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Geodesic Active Contours and Level Sets for
the Detection and Tracking of Moving Objects

Nikos Paragios and Rachid Deriche

Abstract—This paper presents a new variational framework for detecting and tracking multiple moving objects in image sequences.
Motion detection is performed using a statistical framework for which the observed interframe difference density function is
approximated using a mixture model. This model is composed of two components, namely, the static (background) and the mobile
(moving objects) one. Both components are zero-mean and obey Laplacian or Gaussian law. This statistical framework is used to
provide the motion detection boundaries. Additionally, the original frame is used to provide the moving object boundaries. Then, the
detection and the tracking problem are addressed in a common framework that employs a geodesic active contour objective function.

This function is minimized using a gradient descent method, where a flow deforms the initial curve towards the minimum of the
objective function, under the influence of internal and external image dependent forces. Using the level set formulation scheme,
complex curves can be detected and tracked while topological changes for the evolving curves are naturally managed. To reduce the
computational cost required by a direct implementation of the level set formulation scheme, a new approach named Hermes is
proposed. Hermes exploits aspects from the well-known front propagation algorithms (Narrow Band, Fast Marching) and compares
favorably to them. Very promising experimental results are provided using real video sequences.

Index Terms—Front propagation, geodesic active contours, level set theory, motion detection, tracking.

1 INTRODUCTION

HE problem of detecting and tracking moving objects

has a wide variety of applications in computer vision
such as coding, video surveillance, monitoring, augmented
reality, and robotics. Additionally, it provides input to
higher level vision tasks, such as 3D reconstruction and 3D
representation. This paper addresses the problem using
boundary-based information to detect and track several
nonrigid moving objects over a sequence of frames acquired
by a static observer.

During the last decade, a large variety of motion
detection algorithms have been proposed. Early approaches
for motion detection rely on the detection of temporal
changes. Such methods [1] employ a thresholding technique
over the interframe difference, where pixelwise differences or
block differences (to increase robustness) have been
considered. The difference map is usually binarized using
a predefined threshold value to obtain the motion/no-
motion classification. A step forward in this direction was
the use of statistical tests [2] that were constrained to
pixelwise independent decisions. These tests assume in-
trinsically that the detection of temporal changes is
equivalent to the motion detection. However, this assump-
tion is valid when either large displacements appear or the
object projections are sufficiently textured, but fails in the
case of moving objects that preserve uniform regions. To
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avoid this limitation, temporal change detection masks
(Gabor spatio-temporal change detectors) and filters have
also been considered [3]. The use of these masks improves
the efficiency of the change detection algorithms, especially
in the case where some a priori knowledge about the size of
the moving objects is available, since it can be used to
determine the type and the size of the masks. On the other
hand, these masks have limited applicability since they
cannot provide an invariant change detection model (with
respect to size, illumination) and cannot be used without an
a priori context-based knowledge.

To overcome this, global energy frameworks that use
more complex primitives and apply some spatial con-
straints to the segmentation process were introduced. The
motion detection problem is formulated within a global
minimization framework that combines attraction and
regularity-based terms. In that direction, the spatial Markov
Random Fields have been widely used [4], [5], [6] and
motion detection has been considered as a statistical
estimation problem. The optimal segmentation map is
obtained by maximizing the a posteriori segmentation
probability given the observed data. The optimization
problem turns to be equivalent to the minimization of a
global objective function and is usually performed using
stochastic (Mean-field, Simulated Annealing) or determi-
nistic relaxation algorithms (Iterated Conditional Modes,
Highest Confidence First). Although MRF-based estimation
is a very powerful paradigm, usually it is time consuming
(especially when the solution space is large), a fact that
constitutes a serious shortcoming.

Tracking goes further than motion detection and requires
extra motion-based measurements, specifically the segmen-
tation of the corresponding motion parameters. There are
numerous research efforts dealing with the tracking problem
and the existing approaches can be mainly classified in two
distinct categories:
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e Motion-based approaches rely on robust methods
for grouping visual motion consistencies over time
[7], [8], [9]. These methods are relatively fast but
have considerable difficulties in dealing with non-
rigid movements and objects.

e Model-based approaches impose high-level seman-
tic representation and knowledge and, therefore, are
more reliable compared to the motion-based ones
[10], [11], [12], [13], [14]. The model space can be
either the real 3D world, or the 2D projection (image)
space. These methods suffer from high computational
costs for complex models due to the need for coping
with scaling, translation, rotation, and deformation.

In both cases, tracking is performed using measurements
provided by geometrical or region-based properties of the
tracked object. In this direction, there exist two main
approaches:

e The boundary-based approaches (also referred to as
edge-based) rely on the information provided by the
object boundaries (image-based shape properties)
[15], [16],

o The region-based approaches rely on information
provided by the entire region such as texture and
motion-based properties [9], [5].

The idea of using boundary-based features to provide
tracking has been widely adopted. The boundary-based
features (edges) are well-adapted to the tracking problem
since they provide reliable information which does not
depend on the motion type, or object shape. Usually, the
boundary-based tracking algorithms employ active contour
models, like snakes [17], balloons [18], [19], and geodesic
active contours [20], [21]. These models are energy-based
[20], [21] or geometric-based minimization approaches [22]
that evolve an initial curve under the influence of external
potentials, while it is being constrained by internal energies.
The snakes are usually parameterized (using B-splines) and
the solution space is constrained to have a predefined shape
[18], [15], [23], [16]. These methods require an accurate
initialization step since the initial contour converges
iteratively toward the solution of a partial differential
equation. In the case of the geodesic active contour models,
there is not such a constraint since the former are relatively
free of the initialization step. Besides, these models are not
parameterized and can be used to track objects that undergo
nonrigid motion [24].

On the other hand, the region-based methods use a
motion estimation/segmentation technique. In this case, the
estimation of the target’s velocity is based on the corre-
spondence between the associated target regions at differ-
ent time instants [25], [26], [5]. This operation is usually
time consuming (a point-to-point correspondence is re-
quired within the whole region) and is accelerated by the
use of parametric motion models that describe the target
motion with a small set of parameters. The use of these
models introduces the difficulty of tracking the real object
boundaries in cases with nonrigid movements/objects, but
increases robustness due to the fact that information
provided by the whole region is exploited.

This paper describes a unified approach for the detection
and tracking of moving objects by the propagation of curves
[29]. Thus, an original scheme is proposed that may be

viewed as a geodesic active motion detection and tracking
model which basically attracts the given curves to the
bottom of a potential wellcorresponding to the boundaries
of the moving objects.

Initially, a statistical analysis is performed and is used to
provide the motion-based information. According to this
modeling phase, the assumption that the observed
interframe difference density function is a two component
mixture model is considered. These two components are
zero-mean and correspond to the static (background) and to
the mobile population (moving objects). Then, using Bayes
rule, the conditional objects boundary probability given the
observed data is estimated. This information is used to
solve the object detection problem. Additionally, by assum-
ing a smooth background, the input frame can be used
directly to provide an accurate object tracking result. The
detection and the tracking problem are dealt with simulta-
neously, using a geodesic active contour model that permits
an initial curve to evolve towards a minimum length
geodesic active curve that takes into account the desired
image characteristics under the influence of internal and
external forces. The objective function is minimized using a
gradient descent method, where the associated partial
differential equation is implemented using the level-set
methodology [30], [31], which provides some very nice
properties. Topological changes (splitting and merging) are
naturally handled, intrinsic geometrical properties can be
estimated directly from the level-set frame, and a quite
stable numerical approximation scheme is applicable. For
the front propagation problem, two well-known schemes
are used, namely the Narrow Band [32] and the Fast
Marching [31] approaches. A new scheme is proposed,
called HERMES, which is also evaluated compared to the
existing schemes. Finally, in order to further reduce the
execution time, a multiscale approach has also been
considered. Very promising experimental results are pro-
vided using real video sequences.

The most closely related work with the one proposed in
this paper can be found in [24] and, more recently, in [27], [28].

In [24], a three step approach is proposed which is very
different from the unified approach presented in this article.
There, the authors following their previous work on
geodesic active contours, start by detecting the contours of
the objects to be tracked. An estimation of the velocity
vector field along the detected contours is then performed.
At this step, very unstable measurements can be obtained.
Following this, a PDE is designed to move the contours to
the boundary of the moving objects. These contours are
then used as initial estimates of the contours in the next
image and the process iterates.

More recently, in [27], a front propagation approach that
couples two partial differential equations to deal with the
problems of object tracking and sequential segmentation was
proposed. Additionally, in [28], a new, efficient numerical
implementation of the geodesic active contour model has
been proposed which was applied to track objects in movies.

The paper is organized as follows: Section 2 introduces
the level set formulation and the geodesic active contour
model which is the basis of our approach. Besides, the
existing front propagation algorithms are briefly explained
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in this section, while a new approach (the HERMES
algorithm) is proposed. Section 3 illustrates the detection
and the tracking approach, by proposing a unified model
for both problems. Finally, Section 4 presents discussion,
experimental results, and concluding remarks.

2 PROPAGATING CURVES

2.1 Level Set Theory

Let [C:[0,1] — R? p— C(p)] be a parameterized closed
initial planar curve in a Euclidean plane and C(p,t) the
family of curves which is generated by the movement of an
initial curve Cy(p) in the direction of its inward Euclidean
normal vector N. We assume that the speed of this
movement is a scalar function [F] of the curvature K:

{ C, = FION )
C(p,0) = Co(p)-

In order to implement the curve evolution according to the
above equation, we can consider a Lagrangian approach and
produce the associated equations of motions for the position
vector (z,y) = C(p). These positions are updated using a
difference approximation scheme. The main drawback of
this approach is that the evolving model is not capable of
dealing with topological changes of the moving front.

This can be avoided by considering the approach of
Osher and Sethian [30]. According to them, the initial curve
Cy(p) is represented by a zero-level set (¢ = 0) function of
an initial surface z (Fig. 1)

[z = (z,y,0(z,y.1) € R?].

Using (1) and taking the derivative of ¢(z,y,t) = 0 with
respect to time and space, the following associated equation
of motion for the surface ¢() can then be easily derived:

¢ =— F(K) [Vl
{ ¢(CO(p)>O) = 0, (2)

where |V¢| denotes the gradient norm. Thus, there is a
connection between the family of moving curves C(p, t) and
the family of one parameter evolving surfaces ¢(z, y,t). This
connection is due to the fact that the zero level set values of
the function ¢ always yields to the moving front. This
propagation framework has numerous advantages. More
specifically, the evolving function ¢ always remains a
function as long as F is smooth. However, the propagating
curve C(p) may change topology as the function ¢ evolves.
Additionally, due to the fact that ¢(p,¢) remains a function
during its evolution, numerical simulations may be devel-
oped very easily and an explicit finite difference approach is
possible. Finally, intrinsic geometric properties of the curve
can be estimated directly from the level set function,
(e.g., normal, curvature) and the method can be very easily
extended to deal with problems in higher dimensions [33].

2.2 Geodesic Active Contours
Let I:[0,a] x [0,b] — R* be a given input in which the task
of extracting the object contours is considered.

The geodesic active contour model [20], [21] was intro-
duced as a geometric alternative for snakes [17], [34] and
aims at finding the curve (C)(p) that minimizes the following
energy:

Ciy

c@) <)

Fig. 1. Level set methodology and curve propagation. The left column
shows the evolving level set function, while, on the right, the
corresponding curve that is the zero level set values of the surface is
illustrated. The mechanism that allows changes of topology is also
demonstrated.
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where

e ((p) is the partial derivative of curve with respect to
its parameter p

o) =5 )

and
e ¢(.) is a monotonically decreasing function such that
g(r) — 0 as r — oo, and ¢(0) =1 (e.g., a Gaussian
function [35]).
The energy interpretation is clear since, when the
detection of the object contours is equivalent to finding
the geodesic curve that best takes into account the desired

image characteristics (edges) [36].
This objective functions is minimized by solving the

associated Euler-Lagrange equation. According to it, the
flow that deforms the initial curve C(p,0) = Cy(p) toward
the minima of (3) is given by a steady state solution of:

Cr = [g(IVIDK = Vg(IVI]) - NN, (4)

where t denotes the time as the contour evolves and N is

the inward Euclidean normal vector to the curve C(p,t).
By introducing the level set formulation, curve C' can

be considered as the zero level set of a function
¢ :10,a] x [0,b] — R. This model is parameter-free, as well
as topology-free, since different topologies of the zero
level set correspond to the same topology of ¢. Based on
(1), it can be shown that a steady state solution of this
geodesic problem is given by:

¢ = g(IVIDKIV| + Vy([VI])- Ve, ()

where ¢(z,y,0) = ¢o(x,y) and the curve C is represented by
the zero level values of ¢. The normal N, as well as the
curvature value K, can be estimated directly from the level-
set function ¢
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The geodesic active contour model compares favorably
to the classical snake due to the fact that it does not depend
on the curve parameterization. Furthermore, due to the
level set implementation, topological changes are natu-
rally handled, which allows detection of all the objects
which appear in the image plane without knowing their
exact number.

N =

2.3 Front Propagation Algorithms

A direct implementation of (2), (5) involves the reestimation
at the level set function of all image pixels (not simply the
zero level set corresponding to the front itself). This front
propagation method is computationally expensive due to
numerous useless calculations that are performed for pixels
which are out of interest during the front propagation. In
order to overcome this drawback, two different methods
have been proposed: the Narrow Band [32], which is still
computationally expensive, and the Fast Marching [31] that
is a very fast front propagation framework but has limited
applicability. Here, a new method is proposed, called the
Hermes algorithm [29], that combines the rapidity of Fast
Marching with the generality of Narrow Band.

2.3.1 Narrow Band Approach

The key idea is to deal only with pixels which are close to the
latest position of the zero level-set contour in both directions
(inward and outward). This is known as Narrow Band
Approach, which has been initially proposed in [37] and
extensively analyzed and optimized in [32]. Since the curve
evolution is smoothly performed according to the Euler-
Lagrange equations, the use of pixels which are far away
from the current contour does not affect the evolution
process. Therefore, only pixels close to the current contour
position are considered. A set of narrow band pixels is
defined around the latest contour position and the level set
function is updated only within this band. The problem is
that the curve position changes dynamically (from iteration
to iteration). As a consequence, the Narrow Band also has to
be updated from iteration to iteration. This will increases the
cost dynamically (in terms of complexity), thus, the contour
position and the set of narrow band pixels are updated only
in cases where the contour is very close to the borders of the
current band. A significant cost reduction is achieved
through this approach, but the cost still remains considerable.

2.3.2 Fast Marching Approach
This algorithm has been proposed in [38], [39] and can be
used in cases with monotonically advancing fronts, that is,
fronts moving with a velocity [F| which is always positive
(or negative), leading to a particular stationary level set
equation for the crossing time [T] given by [ |[VT|F =1 ].
This method provides an extremely fast scheme to solve
problems of the above form and relies on a coupling of the
narrow band methodology with a fast heap-sort algorithm.
The key idea is the observation that the information
propagates “one way,” that is, from smaller values of T" to
larger ones. Thus, the front is swept ahead in an upwind
fashion by considering a set of pixels in a narrow band
around the existing front and, to march this narrow band

forward, freezing the values of existing pixels and bringing
new ones into the narrow band structure. The main
handicap of this approach is that it requires propagation
velocities that have constant sign, thus it cannot be applied
to cases with curvature-dependent speed functions.

2.3.3 Hermes Algorithm

In this section, a new approach is proposed that combines
the Narrow Band and the Fast Marching method by employing
the idea of a selective propagation (Fast Marching) over a
relatively small window (Narrow Band). Thus, the curve
propagation is speeded up by introducing the idea of
propagating the front in a pixel that evolves faster at
each step.
A given level set PDE can be rewritten as:

¢z, y) = ¢ (2,y) + V(z,y,¢") &t (6)

This PDE indicates that the front is propagating differently
with respect to the image and the geometric properties of each
pixel. The Narrow Band method updates the level set within a
band which may contain pixels with zero-valued propaga-
tion velocities. In these pixels, the front remains static,
resulting in a significant amount of redundant computations.
This problem can be avoided by introducing the idea of
evolving the front very locally according to the associated
propagation velocities. This leads to a smart Narrow Band
method that uses ideas from Fast Marching (e.g., fastest
pixel), resulting in a drastic decrease of the required
computational cost. Thus, at each step, the proposed
approach selects the pixel of the front, preserving the
highest absolute propagation velocity, and performs a local
evolution to the level set frame within a circular window
centered on this pixel. An overview of the algorithm is
shown in Fig. 2, while a detailed description follows:

A. Initialization Procedure. The level set function is
initialized as a signed distance function from the
front. The maximum distance (in terms of absolute
value) is considered to be the radius of the active
window (see step B). Then, the front pixels are
introduced to the active list [SETACTIVEPIXELS()].

B. MarchingProcedure. Ateachstep,thepixel[c]withthe
highest absolute propagation velocity is selected from
the active list [SELECTHIGHESTVELOCITY()]. If there
are several pixels with equal propagation velocities,
then the first in, first out (FIFO) rule is applied with
respect to their entrance times in the active list.

1. A centralized circular window is defined
around this pixel [c] (the radius of this window
is usually two) and the level set function is
updated locally within this window. To ensure
stability, different time steps for the pixels [s]
within this window are used. These time steps
are inversely proportional to the geometric
distance from the window center

ot
ot = |.
) = T sl

This modification does not affect the propaga-
tion process since, if the front moves, this will
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SETACTIVEPIXELS();

ITERATIONNUMBER :— 0;

WHILE ( ITERATIONNUMBER < MAXITERATION ){
ITERATIONN UMBER—+;
SITE :— SELECTHIGHESTVELOCITY();
EVOLVELEVELSETLOCALLY (SITE);
FINDFRONTLOCALLY (SITE);
REMOVEINACTIVEPIXELS(SITE);
ADDNEWACTIVEPIXELS(SITE);
RE-INITIALIZELEVELSETLOCALLY (SITE);
UPDATEAFFECTEDVELOCITIES(SITE);
Ir ( REACHCONVERGENCE() )

BREAK;

}

FINDLATESTFRONTPOSITION();
EXIT();

Fig. 2. Hermes algorithm in pseudosymbolic language.

first happen for the selected pixel (e.g., highest
propagation velocity), which is also associated
with the most important time step. This
operation is suspended if the front moves or a
certain number of iterations is reached
[EVOLVELEVELSETLOCALLY()]. As for the
propagation velocities within the local window,
they are estimated only at the beginning and
they are not affected by the local changes of the
level set function.

2. When the local level set evolution is com-
pleted, then the front is extracted within the
active window by considering the zero level
set crossings [FINDFRONTLOCALLY()] and the
level set function is reinitialized locally
[REINITIALIZELEVELSETLOCALLY(.)]. The
modified local front [current] is compared to
the one before evolution [previous]. The
following cases are considered for the pixels
within the local window:

- Ifapixelis anew front point (it belongs in the
current front, while it was not a front pixel
before the local evolution), then it is added to
the active list [ADDNEWACTIVEPIXELS()],

- If a pixel is an ex-front point (it was part
of the front before but not anymore),
then it is removed from the active list
[REMOVEINACTIVEPIXELS()],

- Finally, if a pixel belongs to the current and
the previous front, then it is affected (in
terms of the propagation velocity) by the
local changes of the level set function. Hence,
a reestimation of its velocity is performed
[UPDATEAFFECTEDVELOCITIES()].

C. Control Procedure. If a certain number of iterations
is reached or the front does not further move
[REACHCONVERGENCE()], then the operation is
completed, and the final front position is extracted
[FINDLATESTFRONTPOSITION(.)], otherwise, step B
is repeated.

06 2S
25 S S
EIRERE

Fig. 3. Mean curvature flow (top to bottom, left to right) according to the
HERMES algorithm [¢; = K|V¢||] (e.g., minimizing the length). The
curvature values are estimated directly from the level set function using
a 3 x 3 window and the max/min mode scheme. The propagation grid is
100 x 100.

The key issue for an efficient implementation of the
Hermes algorithm is a fast way for locating the grid pixel
among the front pixels having the highest propagation
velocity. This can easily be done using a variation of a heap-
sort algorithm [40]. Initially, all the active pixels are sorted
in a heap-sort (so that the highest velocity member can be
easily located). When the propagation velocity of a pixel is
changed, then it is bubbled upward (or downward) until it
reaches its correct position. Whenever a new pixel is added
to the heap-sort, it is placed at the end and the processed in
the same manner.

The proposed algorithm does not solve exactly the given
partial differential equation in terms of the intermediate
levels of the curve evolution since these levels are not always
compatible with the expected ones. This is due to the locality
that has been introduced during the curve propagation. On
the other hand, the final solution is obtained very fast and
respects the curvature-based geometrical constraints that are
imposed by the energy functional. Besides, the Hermes
algorithm is independent of the form of the speed function
and is capable of coping with a large variety of level-set
applications in image processing (i.e., curvature based speed
functions (Fig. 3), positive/negative speed functions, etc.).
Additionally, it has an efficient implementation with a high
convergence rate.

A fundamental issue is raised here; specifically, whether
it is more important to obtain the final solution by
respecting the constraints that are imposed by the motion
equation on the intermediate levels, rather to obtain the
same final solution much more rapidly by loosely respect-
ing these constraints in the intermediate levels. The Hermes
algorithm follows the second path, where the constraints
are at least respected in the final solution.
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3 DETECTION AND TRACKING

3.1 Defining the Model

Let I(s;t) be the current and I(s;t —1) be the previous
input frame and let D(s;t) be the interframe gray level
difference frame:

D(s;t) = I(s;t) — I(s;t —1). (7)

The motion detection problem can be viewed as a “binary”
decision for each pixel on the frame grid. There exist two
possible cases, the static one corresponding to a pixel that
belongs to the background in both frames and the mobile
case corresponding to a pixel that belongs to a moving
object in the current or in the previous frame. Let pp(d) be
the probability density function of the observed interframe
difference frame (histogram of the interframe difference).
This density function is assumed to be a mixture model of a
static and a mobile component. Let pg(d) be the conditional
static probability and let py/(d) be the conditional mobile
probability given the observed interframe difference data [6].
These probability density functions are assumed to be
homogeneous (i.e., independent of pixel location).

The observed difference values are assumed to be obtained
by selecting an hypothesis L € {S : static, M : mobile} with
a priori probability P, and, then, selecting a value d according
to the probability law pr(d). Thus, the observed probability
density function can be decomposed as:

pp(d) = Ps ps(d) + Py pr(d). (8)

It is assumed that the conditional probability density
functions are zero-mean and follow the Laplacian

Ar
pald) = e )
or the Gaussian law
L s
pa(d) = e . (10)

The static component is zero-mean since this population
contains the difference values that are estimated from the
projected intensities of the same 3D point at different time
instants. Additionally, it is assumed that the mobile objects
preserve uniform regions and important difference values
appear at the occluded and disoccluded regions of the back-
ground due to the objects motion. These parts are expressed
statistically by the tail of the conditional density function.

The estimation of the unknown parameters of this model
{(Pr,0r) : L € {S: static, M : mobile}}, where [0 = {\|o}]
is done using a gradient descent method derived by the
maximum likelihood principle [41], where the parameter
vector (P, 0) is the value of (P, ©) that maximizes the joint
density

p(X|P,0) = [ pod|P,©).
deD

(11)

An example of this analysis is illustrated in Fig. 4, where the
first, second, and third order moments are used to provide
an initial solution.

Static Component
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Fig. 4. Motion detection-based statistics for player sequence (Fig. 5).
(a) Using Laplacian modes, I/terations number: 14, Mean Approximation
error ~ :0.00032. (b) Using Gaussian modes, lterations number: 06,
Mean approximation error ~ 0.00047. (1) Static component, (2) mobile
component, and (3) input density function (gray line), mixture
approximation (black line).

3.2 Setting the Energy

3.2.1 Detection Part

Let s be a grid location, and N be a partition of its
neighborhood into two [Ng(s), Ni(s)] local regions. Addi-
tionally, let D(N(s)) be the corresponding difference data in

this neighborhood.
If [p(B|D(N(s)))] is the probability of s being at the

boundaries between a moving object and the static back-
ground, then according to the Bayes rule is given by:

i) =22 )

(12)

where

e pp(d) is the conditional boundary probability,

e pp(d) is the conditional nonboundary probability,

e and p(B) is the a priory boundary probability, which
is a constant scale factor and thus can be ignored.
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Fig. 5. (a) Neighborhood partition that indicates a boundary pixel,
(b) neighborhood partition that indicates a nonboundary pixel, and
(c) neighborhood partitions that are considered.

The conditional boundary/nonboundary probability can
be easily estimated since

1. Ifsisaboundary pixel, then there exists a partition of
its neighborhood [Ny(s), Ng(s)], where the most
probable assignment for Ny (s) is the Static hypothesis
while for Ny(s) is the Mobile hypothesis or vice-versa
(Fig. 5a),
boundary condition:

(Ng € static N Ny, € mobile)
U (Ng € mobile N Ny, € static)

2. If s is not a boundary pixel, then, for every possible
neighborhood partition, the most probable assign-
ment for Np(s), as well as for Ny(s), is either the
Static or the Mobile hypothesis (Fig. 5b).
nonboundary condition:

(Ng € staticN Ny, € static)
U (Ng € mobile N N, € mobile) |

As a consequence, the conditional boundary [pp()] and
nonboundary [pz()] probabilities can be estimated directly
from known quantities using the following formulas:

p(D(N(s))|B) = p(D(N(s))|[Ng € staticN Ny, € mobile])
p(D(N(s))|[Nr € mobile N Ny, € static])
= ps(D(NL(s))) pau(D(Nr(s)))
+ pu(D(Ni(s))) ps(D(Nr(s)))
p(D(N(s))|B) = p(D(N(s))|[Ng € static Ny, € static])

+ p(D(N(s))|[Ng € mobile N Ny, € mobile])
= ps(D(NL(s))) ps(D(Nr(s)))
+ pu(D(NL(s))) pr(D(Ng(5)))-

Since the probability that pixel s lies on the boundary of a
moving object is defined, the next problem is to define the
neighborhood partition. Four different partitions of the
neighborhood are considered, namely the vertical, the
horizontal, and along the two diagonals (Fig. 5c). These
partitions can be obtained by assuming four different
orientations

(b)

Fig. 6. Motion detection for the soccer sequence. Two consecutive
frames are shown in the first row and the curve propagation in the other
rows (left to right, top to bottom). Curve propagation: Narrow Band

([Cr ={9(pB)K +V g(pp) - NIN]. (1a) Previous frame, (1b) current
frame, (2a) initial curve, (5a) motion detection area projected in the
current frame, and (5b) motion detection area projected in the previous

frame.
T 3T
|:6_ {O)Z)gvz}}v

while the corresponding neighborhood regions are 3 x 3

directional windows. Using these partitions, the following

vector of boundary probabilities is obtained:

r po(D(N(5)).0) 7
p(D(N(5)),0)+p5(D(N(s)),0)
pe(D(N(s))5)
)3)+ps(DIN(s) )

pe(D(N(5))5) ’

pe(D(N(s))5)+p5(D(N(5) 5)

pi(D(N(s)) )
) 5) +pa(DIN() ) |

(D(N (13)

pB(Duv( B)

where the different elements correspond to the different
neighborhood partitions (with respect to §). The highest
element of the above vector is assigned to the motion
detection boundary image {Ip}.

Then, the detection and tracking problem is expressed
using the framework of energy minimization; under the
conditions of a geodesic active problem; an energy function
is associated to the given curve that has to be minimized
with respect to the curve length and position:

E[(C)(p)] = /0 oIn(CE))|Cw). (14)

where
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Fig. 7. Front propagation with Hermes algorithm: (a) ¢, = F|V4|,
(b) ¢ =[F K |Vg|+ VF-V¢]. In both cases, the F is a Gaussian
function that captures the object boundaries (see Section 4.1).

1 _ﬁ]
e 22
V2mo

)=

2
8

is a Gaussian function.

Using this energy functional, the geodesic active contour
framework permits the detection of the areas corresponding
to moving objects. In the case of objects with holes, this
result is not equivalent to the moving area since there are
some regions inside the estimated contour which corre-
spond to static image regions. These regions can be easily
detected by defining a curve inside the motion detection
area that evolves outward, guided by the same propagation
forces.

3.2.2 Tracking Part

Complete motion detection is not equivalent to temporal
change detection. This is because the area estimated as
moving between two successive images corresponds to the
union of the moving object locations in these images. The
goal is to track the objects in these images. To achieve this,
the following modification of the geodesic active contour
model is required:

1
E[(C)(p)] = / v gIp(Cp)),op) +

Motion Detection Term

(1 —7) g(VI(Cp);t),or) | | C0)| dp,

Tracking Term Regularity

where op,or are the variances of the Gaussian functions
that capture the motion detection and the tracking

o 8
cE o I Hermes
iZ 0
s - I Narrow Band
% [ Fast Marching
£
|
=
[o0]
©
<
(aV] I
o
100x100 150x150 200x200
Image Size

Fig. 8. Front propagation algorithms computational cost. Evolution:
(¢ = F|V¢|], time step: 0.1, narrow band size: 10, it Hermes window
radius: 2.

information. The detection term forces the curve to
converge towards the moving area, avoiding edges or static
objects. On the other hand, since the curve includes the
moving area, this term is close to zero. The tracking term is
then used for evolving the curve until it coincides with the
exact location of the moving object. The assumption that the
region between the object position and the motion detection
result preserves significant edges only at the object
boundaries is made. Finally, v € [0, 1] is a parameter which
balances the contribution of the detection and the tracking
term. Selecting a value for v close to zero, the model is
forced to detect the moving objects (using a geodesic curve)
while a value close to one, results in a geodesic active
contour model.

3.3 Multiscale Approach

In order to further reduce the computational cost, a
multiscale technique is proposed that can be combined
with the front propagation algorithms. Specifically, a
Gaussian pyramid of images is built upon the full
resolution image and similar geodesic contour problems
are defined across the different levels. This multiresolution
structure is then utilized according to a coarse-to-fine
strategy. In other words, an extrapolation of the current
contour from a level with low resolution to levels with finer
contour configuration takes place. Usually, this technique is
applied to a pyramid with two or three levels. At the low
resolution levels, the detection problem is solved by setting
the parameter v equal to one. Additionally, at the finest
resolution level, the tracking problem is dealt with by
setting the parameter v equal to zero and the initial curve
(corresponding to the detection) is evolved toward the real
object boundaries.

3.4 Minimizing the Energy

Following the work on geodesic active contours presented
in the previous section, the minimization of the defined
geodesic active contour-based motion detection and
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Fig. 9. Motion detection for the car sequence (y = 1). Image size: 128 x 128. First row: first, second frame and motion detection boundaries. Front
propagation algorithm: Narrow Band, algorithm parameters: [band_size = 8, time_step = 0.5] , computational cost: 1 min, 16 sec.

tracking objective function is transformed into a problem of
geodesic computation. Besides, the associated Euler-La-
grange PDE is solved using the level set formulation [30].
The detection and tracking are viewed as a front propaga-
tion problem under the influence of internal and external
image dependent forces:

b1 ={7<Q(ID,UD)IC + Vy(Ip,op) %) i
Vo
(1-7) (g(lvzl,aT)lc + Vg(|VI|,07) '|V_¢|>}|V¢|-

(15)

This resulting PDE equation is then solved using techniques
borrowed from hyperbolic conservations laws [30] and the
approaches presented in Section 2.

3.5 Implementation Issues

The proposed algorithm is self-sufficient and works as
follows: Given the first two frames, an arbitrary curve is
initialized at the borders of the frame that converges to the
motion detection area using the proposed framework (Fig. 6,
Fig. 9, and Fig. 10). Following this, the tracking module is
applied that moves this curve to the boundaries of the
moving objects in both frames (two propagations are
performed using the same initial conditions).
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Fig. 10. Motion detection for highway sequence (y = 1). Image size: 128 x 128. Front propagation algorithm: Fast marching. The PDE (15) is
modified as follows: [ ¢, = g(Ip(s),op) |Vé| ], where the function g(.) is not curvature-based to meet the algorithm requirements. Computational

cost: 15 sec.

Then, the next frame is considered. Due to the fact that
the geodesic active contour framework relies on a nonpar-
ameterized curve and evolves an initial curve toward one
direction (constrained by the curvature effect), it demands a
specific initialization step. Thus, the initial curve should be
either in the interior to the real object boundaries or be
exterior to them. Moreover, cases where some parts of the
object are within the initial curve while, some other parts
are outside, cannot be naturally handled.

Taking this into account, the tracking result of the
previous frame is used to initialize the curve in the current
frame (Fig. 1l1a, Fig. 12a, and Fig. 13a). This solution is
adopted due to the fact that the curve defined by this result
is completely included in the expected motion detection
area between the current and the previous frame. Hence, to

achieve motion detection, a propagation in an outward
direction is considered (Fig. 11b, Fig. 12b, and Fig. 13b).
Then, using the final position of the motion detection curve,
the tracking module is activated in the current frame and
the curve moves towards the real object boundaries in an

inwards direction (Fig. 11c, Fig. 12c, Fig. 13c).

4 DiscussION, CONCLUSIONS, SUMMARY

Before presenting experimental results on real-word video
sequences that have been used to validate the proposed
approach, the behavior, as well as the efficiency of the
proposed front propagation algorithms, is examined.
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Fig. 11. Motion detection and tracking for highway sequence (1, 2, 3, 4, 5, 6, and 7). Front propagation algorithm: Hermes. (a) Initial curve, (b) motion
detection result (between the current and the previous frame), and (c) tracking result. This sequence satisfies the constraints imposed by our
approach. The background is sufficiently smooth, while the consecutive object positions are overlapped.

4.1 Propagation Algorithms

Two aspects are considered, namely the computational cost
and the application field. As it concerns the computational
cost, a front propagation equation that can be implemented
using the proposed, as well as the existing algorithms, is
selected: [¢; = F|V¢|]. In order to provide real and reliable
tests, function I is chosen to be a Gaussian function that
attracts the object boundaries of a given frame (Fig. 7) and is
given by:

“IVI(zy)?

F((p)lo) =

This particular image has been selected since it demands
changes of topology and contains objects with important
curvature values. The three different algorithms have
been applied within this problem framework. The time
step was equal to 0.1 for all algorithms, while the band
size was 10 pixels for the Narrow Band and the window
radius for the Hermes was equal to 2. Besides, to
determine the computational cost with respect to the
image size, the same image has been used in different
scales (e.g., 100 x 100, 150 x 150, 200 x 200). The compu-
tational cost (in terms of execution time') for all
algorithms is show in Fig. 8. According to this cost
diagram, the Fast Marching algorithm is the fastest one,

1. A Sun ULTRA 10, with 128MB memory and a CPU at 299 MHz has
been used.
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Fig. 12. Motion detection and tracking for player sequence (1, 2, 3, 4, 5, 6, 7, 8, and 9). Front propagation algorithm: Hermes. (a) Initial curve,
(b) motion detection result (between the current and the previous frame), and (c) Tracking result. This sequence satisfies the constraints imposed by
our approach. The background is sufficiently smooth, while the consecutive object positions are overlapped.

while the Hermes algorithm seems to have almost the

same computational cost with Fast Marching.
As it concerns the applicability, the Narrow Band and

the Hermes algorithm do not present any any limitations.
Hence, these algorithms can be used in cases with
nonconstant sign speed functions as well as in cases
with curvature-dependent speed functions (the case
considered in this paper). Contrary to this, the Fast
Marching is constrained by the assumption of speed
functions of constant sign.

4.2 Detection and Tracking
For the detection part, very satisfactory results have been
obtained. The boundaries of the moving areas are success-
fully determined using the proposed statistical model. Then,
this information is expressed within the framework of a
geodesic active contour that deforms an initial curve toward
several curves that correspond to the different moving areas
(Fig. 6, Fig. 9, and Fig. 10).

The tracking part behaves differently with respect to
the detection part. In the case where the moving objects
are surrounded by a smooth area, or the object motion is
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Fig. 13. Motion detection and tracking for Pierre and Imed sequence (1, 2, 3, ,4, and 5). Front propagation algorithm: Hermes. (a) Initial curve,
(b) motion detection result (between the current and the previous frame), and (c) tracking result. This sequence satisfies the constraints imposed by
our approach. The background is smooth, while the consecutive object positions are overlapped. Besides, occlusions are not handled.

small, very satisfactory results have been obtained (Fig. 11,
Fig. 12, and Fig. 13). When, on the other hand, there is a
textured background close to the objects, the proposed
model has some limitations and fails to recover the exact
object position.> Moreover, if the object displacements are
suffiently large and, therefore, there are not any over-
lapping regions between their two consectutive positions,
then both modules fail (detection and tracking). In that

case, the motion dection area in the current frame

2. This constraint can be easily removed by assuming a background
reference frame. In that case the tracking boundaries can be determined
using a similar approach with the one used for the motion detection
boundaries. Since the case of a stationary camera is considered, the demand
of having a background reference frame is reasonable especially for long
time applications.

corresponds to the tracking result in the previous frame
and the object’s position is lost. This can be avoided by
introducing a motion estimation step that is going to be
used for the curve initialization. Although this idea seems
to be promising, it cannot be used within the current
framework. The geodesic active contour framework
evolves a curve in one direction (positive data-dependent
propagation values) constrained by the curvature effect
(negative propagation values). Hence, if the initial curve
does not completely encircle the object, or if it is not
totally surrounded by it, then the complete recovery of
the object’s area is problematic. This case may arise very
often in sequences or images with nonrigid objects due to
the fact that the motion estimates are not very accurate
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along the object boundaries. However, according to the
adopted framework, the initial curve which encircles the
tracking result has to be shrunk during the tracking step.
Finally, the proposed approach cannot deal with the
occlusion case, in which a single curve will be produced
by the proposed framework, that corresponds to the
complete are covered by the moving objects (Fig. 13).

The main advantage of our appraoch is the ability of
dealing with nonrigid objects and movements using a very
simple model that does not require important prior informa-
tion. This is because a nonparameterized geodesic active
contour model is proposed that does not require a preproces-
sing step (object parameterization) and can be easily adapted
to the current object shape can be obtained, especially in cases
with nonrigid objects. Moreover, cases with rigid objects are
also appropriately handled (Fig. 11). However, it is certain
that in cases of rigid objects, a classic parameterized snake-
based approach behaves better and is more robust.

4.3 Summary
To summarize, in this paper, a very simple framework has
been proposed for detecting and tracking moving objects in
a sequence of images using the front propagation theory
and the level-set methodology. According to this frame-
work, both problems are treated simultaneously by propa-
gating a regular curve, first toward the motion detection
and, then, toward the tracking boundaries under the
influence data-dependent forces. The motion detection
boundaries are determined using a probabilistic edge
detector that is based on the analysis of the interframe
difference using a mixture model, while the tracking
boundaries are determined using an edge detector applied
to the input image. Then, an objective function is defined
that transforms detection and tracking into a geodesic
computation problem. This function is minimized using a
gradient descent method and the obtained PDE motion
equation is implemented using the level set theory. In order
to further reduce the computational cost, a multiscale
approach is considered which permits moving objects to
be tracked with considerable speedup.

Thus, the main contributions of the proposed model are
the following;:

e A general framework is proposed that links the
minimization of a geodesic active contour objective
function to the detection and the tracking of moving
objects. This framework is implemented using the
level set method and can successfully deal with the
challenging problem of tracking nonrigid objects
that cannot be easily parameterized. Moreover,
within this framework, changes of topology of the
object being tracked are allowed and scenes in which
objects split and merge from frame to frame due to,
for example, occlusions, can be tracked. Examples
where this happen are traffic control, tracking in
sport videos, and human-computer interaction.

e A new front propagation algorithm is proposed that
combines the existing ones and can be applied
successfully to a wide variety of applications with
very low computational cost.

4.4 Future Work

The proposed approach is limited to boundary-based
information. A possible extension could be the incorpora-
tion of region-based tracking modules [42], [43] to the
existing framework that will increase robustness. In that
direction, motion detection/segmentation, texture-based
[42], and motion-based features [43] (optical flow) to yield
the correspondence and free the model from the initial
conditions can be considered. Furthermore, the use of
geometric-based features (“light” object representations)
and multiphase propagation of curves will permit the
method to deal with occlusions. A coupled Geodesic Active
Contour framework that incorporates different information
forms (boundary, region) of different nature (edges,
intensities, texture, motion) and can perform tracking under
various conditions (static or mobile observer) is the future
direction of our work.

Various experimental results (in MPEG format), in-
cluding the ones shown in this article, can be found at:
http:/ /www inria.fr/robotvis/demo.
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