm shows satisfactory performance for large zoom.
Fig. 4 shows comparison of motion estimation errors for the
synthetic Yosemite sequence, in which the proposed algo-
rithm yields smaller error field than the existing ones tested.

TABLE 1
COMPARISON OF MOTION ESTIMATION RESULTS WITH VARYING

R (SYNTHETIC CIRCLE SEQUENCE)

Error measures

R Methods Angle
a.e.

Angle
s.d.

Black and Anandan  3.213 7.411
1 Weber and Malik 5.413 9.431

Bober and Kittler 3.156 7.437
Proposed 2.411 3.963
Black and Anandan 5.816 8.129

2 Weber and Malik 6.192 11.431
Bober and Kittler 4.159 8.248
Proposed 2.594 5.194
Black and Anandan 6.247 9.823

3 Weber and Malik 7.714 12.121
Bober and Kittler 4.815 9.379
Proposed 2.843 6.241
Black and Anandan 6.796 10.134

4 Weber and Malik 8.127 12.989
Bober and Kittler 5.018 9.948
Proposed 3.011 6.924
Black and Anandan 7.771 11.414

5 Weber and Malik 8.961 13.414
Bober and Kittler 6.043 10.694
Proposed 3.381 7.513
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In Table 2, results of the motion estimation for the two
synthetic Tree image sequences that are generated by trans-
lational and zooming motions are also listed, where those
sequences satisfy the smoothness constraint of the motion
field. The proposed algorithm shows the performance com-
parable to that of the existing algorithms. The proposed algo-
rithm shows better performance than existing ones in homo-
geneous regions because it is based on local and global opti-
mization techniques with a large number of observations.

4.2 Motion Estimation Results for Noisy Image
Sequences

We compare the performance of existing and proposed al-
gorithms with noisy image sequences. Table 3 shows esti-
mation results for the noisy Circle sequence (R = 3, first to
10th frames) contaminated by additive Gaussian noise and
impulse noise. We estimate the motion field for additive
Gaussian noisy images with varying standard deviation of

the Gaussian noise: 3, 5, 7, and 9. The change rate of the
performance with varying noise level is used, where the
change rate in precent is defined by

|error with noise – noise-free error|/
|noise-free error| � 100.

The proposed algorithm is based on a reweighted scheme,
thus, it yields good performance against Gaussian noise.

We also simulate motion estimation methods for impulse
noise cases with varying the noise probability, where the
noise probability represents the ratio of the number of noisy
pixels to the total number of pixels. A noisy pixel has a
value of zero or 255 with equal probability. In experiments,
all computer simulations are performed for each motion
estimation algorithm without preprocessing such as me-
dian filtering. Because motion estimation uses derivatives
of image brightness, the motion estimation results are se-
verely deteriorated by a few outliers generated by noise
sources. It is difficult to accurately estimate motion vectors
for noisy image sequences because motion estimation at a
pixel is done with the small number of samples in a small
finite-size local window, which is also true for other robust
methods. Its performance is deteriorated if the number of
outliers increases. But the proposed algorithm is robust
against impulse noise compared with other algorithms be-
cause of the employment of LMedS. While the absolute
error of the proposed algorithm is smaller than that of ex-
isting ones, the change rate is larger. As the number of out-
liers increases, the number of inlier samples decreases and
the absolute error generated by the proposed algorithm is
also small, which results in the large change rate for the
proposed algorithm.

4.3 Motion Estimation Results for Multiple Image
Frames

For the Yosemite sequence, motion estimation error of the
proposed RRMAP algorithm for multiple image frames is
(angle a.e., angle s.d.) = (4.01, 3.93). We use 10 frames (sixth

    
                                                                  (a)                                                                                          (b)

Fig. 3. Estimated motion field and sum of weights for the synthetic Circle sequence (R = 3). (a) Estimated motion field. (b) Sum of weights,

Í ¶ °n N s s,n
K

s
w 0 5 , by the RLS scheme.

TABLE 2
COMPARISON OF MOTION ESTIMATION RESULTS
(SYNTHETIC YOSEMITE AND TREE SEQUENCES)

Error
measures

Sequences Methods Angle
a.e.

Angle
s.d.

Black and Anandan 4.492 4.325
Weber and Malik 10.547 17.349

Yosemite sequence Bober and Kittler 14.140 19.316
Proposed 4.127 4.026
Black and Anandan 0.481 0.387

Tree sequence Weber and Malik 0.513 0.377
(Translation) Bober and Kittler 0.358 0.254

Proposed 0.365 0.233
Black and Anandan 3.484 3.891

Tree sequence Weber and Malik 4.011 3.117
(Zooming) Bober and Kittler 3.719 4.442

Proposed 3.621 3.075
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to 15th frames) and estimate the motion field between the
10th and 11th frames. Comparing the result for multiple
frame cases with that for two frame cases, we observe that
the performance of the proposed algorithm using multiple
frames is better than that using only two frames.

Next, we simulate with an image sequence having a scene
change, which is constructed by concatenating the Circle and
Claire sequences. We construct the test image sequence con-
sisting of ten frames by combining the Circle sequence (R = 3,
first to sixth frames) and the Claire sequence (seventh to 10th
frames) as shown in Fig. 5, where both sequences are 256 �
256 and the scene change occurs between the sixth and sev-
enth frames. The motion field is calculated between the fifth
and sixth frames. We compare the performance of Weber and
Malik’s algorithm and that of the proposed algorithm using
multiple-image frames. Estimation errors of Weber and
Malik’s algorithm and the proposed algorithm are (18.316,
20.314) and (2.781, 5.907), respectively. Because Weber and
Malik’s algorithm is based on TLS and uses a large spatio-
temporal filter, observations are oversmoothed along the
temporal axis, resulting in poor performance for the test se-
quence having a scene change. But the proposed algorithm is
robust to scene changes because of the RRMAP estimation

along the temporal axis. The multiframe weights ws n
l
,  at the

cross mark in the fifth frame (s = n = (160, 160)) are {1, 1, 1, 1,
1, 0, 0, 0, 0}. That is, the pairs of frames from l = -4 to l = 0 are
considered as inliers, while other frames are considered as
outliers. As a result, Claire images are excluded in estimating
the motion field between the fifth and sixth frames of the
Circle sequence. For smooth motion along the temporal axis,
because a lot of observations contaminated by Gaussian
noise are detected as inliers, the proposed algorithm using
multiple image frames yields better performance than that
using a pair of image frames. Temporal robust motion esti-
mation yields the statistical efficiency and robustness for es-
timation of smooth and discontinuous motions along the
temporal axis.

4.4 Motion Estimation Results for Real Image
Sequences

We also compare motion estimation results for the real im-
age sequence. Since the real motion field is not known a
priori, the performance of each algorithm is subjectively
compared. Fig. 6 shows the horizontal flow of the motion
field estimated by each method for the SRI Tree sequence.

TABLE 3
COMPARISON OF MOTION ESTIMATION RESULTS FOR ADDITIVE GAUSSIAN NOISE AND IMPULSE NOISE

(SYNTHETIC CIRCLE SEQUENCE, R = 3)

Noise type Error measures
(Noise level) Noise level Methods Angle a.e. (change rate) Angle s.d. (change rate)

Black and Anandan 6.286 (1.1%) 9.900 (0.8%)
3 Weber and Malik 7.991 (3.6%) 13.491 (11.3%)

Bober and Kittler 4.961 (3.0%) 9.843 (4.9%)
Proposed 2.891 (1.7%) 6.374 (2.1%)
Black and Anandan 6.827 (9.5%) 10.110 (3.1%)

5 Weber and Malik 8.413 (9.1%) 14.318 (18.1%)
Bober and Kittler 5.716 (18.7%) 11.024 (17.5%)
Proposed 3.027 (6.5%) 7.496 (20.1%)

Gaussian (s.d.) Black and Anandan 7.687 (23.5%) 10.915 (11.4%)
7 Weber and Malik 9.317 (20.8%) 14.943 (23.3%)

Bober and Kittler 6.374 (32.4%) 12.306 (31.2%)
Proposed 3.647 (28.3%) 8.486 (36.0%)
Black and Anandan 8.683 (39.1%) 12.819 (30.5%)

9 Weber and Malik 9.915 (28.5%) 15.782 (30.2%)
Bober and Kittler 7.201 (49.6%) 13.435 (43.2%)
Proposed 4.484 (57.7%) 10.176 (63.1%)
Black and Anandan 7.094 (14.3%) 11.317 (15.8%)

3 Weber and Malik 8.794 (14.0%) 15.236 (25.7%)
Bober and Kittler 5.746 (19.3%) 11.468 (22.4%)
Proposed 3.597 (26.5%) 8.017 (28.5%)
Black and Anandan 7.867 (26.7%) 12.417 (27.1%)

5 Weber and Malik 9.541 (23.7%) 16.713 (37.9%)
Bober and Kittler 6.923 (43.8%) 13.368 (42.5%)
Proposed 4.193 (47.5%) 9.817 (57.3%)

Impulse (Percentage) Black and Anandan 9.557 (53.0%) 13.918 (42.8%)
7 Weber and Malik 11.003 (42.6%) 18.015 (48.6%)

Bober and Kittler 8.246 (71.3%) 15.204 (62.1%)
Proposed 5.514 (94.0%) 10.968 (64.1%)
Black and Anandan 11.536 (85.7%) 16.748 (71.5%)

9 Weber and Malik 13.110 (70.0%) 19.516 (61.0%)
Bober and Kittler 10.146 (110.7%) 17.277 (84.2%)
Proposed 6.814 (139.7%) 13.473 (115.9%)
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The amount of horizonal flow us  is represented by a gray-
level image, in which gray level is expressed as us � 50 + 20
for easy comparison. The proposed algorithm preserves
motion discontinuities between trees and background bet-
ter than the existing ones. Weber and Malik’s and Bober
and Kittler’s algorithm are sensitive to noise and disconti-
nuities. Black and Anandan’s algorithm is comparable to
the proposed algorithm, however their algorithm yields the
disperse motion field in several regions.

5 CONCLUSION

In this paper, we propose the RRMAP motion estimation
algorithm that is robust to motion discontinuity and noise,

by embedding a robust median operator into a MAP esti-
mator. It is effective for both smooth and discontinuous
motions. Also the proposed RRMAP is extended to multi-
ple image frame cases having scene changes. Computer
simulation with various synthetic sequences shows that the
proposed algorithm yields better performance, compared to
existing ones tested. Also the proposed algorithm is robust
to Gaussian noise and impulse noise, and it yields the more
natural motion field for real image sequences.

Further research will focus on application of the pro-
posed algorithm to various computer vision paradigms
such as 3D motion estimation and surface reconstruction.

    
                                                                    (a)                                                                                       (b)

    
                                                                    (c)                                                                                       (d)

Fig. 4. Comparison of motion estimation errors for the synthetic Yosemite sequence. (a) Black and Anandan’s algorithm. (b) Weber and Malik’s algo-
rithm. (c) Bober and Kittler’s algorithm. (d) Proposed algorithm.

Fig. 5. Frame construction for motion estimation with multiple-image frames.
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