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Abstract

In this paper we address two important problems in motion analysis: the detection of moving objects and their
localization. A statistical approach is adopted in order to formulate these problems. For the first, the inter-frame
difference is modelized by a mixture of two zero-mean generalized Gaussian distributions, and a Gibbs random field is
used for describing the label set. A new method to determine the regularization parameter is proposed, based on a voting
technique. This method is also modelized using a statistical framework. The solution of the second problem is based on
the observation of only two successive frames. Using the results of change detection an adaptive statistical model for the
couple of image intensities is identified. For each problem two different multiscale algorithms are evaluated, and the
labeling problem is solved using either iterated conditional modes (ICM) or highest confidence first (HCF) algorithms.
For illustrating the efficiency of the proposed approach, experimental results are presented using synthetic and real video
sequences. ( 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Detection and localization of moving objects in an
image sequence is a crucial issue of a moving video
[31], as well as for a variety of applications of
Computer Vision, including object tracking [8],
fixation and 2-D/3-D motion estimation. In the
case of a static camera, detection is often based only
on the inter-frame difference. Detection can be ob-
tained by thresholding, or using more sophisticated
methods taking into account the neighborhood of
a point in a local or global decision criterion. In
many real world cases, this hypothesis is not valid

because of the existence of ego-motion (i.e., visual
motion due to the movement of the camera). This
problem can be avoided by computing the camera
motion and creating a compensated sequence.

This paper deals with the two related problems,
change detection and moving object localization.
Indeed, complete motion detection is not equiva-
lent to temporal change detection. Presence of
motion usually causes three kinds of ‘change
regions’ to appear. They correspond to (1) the
uncovered static background, (2) the covered
background, and (3) the overlap of two successive
object projections. Note also that regions of third
class are difficult to recover by a temporal change
detector, when the object surface intensity is
rather uniform. This implies that a complementary
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computation must be performed after temporal
change detection, to extract specific information
about the exact location of moving objects.

Simple approaches to motion detection consider
thresholding techniques pixel by pixel [14], or
blockwise difference to improve robustness to noise
[33]. More sophisticated modelings have been con-
sidered within a statistical framework, where the
inter-frame difference is modeled as a mixture of
Gaussian or Laplacian distributions [32]. The use
of Kalman filtering for certain reference frames in
order to adapt to changing image characteristics
has been investigated also [23]. The use of first-
order Markov chains [10] along the rows and of
two-dimensional causal Markov fields [16] has
also been proposed to model the problem for the
motion detection problem.

Spatial Markov random fields (MRFs), through
Gibbs distribution have been widely used for
modeling the change detection problem
[1,2,7,23,26,29]. These approaches are based on the
construction of a global cost function, where inter-
actions (possibly nonlinear) are specified among
different image features (e.g., luminance, region
labels). Besides, multiscale approaches have been
investigated in order to reduce the computational
complexity of the deterministic cost minimization
algorithms [26] and to get estimates of improved
quality. Finally, in the presence of ego-motion, this
motion is estimated before the change detection
problem is solved [26].

The existing work related to the localization
problem is limited. A similar approach to the one
adopted in this paper appears in [24], where an
adaptive statistical model using Gaussian distribu-
tions is used to create a term which relates the
observation set (luminances) with the label set.
A more complicated solution exists in [9]. In this
last approach, three successive images at instants
t
1
, t

2
, t

3
are considered to recover the moving

object location at time t
2
.

Here, we propose a motion detection method
based on an MRF model, where two zero-mean
generalized Gaussian distributions are used to
model the inter-frame difference. For the loca-
lization problem, Gaussian distribution functions
are used to model a couple of the intensities
at the same site in two successive frames. In each

problem, a cost function is constructed based on
the above distributions along with a regularization
of the label map. The associated maximum a poste-
riori (MAP) estimator is determined by using
multiscale techniques, in order to decrease the large
computational cost. Two deterministic relaxation
algorithms, ICM and HCF, are used to minimize
the cost function at each level. The proposed ap-
proach can be extended to motion detection prob-
lems in the case of a mobile camera.

A new vote technique to dynamically determine
the regularization parameter(s) in the cost function
of the motion detection problem, is proposed. The
estimation of the detection map and the estimation
of the optimal regularization parameter(s) are alter-
nated. The current solution to one leads to a more
robust estimation for the other. Thus, the current
detection map is used to provide an update of
parameter values, while these values hopefully lead
to better detection maps at the next step. The cri-
terion used is also modeled in a statistical frame-
work.

In order to check the efficiency and the robust-
ness of the proposed method, experimental results
are presented both on synthetic and real-image
sequences. Sequences with stationary camera, as
well as sequences with a moving camera and inde-
pendent moving objects, are used to test the
method. The remainder of this paper is organized
as follows. In Section 2 we make a brief introduc-
tion to MRFs, which are used to model the exam-
ined problems. Also this section contains the multi-
scale techniques and the deterministic relaxation
algorithms. The motion detection problem and the
regularization parameter estimation problem are
examined in Section 3, while the moving object
localization problem appears in Section 4. Finally,
Section 5 contains comments concerning the com-
parison of the different techniques and algorithms
used, as well as conclusions of our work.

2. The label field model and its estimation

2.1. Introduction to MRFs

Many problems in image analysis can be
formulated as a scene labeling with contextual
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Fig. 1. Second-order neighborhood: a possible choice of effective cliques.

information. In such a statistical framework, there
are

f a set of sites S"Ms
1
, s

2
,2, s

n
N;

f a set of possible labels for each site X
i
LX"

Ml
1
, l

2
,2, l

q
N, i"s

1
, s

2
,2, s

n
;

f a set of observations D"Md
1
, d

2
,2, d

n
N, asso-

ciated with S.
f a neighborhood relation, G, over the sites, which

defines a graph where the vertices represent sites,
and the edges represent the constraints on the
label assignment of the neighboring sites
(weighted edges).

The problem is to assign a label to each site in
such a way that the solution is consistent with the
constraints and the available observations set.

Let c denote a clique of the graph G, and let
C

s
"McDs3cN be the set of cliques containing the

site s (Fig. 1). A global discrete labeling u assigns
one label u

i
3X

i
. An MRF [19], is defined by the

so-called clique potentials »
c
(u), for every possible

c and every possible labeling. Following the
Hammersley—Clifford theorem and the equivalence
between MRFs and Gibbs distributions [5], the
probability of a labeling u is given by the following
formula [19]:

P(u)¢
1

Z
e~(1@T) U(u), (1)

where ¹ is a regularizing constant, and

º(u)¢ +
c|C

»
c
(u), Z"+

u
e~(1@T) U(u). (2)

In the above formula C denotes the set of totally
connected cliques with respect to the neighborhood
definition G and Z is a normalizing constant, called
partition function. In statistical terms, º is the

energy (cost) function of the system, while »
c
( ) is

called potential function and corresponds to the
contribution of the local interactions to the global
energy. A very crucial issue in this process is to
incorporate the prior knowledge with the available
observations, in order to create a new form for the
energy function. This form is a combination
between the expected spatial properties (homo-
geneity) of the label field and adequacy between
observations and labeling decisions. Under this
hypothesis, the energy function is given by

º(u, d)¢
1

¹

+
c|C

»
c
(u)#+

s|S

d(u
s
, d

s
)

¢º
1
(u)#º

2
(u, d), (3)

where the term d( ) expresses this adequacy de-
mand.

A very common technique in such problems is to
consider the MAP criterion, i.e. the maximization
of the a posteriori distribution of the labels given
the observations, which is equivalent to the minim-
ization of the cost function. This minimization may
be performed using either stochastic relaxation al-
gorithms [19], or deterministic relaxation algo-
rithms [11,6].

2.2. Multiscale techniques

Defining global energy (cost) functions is a
powerful tool for specifying non-linear interactions
between observed and hidden variables in image
restoration problems, where the restoration is pro-
vided by the minimization of these functions. The
main drawback of this process is usually the huge
solution space (sometimes infinite in terms of
computations). Thus, even the simplest restora-
tion schemes demand considerable amount of
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Fig. 2. Multiscale techniques: (a) multiresolution; (b) multi-
grid.

computations. At the same time, the cost function
usually prohibits many local minima, and a very
common result is that the final restoration corres-
ponds to one of these minima.

On the other hand, it has been shown that the
multiscale techniques reduce to a significant ratio
the required computational cost of the restoration
operation [30] and perform a smooth operation in
the observed cost functions, which eliminates a large
percentage of local minima. These techniques have
been widely used in image analysis problems with
a positive influence in the restoration process, as
well as in the computational complexity.

The main idea is to solve the restoration problem
in many different label spaces, which are subsets of
the original one. The label decision corresponds to
a set of pixels in the original space. A label process
in many different levels is evaluated. Using
a coarse-to-fine pyramid, an extrapolation of the
label decisions from levels with low resolution to
levels with finer label configurations takes place.
This extrapolation scheme is used as initial labeling
and a new relaxation process is performed.

Thus, the necessity of real-time implementation
in our cases leads to multiscale techniques. Two
different types of multiscale models are proposed
(Fig. 2). In the first one, a Gaussian pyramid of
images is built upon the full-resolution image and
similar cost functions to be minimized are defined
through the different levels [32]. This multiresolu-

tion structure is then utilized according to a
coarse-to-fine strategy (Fig. 2(a)). Another more
sophisticated approach consists in defining a con-
sistent multigrid label model by using detection
maps which are constrained to be piecewise con-
stant over smaller and smaller pixel subsets [21].
The cost function which is considered at each level
is then automatically derived from the original
finest-scale energy function. Also, full-observation
space is used at each label level and there is no
necessity for constructing a multiresolution pyr-
amid of the data (Fig. 2(b)).

2.3. Relaxation algorithms

The modeling of restoration problems by the use
of MRFs, leads to a minimization operation pro-
cess. This process even in the case of multiscale
techniques must be performed separately in each
level. During the last decade two different types of
minimization schemes have been proposed. The
stochastic relaxation algorithms [19] demand
a considerable amount of computations, but con-
verge under conditions to the optimal solution. On
the other hand, it has been shown that the use of
deterministic relaxation algorithms [11,6] could
perform a restoration very close to the optimal one,
with much less cost in comparison with the
stochastic relaxation algorithms.

In this paper the minimization operations are
performed by the use of two well-known and slight-
ly modified deterministic relaxation algorithms: the
ICM (iterated conditional modes) and HCF (high-
est confidence first), which are both iterative deter-
ministic relaxation techniques. These algorithms
are suboptimal, thus they might converge to a local
minimum, but they induce drastically less com-
putational cost and time than a stochastic relax-
ation scheme (i.e., simulated annealing [19]).

In the ICM algorithm [6], as we used it, an initial
estimation of labels is provided by the ML cri-
terion. Then, the labels are computed iteratively
and in parallel for the whole frame. The ICM algo-
rithm is slightly modified here, since we also use an
undecision label, and consequently, a threshold on
the decision function is used to discriminate the
case where a decision seems to be almost certain
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from the case where a decision is somehow ambigu-
ous. In case of decision, a plausible choice is the
label which has maximum conditional probability
given the observations and the current labels in the
neighborhood of each pixel. In order to avoid re-
dundant computations, the label process is per-
formed only in the pixels where a change in the
label of one of their neighbors occurs in the pre-
vious iteration. In HCF algorithm [11], the minim-
ization is performed as follows. At each site, a label
is selected if it provides the greatest local decrease
of the energy function. Computational cost can be
drastically reduced, if the visit strategy (for image
sites) is optimized. Thus, according to the HCF
algorithm, the sites are not visited in turn and we
are able to constantly focus on ill-labeled sites, by
introducing an ‘instability’ measure according to
which sites are ordered in a stack. Because we are
dealing here with only two labels (in the case of
a change detection problem), or four labels (in the
case of a moving object localization problem), this
‘instability’ measure can be easily computed. The
site to be visited is the one at the top of the stack.
On the other hand, supplementary computations
are required to construct and to maintain the stack.
Thus, due to the initialization step, all sites are
pushed to the stack according to the energy term
º

2
(u, d) and the ‘instability’ measure. Convergence

is reached, when the stack is empty.

3. Detection of moving objects

3.1. Dominant motion estimation

A very common hypothesis in the change detec-
tion problem is the static camera, for which there
are a large number of proposed solutions. An ex-
pected result is that these solutions cannot be used
when they deal with a mobile camera. This con-
straint is raised, computing the dominant motion,
using a gradient-based robust estimation method
[22,12,26], in order to create a compensated se-
quence in which only the motion of independent
moving objects is still valid. An affine motion
model is considered, defined by

A
u(i, j)

v(i, j)B"A
a
1,0

#a
1,1

i#a
1,2

j

a
2,0

#a
2,1

i#a
2,2

jB. (4)

The use of 2-D parametric models to describe the
dominant motion is not proper for any case of 3-D
motion. Thus, the affine model can be used for
motions with only translational components, where
the overall depth of the scene is much greater than
the variation of the depth within the scene, which is
equivalent to parallel projection. In addition, this
model is proper for rotational motion only about
the optical axis (c rotation) and for 2-D scaling.

The estimation of the set of unknown parameters
H"Ma

ij
; i"1, 2, and j"0, 1, 2N between frames

at time instant t and t#1 is obtained as follows:

HK "minG+
(i,j)

D2oA
r(i, j)

D BH, (5)

where r(i, j) is the displaced frame difference,

r(i, j)"I(i#u(i, j), j#v(i, j); t#1)!I(i, j; t) (6)

and o( ) is given by

o(x)"G
x2, av DxD(1,

1, av DxD*1.
(7)

The estimation of the parameters is performed in
an incremental method using a Gaussian pyramid
according to Eq. (5). Parameter D is also an un-
known variable and can be estimated iteratively,
according to current parameters estimation, by the
following formula:

DK "
+

@r(i,j)@:DDr(i, j)D
+

@r(i,j)@:D1
. (8)

The minimization is performed using a simple
method, Iteratively reweighted least squares (as
proposed in [26]), with a binary weight, determined
by the above-mentioned threshold. This estimator
allows getting a good estimation of the dominant
motion (i.e., background apparent motion), if the
affine motion model is sufficiently accurate, and the
percentage of outliers, that is the area of the inde-
pendently moving object, is relatively small. The
resulting motion field is used to compute a compen-
sated image sequence, in which the background
then appears as static.

In Fig. 3, results of applying the above method to
the Interview sequence are given, where the motion
of the camera is only translational. The inter-frame
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Fig. 3. Dominant motion estimation for Interview Sequence: (a) interframe difference; (b) displaced interframe difference (after
dominant motion compensation).

difference after camera’s motion compensation in-
dicates the presence of independent motion.

3.2. Change detection model

Let D"Md
s
, s3SN denote the gray level differ-

ence image with

d
s
"I

s
(t#1)!I

s
(t). (9)

The change detection problem consists of a ‘binary’
label H

s
for each pixel on the image grid. We

associate the random field H
s

with two possible
events, H

s
"static (static: background pixel), if the

observed difference d
s
supports the hypothesis for

static pixel (H
0
), and H

s
"mobile (mobile: moving

pixel), if the observed difference supports the alter-
native hypothesis H

1
, for the mobile pixel. Under

these assumptions, for each pixel it can be written

H
0
: H

s
"static;

(10)
H

1
: H

s
"mobile.

Let p
D@45!5*#

(dDstatic) (respectively p
D@.0"*-%

(dDmobile))
be the probability density function of the observed
inter-frame difference under the H

0
(respectively

H
1
) hypothesis. These probability density functions

are assumed to be homogeneous, i.e. independent

of the pixel location, and usually they are under
Laplacian or Gaussian law. We use here a zero-
mean generalized Gaussian distribution function to
describe the statistical behavior of the pixels for
both hypotheses, thus, the conditional probability
density function of the observed difference values is
given by

p(d
s
DH

s
"l)"

c
l

2p
l
CA

1

c
l
B
e~(@ds@@pl)cl . (11)

Let P
45!5*#

(respectively P
.0"*-%

) be the a priori
probability of hypothesis H

0
. Observed difference

values are assumed to be obtained by selecting
a label l3Mstatic, mobileN with probability P

l
and

then selecting a d according to the probability low
p(dDl). Thus, the probability density function is
given by

p
D
(d)"P

45!5*#
p
D@45!5*#

(dDstatic)

#P
.0"*-%

P
D@.0"*-%

(dDmobile). (12)

In this mixture distribution MP
l
, p

l
, c

l
; l3

Mstatic, mobileNN are unknown parameters. The
principle of maximum likelihood is used to obtain
an estimation of these parameters [17,25]. The
unknown parameters are iteratively estimated
using the observed distribution of gray level
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Fig. 4. Mixture decomposition for inter-frame difference for
Trevor White.

inter-frame differences. An initial estimation is cal-
culated using first-, second- and third-order mo-
ments of the variable considered. The values of
c parameter come from a discrete set: M0.5, 1.0
(Laplace), 1.5, 2.0 (Gauss)N. In Fig. 4, the histogram
and the approximated probability density function
(dashed line) for a test sequence is given, where the
Laplacian case is finally selected.

The static-mobile decision field, as it appears in
our approach, is modeled as an MRF with an eight-
pixel neighborhood (Fig. 1). In a second step, an
MRF model where only two-pixel cliques are con-
sidered, in order to reduce the number of necessary
parameters and the computational cost, is built to
incorporate a smoothing prior about the detection
map, and a temporal coherence with the final map
estimate in the previous frame. A Gibbs posterior
distribution p(uDd, uJ ) results with the following en-
ergy:

º(u, d, uJ )¢º
1
(u)#º

2
(u, d)#º

3
(u, uJ ), (13)

where uJ denotes the detection map estimated at
time t!1, and

f º
1
(u) is the prior term which accounts for the

expected spatial properties (homogeneity) of the
label field,

º
1
(u)¢ +

Ms,uN|C

»
s,u

(u
s
, u

u
), (14)

where C is the set of two-pixel cliques for the
second-order neighborhood system, and clique
potentials are given by

»
s,u

(u
s
, u

u
)¢G

!a
s

if u
s
"u

u
"static,

!a
m

if u
s
"u

u
"mobile,

a
$*&&

if u
s
Ou

u
,

(15)

a
$*&&

'0 is the cost paid to get neighbors with
different labels, while a

s
'0 and a

m
'0 balances

the relative proportions of the two labels.
f º

2
(u, d) expresses the adequacy between ob-

served temporal variations and current labels
according to p (d

s
Du

s
) likelihoods,

(16)

f Finally, º
3
(u, uJ ) has a conservative role and

expresses a temporal coherence with respect to
the labeling at time t!1,

º
3
(u, uJ )¢+

s|S

o(u
s
, uJ

s
). (17)

where

o(u
s
, uJ

s
)¢G

!f if u
s
"uJ

s
,

0 if u
s
OuJ

s
.

(18)

We consider the MAP (maximum a posteriori) es-
timation problem, i.e., the maximization of the
a posteriori distribution of the labels given the
observations, which is equivalent to the minimiz-
ation of the energy function º(u, d, uJ ),

º(u, d, uJ ) +
c|Cs

»
c
(u)#+

s|S

(o(u
s
, uJ

s
)!ln[p(d

s
Du

s
)]).

(19)

3.3. Regularization parameter estimation

In this subsection we consider a simpler model,
with the smoothing prior to º

1
only depending on
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a single regularization parameter j (a
s
"a

m
"

a
$*&&

"j), and without temporal coherence term
º

3
. The aim is to determine the value of the poten-

tial j.
During the last decade, many researchers have

investigated the problem of regularization para-
meter determination, often for problems of image
restoration [4]. A common conclusion is that
j may have significant influence on the MAP esti-
mate of the label field [15]. Simple approaches for
j estimation use statistical analysis, where the opti-
mal solution is derived through a pseudolikelihood
criterion [13]. Cross-validation methods have been
investigated [28] as well. Finally, an error analysis
based on an objective mean-square-error criterion
has also been used to motivate the regularization
[18]. In [18], two methods for choosing the regu-
larization parameter are proposed, based on the
presence or absence of knowledge for the noise
model. All the above methods attempt to solve the
label field estimation simultaneously with the regu-
larization parameter estimation. Their main draw-
back is their large computational cost. Another
significant drawback is that, in some cases, a prior
knowledge of the noise model is required. In this
paper, a different method for the regularization
parameter estimation is proposed. The general idea
is to use the detection map computed for a given
parameter value, together with the observations set,
in order to extract, with a voting technique, a new
j value which increases the ‘optimality’ of the cur-
rent map, which, in turn, is re-estimated.

Let º
-
(u

s
, u

gs
, d

s
) be the local energy for label

u
s
in the pixel location s, given labels in its neigh-

borhood g
s

and the data d
s

associated with this
location,

º
-
(u

s
, u

gs
, d

s
, j)"d(u

s
, d

s
)#+

u|gs

»
s,u

(u
s
, u

u
)

¢d(u
s
, d

s
)#j/(u

s
, u

gs
), (20)

where

»
s,u

(u
s
, u

u
)"G

!j if u
s
"u

u
,

#j if u
s
Ou

u
.

(21)

The current label field estimate u is a sitewise local
minimum of the global energy function with the

previous value of regularization parameter. We
look at j values for which this still holds, i.e.,

º
-
(u

s
, u

gs
, d

s
, j)!º

-
(uN

s
, u

gs
, d

s
, j))0, (22)

where uN
s
is the opposite label to u

s
. Let N

s
be the

number of neighbors of s, and let n
s
(u

s
) be the

number of those neighbors with the same label
u

s
as s. Using the above notation, the local energy

is

º
-
(u

s
, u

gs
, d

s
, j)"d(u

s
, d

s
)#j[N

s
!2n

s
(u

s
)]. (23)

Since n
s
(uN

s
)"N

s
!n

s
(u

s
), constraint (22) becomes

d(u
s
, d

s
)!d(uN

s
, d

s
)#2j[N

s
!2n

s
(u

s
)])0. (24)

From the above relation we can extract some
restrictions about admissible j. In addition, there
are values of j for which the current map u is
a ‘better’ energy minimum, i.e., the above local
energy differences are larger in average than those
with the previous parameter value. To determine
the new j, a weighted vote technique is adopted in
order to take into account this fact. First, the com-
putational cost of the vote technique is reduced by
quantizing the parameter search space. Then, ac-
cording to the above relation at each site, a vote is
given to each admissible value of the finite search
space. The votes are weighted, according to their
contribution in minimizing local energies, i.e. in
maximizing differences in the left-hand side of
Eq. (24). Also, in order to avoid over-smoothing
which too large j values would favor, a method for
balancing the two terms of the energy function is
required. For this purpose, the spatial mean value
(E( ) )) and variance (var( ) )) of the energy term
d(u

s
, d

s
), s3S, are used in the vote weighting. For

each s3S, each admissible j value receives a vote
weighted according to

d(uN
s
, d

s
)!d(u

s
, d

s
)!2j[N

s
!2n

s
(u

s
)]

var(d(u, d))#[+
u|gs

»
s,u

(u
s
, u

u
)#E(d(u, d))]2

, (25)

where the mean value and the variance of d(w, d) are
computed on the image grid, according to the cur-
rent detection map. The value with larger votes
sum, is taken to be the center of the new redu-
ced search space with finer quantization. This
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Fig. 5. Voting diagram for j determination.

hierarchical quantization search procedure allows
for quickly obtaining a robust estimate of j.

This method can be easily extended to problems
with a number of states greater than two. It can
also be used for regularization models with more
than one potential value parameter. In such cases
the candidates are vectors. In order to avoid the
large computational cost, the quantization in each
parameter could be done differently, based on its
importance. Thus, for parameters of vital import-
ance, one can use a finer step quantization and
a coarser one for parameters of less relevance.

An example of this approach is given in Fig. 5,
which concerns the motion detection for the Trevor
White sequence. A detection map arises at the
coarsest level using the ML estimator, and the
proposed method is applied, and an optimal regu-
larization value arises. This value is used and a new
detection map is determined. The method for j de-
termination is applied again and the results with
the current detection map are used as initial values
at the next level.

The proposed approach could be modeled and
exploited in a global statistical criterion. Let X and
½ be random variables, which denote the difference
in the image grid, between the values of energy

terms for the observed label and the opposite label,
thus,

½(u
s
, u

gs
)"/(uN

s
)!/(u

s
),

(26)

X(u
s
, d

s
)"d(uN

s
, d

s
)!d(u

s
, d

s
).

The j parameter is determined by maximizing the
mean distance between the energies for the two
opposite labels. At the same time the mean of the
energy for the observed label should be minimized,
thus minimizing the energy variance and balancing
the two terms of the energy. The proposed global
statistical criterion is the following:

f (j)"
(E(X#j½))2

E(d#j/)2
. (27)

If we consider the current detection map, the
only unknown variable in this function, which has
to be maximized is j, and f (j) is linear according to
this parameter. Thus, we search for the j value
which gives the maximum value for f (j). A possible
drawback of this approach is that pixels with posit-
ive contribution of the cost function (increase) are
also taken into account. For the optimal j the
following equation holds:

d

dj
f (j)"0, (28)

and since according to the previous form, a second
degree equation results, where only two roots exist
(a positive and a negative), it is easy to select the
proper one (positive). This method can be easily
and directly extended for cases with more than two
possible label events.

In Fig. 6, results obtained by the use of the vote
technique for the change detection problem are
presented. Concerning the comparison between the
vote approach and the method based on the statist-
ical criterion of Eq. (27), both methods give very
satisfactory similar results. The main advantage of
the vote approach is that only sites providing con-
firmation of the decision map are used, while in the
global statistical criterion opposite decisions are
also taken into consideration. On the other hand,
the vote technique requires a very large amount of
computations.
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Fig. 6. Detection of moving objects: Static camera; (a), (b), (d)—(f); Mobile Camera; (c) multigrid approach; (b) Trevor White, ICM;
(d) Sphere, HCF. Multiresolution approach: (a) Highway, ICM; (c) Interview, HCF; (e) Kollnig, HCF; (f) Van, ICM. Automatic j
determination: a (1.0125), c (0.8125), e (0.8625) and f (0.9875).
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4. Moving object localization

The modeling of moving object localization
problem is similar to the one we adopted in change
detection. The labeling problem in this case is
more complicated because the goal is to character-
ize the situation that holds in both frames, for each
pixel in the image grid. Any pixel in any frame
either belongs to the background pixel, or it be-
longs to some moving object. Let º"MB, ON be
the set of the two possible labels, where B means
‘background’ and O means ‘object’. In the moving
object localization problem a couple of labels
should be estimated (H

s
(t), H

s
(t#1))3º]º. This

notation is equivalent to the given label H
s
(t) (re-

spectively H
s
(t#1)) for the situation that holds on

frame at time instant t (respectively t#1) at pixel
location s. We have four possible label events:

H
00

: (H
s
(t), H

s
(t#1))"(B, B),

H
01

: (H
s
(t), H

s
(t#1))"(B, O),

(29)
H

10
: (H

s
(t), H

s
(t#1))"(O, B),

H
11

: (H
s
(t), H

s
(t#1))"(O, O).

The available observation set is composed of the
change detection map, and the gray level values for
both frames. The first problem we deal with is the
computation of the conditional probability density
functions (pdf ). Let

p(x
0
, x

1
D(H

s
(t), H

s
(t#1))"(a, b))

be the conditional pdf for the couple of the intensity
values (I

s
(t), I

s
(t#1)) at pixel s, where (a, b)3

º]º. In case of aOb the problem is easier, since
the two events are independent, thus

p(x
0
, x

1
Da, b)"p(x

0
Da)p(x

1
Db). (30)

Under the above hypothesis we are not obliged to
calculate the two-dimensional probability density
functions for cases (B, O) and (O, B), because their
values can be extracted by the use of one-dimen-
sional pdfs.

Using the change detection map, from pixels
labeled as unchanged, we are able to evaluate the
histogram for the gray level values of the back-
ground, as well as for the mobile part. The only
difference is that pixels labeled as changed, and

presenting an important inter-frame difference, are
excluded from the object as considered to belong to
the occluding regions. The evaluation of the histo-
grams for both cases is performed only on the first
frame, because we assume the temporal stationarity
of the corresponding random variables. These his-
tograms are used for the estimation of the unknown
conditional probability density functions. The main
drawback of this approach is that the static part of
the change detection map might have much bigger
area than the mobile part, which causes problems
in the statistical representation of the covered and
uncovered areas, as well as in mobile area. Also, in
cases with more than one moving object the evalu-
ated histograms are not valid and reliable for each
object. To avoid these problems, these histograms
are evaluated for each object in a rectangular area
around the object, where the two cases, changed
and unchanged, have approximately the same area.
This process demands a connected component
labeling operation in the change detection map,
before the examination of the localization problem.

According to the observed histograms, the static,
as well as the mobile, part of the change detection
map may be composed of many different popula-
tions according to their gray level values, and the
decomposition of these maps is the key problem.

4.1. Piecewise uniform probability density function

The simplest method to determine the values of
the energy term º

2
(Eq. (3)) is the quantization of

all variables, obtaining thus a piecewise uniform
model for the probability density functions. This
technique demands a reasonable amount of com-
putations.

The general idea is to divide the set of possible
gray level values in non-overlapping intervals, in
such a way that the four probability density func-
tions could use the same orthogonal division of the
two-dimensional space of possible values for the
couple of intensities on the two frames, and for all
possible labels of this couple. As the division should
be orthogonal for covering the two cases of inde-
pendent distribution of the two variables, quantiz-
ation can be simply one-dimensional. The change
detection being available, and the necessity to have
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Fig. 7. Approach with piecewise uniform distributions: Trevor White sequence: (a) static part; (b) mobile part.

a good representation of both background and
mobile part, independently of their relative size,
leads to the construction of two different quan-
tizers, one for each population. The two quantizers
are then unified to one having as set of decision
levels the union of the two sets of decision levels.

A key problem with quantizers is the determina-
tion of the number of decision levels. This problem
is solved using the observed histograms and a cri-
terion on the mean-squared quantization error. So
at the beginning, a number of prevailing values is
selected according to the observed histogram,
which composes the set of initial quantization
levels. Then, the Lloyd—Max algorithm [20] is per-
formed until the convergence is reached. If the
global mean-square error is above the given thre-
shold, the level with maximum mean-square error
is subdivided and a new pass of Lloyd—Max algo-
rithm is performed. This operation holds until the
global mean-square error is above the given thre-
shold.

Then, according to the final set of decision levels
and the observed histograms, the probability for

each level for both cases (static, mobile) is evalu-
ated. Such a result on Trevor White sequence is
given in Fig. 7. The two-dimensional observed his-
tograms for the couple of pixels with identical
labels (both static or both mobile) is used on the
orthogonally divided set of values to obtain the
two-dimensional distribution of the respective
couple of variables, again piecewise uniform.

4.2. Gaussian mixture decomposition of the
probability density function

A more complicated model to approximate the
observed histograms is the mixture of Gaussian dis-
tributions. Under this hypothesis the density func-
tion of the gray level value, for both object (a"O)
and background (a"B), may be decomposed in
a mixture of Gaussians,

p(xDa)"
ca
+
i/1

Pai
paiJ2p

e~((x~kai)2)@2p2ai. (31)
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Fig. 8. Approach with mixture of Gaussian distributions: Trevor White sequence: (a) static part; (b) mobile part.

The problem is to estimate the parameters of the
mixture decomposition. An additional problem is
that the number of populations, ca, is unknown.
The number of populations is extracted empirically
using the observed histogram. To avoid the influ-
ence of noise, firstly, a smoothing operation is per-
formed on the observed histogram, and then its
local maxima are searched; that is, we are seeking
for the modes of this distribution. Then, using the
ML estimator for mixture decomposition, we can
compute the unknown parameters (Pai, pai, kai) for
each population. Results of this approach are given
in Fig. 8.

The problem remains with cases (B, B) and
(O, O), for which two solutions are proposed. The
simplest one is the use of a global correlation coef-
ficient oa, for both cases. Then using this coefficient
and assuming that it is valid separately for the
populations composing the distribution of the gray
levels, we can write

p(x
0
, x

1
Da, a)"

ca
+
i/1

PaipG2
(x

0
, x

1
; kai, pai, oa), (32)

where p
G2

(x
0
, x

1
; kai, pai, oa) is a two-dimensional

Gaussian probability density with parameters
(kai, kai, pai, pai, oa).

A more robust and reliable approach is the
estimation of two-dimensional normal density
functions. Using as initial guess all the possible
combinations between the observed populations of
background and object hypotheses and their para-
meters, and the proposed ML estimator for mixture
decomposition, we can compute the unknown
parameters of this model. During processing, some
classes could be rejected, because their probability
is very small (almost zero). This approach demands
a considerable amount of computations, but it has
a significant beneficial influence on the extracted
results obtained.

4.3. MAP labeling

Using the same neighborhood definition as it
appears in the change detection part, we can
modelize the problem as an MRF with second-order
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Fig. 9. Localization for Trevor White sequence: (a) histograms analysis with mixture of Gaussian distributions; (b) histograms analysis
with mixture of uniform distributions; (1) maximum-likelihood detection maps; (2) detection maps with ICM algorithm and multiscal-
ing in label and data spaces; (3) detection maps with HCF algorithm and multiscaling in label space.

neighborhood, where a Gibbs distribution is
used to describe the a posteriori probability of a
global labeling form u (p(u)"(1/Z)e~(1@T) U(It,It`1,u)),
where the cost function is decomposed into two
terms,

º(u, I(t), I(t#1))"º
1
(u)#º

2
(u, I(t), I(t#1)),

(33)

where the definition of º
1

and º
2

is similar to
those presented in the change detection problem,
and a more sophisticated definition is required for
the potential function, thus

f º
1
(u) is the term which accounts for the ex-

pected homogeneity of the label field,

º
1
(u)¢ +

Ms,gsN|C

»
s,gs

(u
s
, u

gs
), (34)
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Fig. 10. Location for Trevor White sequence.

where C denotes the relations between the pixels
and their neighbors according to the given neigh-
borhood system G, and the potential function is
given by

»
s,gs

(u
s
, u

gs
)

¢meT
kC

!a
m

1 1 1

1 !a
d

a
dd

1

1 a
dd

!a
d

1

1 1 1 !a
m
D C

n
BB

n
BO

n
OB

n
OO
D ,
(35)

where the following mapping M(B, B) : 1,
(B, O) : 2, (O, B) : 3, (O, O) : 4N is used for k, e

k
is

a vector with the kth element equal to 1 and the
other elements equal to zero, and n

BB
(respective-

ly n
BO

, n
OB

, n
OO

) is the number of pixels with label
(B, B) (respectively (B, O), (O, B), (O, O)). a

m
is

a potential value that facilitates the selection of
(B, B) and (O, O) label, a

d
facilitates the selection

of (B, O) and (O, B) labels and a
dd

is the cost for
getting neighbors with label (B, O) for pixels with
label (O, B) (or the opposite), while the cost for
getting neighbors with different label in any
other case is 1.0. The exception value a

dd
is used

because facts (B, O) and (O, B) are mutually ex-
clusive as neighbors. Finally, m is a weight value.

f º
2
(u, d) expresses the adequacy between ob-

served gray level values and current labels ac-
cording to p((I

s
(t), I

s
(t#1))Du

s
) likelihoods,

º
2
(u, I(t), I(t#1))

¢!+
s|S

ln[p((I
s
(t), I

s
(t#1))Du

s
]. (36)

For solving the labeling problem the MAP cri-
terion is considered, which is equivalent to the
minimization of the energy function º(I

t
, I

t`1
, u),

º(u, I(t), I(t#1))" +
c|Cs

»
c
(u)

!+
s|S

ln[p((I
s
(t), I

s
(t#1))Du

s
]. (37)

The ICM and HCF algorithms in a multiscale
implementation are used for the minimization of
the proposed cost function. An important point in
this process is that due to the initialization step, the
label (B, B) is given at pixels with static decision on
change detection map. This initialization decreases
to a significant factor the required computational
cost. In Fig. 9 the results of the labeling process on
the Trevor White sequence for the two approaches
of evaluation of the probability density functions
presented above are illustrated. The ML decision
test result is given for illustrating the efficacy of
these estimated probability distributions. The
background is in black and the covered and un-
covered regions are in gray. Also results from the
multiscale approaches combined with the minimiz-
ation algorithms are given. The projection of this
result on the two successive frames provides the
location of the moving object at the two corre-
sponding moments (Fig. 10).
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Fig. 11. Automatic motion detection: Trevor White, sphere.

5. Comments and conclusions

In this paper, we described methods and related
algorithms for solving two interesting problems
arising in motion detection, the detection of moving
objects and their localization.

5.1. Comments

5.1.1. The regularization parameter estimation

In order to check the efficiency of the automatic
estimation of j, in the motion detection problem,
we first choose a

s
"a

m
"a

$*&&
"j, as already men-

tioned. In spite of this simplification, the adaptive
determination of j allows for obtaining very satis-
factory motion detection maps.

However, the method seems to fail for Sphere
sequence (Fig. 11). This can be explained by the fact
that the initial ML labeling (left image) exhibits
a very large and compact static region. Thus,
a large j value arises, which results in removing the

isolated mobile labels. The best result for Sphere
(Fig. 6) is obtained by using the complete model
(13), with a reinforcement of mobile labeling
through a

m
. For ¹revor ¼hite sequence a very

satisfactory result is obtained with the simplified
model.

5.1.2. ICM versus HCF
According to the experiments, ICM and HCF ex-

hibit different behaviors. Three different aspects are
examined: the computational cost, the sensitivity
with respect to the regularization parameter, and
the dependency on the initial labeling. As for the
computational cost, ICM appears less expensive
than HCF (Fig. 12), due to the use of a sorted
‘instability stack’ by the later. However, in multi-
scale approaches, the cost for HCF is reduced sig-
nificantly. Indeed, at the coarse levels the required
cost for creating and maintaining the HCF stack is
very small, and by the time the finer levels are
reached, the stack operations become very few. On
the contrary, the cost of ICM remains about the
same, even with multiscale approach.
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Fig. 12. Computational cost for ICM, HCF. Fig. 13. Sensitivity on regularization for ICM, HCF.

Fig. 14. Dependency from Maximum-likelihood labeling for
ICM, HCF.

Another interesting aspect of the behavior of
HCF is the sensitivity with respect to the regulariz-
ation parameter. It turns out that it is quite high in
the single-scale approach, especially around the
‘optimal’ value, where small variations can produce
completely different results. This can be explained
by the fact that for many sites (especially at the
beginning), the labeling decision is taken with an
incomplete neighborhood labeling. However, ICM
has the opposite behavior: large variations on the
regularization parameter causes little influence on
the estimation (Fig. 13). Finally, HCF seems to be
more independent on the initial labeling. It pro-
duces estimates that can be significantly different
from the initial ML labeling. On the other hand,
ICM has a significant dependency on the initial
labeling (Fig. 14).

A concluding comment is that, although ICM
has less computational cost, it is not flexible and it
cannot avoid strong noise influence (as it appears
on the initial labeling). For cases with low noise
level, however, it can quickly provide a good detec-
tion map. HCF is more flexible, thus compensating
its significant computational cost. Especially in
high-level noise cases, it can produce a better result
than ICM.

5.1.3. Multigrid versus multiresolution
As for the comparison between the two hier-

archical approaches, the one using a pyramid of
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images appears more flexible since parameters can
be tuned independently at different resolutions. At
the same time, this can be perceived as an increase
of the model complexity in terms of parameter
estimation. The second approach is by contrast
simpler and is proven to be less sensitive to noise
influence, since at the coarsest level blockwise data
likelihoods are used. Both methods of multiscaling
provide about the same computational cost.

5.2. Conclusions

Concerning the first problem, that is change de-
tection, the main contribution of this paper is the
use of a very efficient mixture decomposition of
the distribution of the inter-frame difference. Thus,
the threshold for the ML decision test is adapted to
the data. Introducing then a Gibbs random field
model for labels, we proposed the use of two
known, and slightly modified, deterministic relax-
ation algorithms, for solving the resulting minimiz-
ation problem, in a single- or multi-scale ap-
proaches. Also a new method for determining the
regularization parameter is proposed resulting in
a fully adaptive model for the moving object detec-
tion problem. The reliable statistical model used
enables to obtain good results on real image se-
quences, even if the camera is moving, in which case
its motion is estimated and compensated first.

The image segmentation in changed and un-
changed regions was then used for a further step in
the segmentation process, which searches for deter-
mining covered and uncovered regions as parts of
the whole changed region. As a result, we obtained
the localization of the moving object in the two
frames. At the first step of the proposed algorithm,
the probability density function of the background
and the moving object are evaluated by identifying
an adaptive mixture decomposition, or by approxi-
mating them, for less computation cost, using
a piecewise uniform distribution. This operation is
done separately for each object in a rectangular
area around the object, where the percentage of the
populations are approximately equal. Three solu-
tions were proposed for the modeling and identi-
fication of the joint probability distribution of the
couple of image intensities on the same site in two

successive frames. The first two were an extension
of the mixture decomposition of the respective
one-dimensional distributions, and the other one
was evaluated under a piecewise uniform probabil-
ity distribution assumption. The efficacy of all these
probability distributions was checked implemen-
ting the corresponding ML decision tests. The final
labeling results were obtained using deterministic
relaxation algorithms (HCF and ICM) based on
a Gibbs random field model and multiscale tech-
niques in order to reduce the required computa-
tional cost. Very satisfactory results were obtained.

Appendix A. Mixture density estimation

A common problem in statistical analysis is mix-
ture decomposition. To be more specific, the prob-
lem is to decompose observed samples in a known
number of populations which could theoretically
describe the data. It is assumed that the probability
distribution for the observed data, except the values
of some parameters, are known. Let K be a known
number of classes, P

k
be the a priori probability of

class number k, and p(x D h
k
) be the probability

density function for the same class, where h
k

is
a vector of unknown parameters. The mixture of
the K classes gives the following probability density
function:

p(xD/)"
K
+
k/1

P
k
p(xDh

k
),

k
+
k/1

P
k
"1, (38)

where / is a vector made up of Mh
k
: k"1,2, KN

and MP
k
: k"1,2, KN. The problem is to estimate

the unknown parameters in /. The maximum-like-
lihood (ML) estimator is given by Duda and Hart
[17] and Schalkoff [27]. Another method based on
fuzzy ISODATA process, is proposed by Bedzek
and Dunn [3]. Here we use the ML estimator, thus
we present the general formula and its application
in the case of Laplacian densities. The case of Gaus-
sian densities is considered in [25,17].

Let us define the a posteriori probability of class
i given an observation x, as

P
i
(xD/)"

P
i
p(xDh

i
)

+K
k/1

P
k
p(xDh

k
)
. (39)

294 N. Paragios, G. Tziritas / Signal Processing: Image Communication 14 (1999) 277—296



If Mx
1
,2, x

n
,2, x

N
N is a data set, the a priori

probabilities and the parameters of the probability
density model must satisfy the following equations:
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For the case of a mixture of two generalized
zero-mean Gaussian densities, the following iter-
ative algorithm is obtained concerning parameters
(p

i
, c

i
):

p
i
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p
i
(t)B
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where c takes values on a predefined finite set.
Parameter values p

i
are initialized using the mo-

ment estimation method for Laplacian distribu-
tions (c

i
"1.0).

References

[1] T. Aach, A. Kaup, Bayesian algorithms for adaptive
change detection in image sequences using Markov ran-
dom fields, Signal Processing: Image Communication
7 (1995) 147—160.

[2] T. Aach, A. Kaup, R. Mester, Statistical model-based
change detection in moving video, Signal Processing 31
(1993) 165—180.

[3] J. Bedzek, J. Dunn, Optimal fuzzy partitions: A heuristic
for estimating the parameters in a mixture of normal
distributions, IEEE Trans. Comput. (August 1972)
835—839.

[4] M. Bertero, T. Poggio, V. Torre, Ill-posed problems in
early vision, Proc. IEEE 76 (August 1988) 869—889.

[5] J. Besag, Spatial interaction and the statistical analysis
of latice systems (with discussion), J. Roy. Statist. Soc. B 36
(1974) 192—326.

[6] J. Besag, On the statistical analysis of dirty images, J. Roy.
Statist. Soc. 48 (1986) 259—302.

[7] M. Bischel, Segmenting simply connected moving objects
in a static scene, IEEE Trans. Pattern Anal. Mach. Intell.
16 (November 1994) 1138—1142.

[8] P. Bouthemy, P. Lalande, Detection and tracking of moving
objects based on a statistical regularization method in space
and time, in: Proc. ECCV, 1990, Antibes, pp. 307—311.

[9] P. Bouthemy, P. Lalande, Recovery of moving object
masks in an image sequence using spatiotemporal contex-
tual information, Opt. Engrg. (June 1993).

[10] C. Cafforio, F. Rocca, Methods for measuring small
displacements of television images, IEEE Trans. Inform.
Theory IT-22 (1976) 1973—1979.

[11] P. Chou, C. Brown, The theory and practice of bayesian
image labeling, Internat. J. Comput. Vision 4 (1990)
185—210.

[12] P. Davies, Aspects of robust linear regression, The Ann.
Statist. 21 (1993) 1843—1889.

[13] H. Derin, H. Elliot, Modelling and segmentation of noisy
and textured images using gibbs random fields, IEEE
Trans. Pattern Anal. Mach. Intell. (1987) 39—55.

[14] N. Diehl, Object-oriented motion estimation and segmen-
tation in image sequences, IEEE Trans. Image Process.
3 (February 1990) 1901—1904.

[15] J. Dinten, X. Guyon, J. Yao, On the choise of the regulariz-
ation parameter: the case of binary images in the bayesian
restoration framework, in: A. Posolo (Ed.), Spatial Statis-
tics and Imaging, 1991, pp. 55—77.

[16] J. Driessen, J. Biemond, D. Boekee, A pel-recursive
segmentation algorithm for motion compensated image
sequence coding, in: Proc. ICASSP, New York, April 1989,
pp. 1901—1904.

[17] R. Duda, P. Hart, Pattern Classification and Scene Analy-
sis, Willey, New York, 1973.

[18] N. Galatsanos, A. Katasaggelos, Methods for choosing the
regularization parameter and estimating the noise vari-
ance in image restoration and their relation, IEEE Trans.
Image Process. 1 (1992) 322—336.

[19] S. Geman, D. Geman, Stochastic relaxation, gibbs distri-
butions, and the bayesian restoration of images, IEEE
Trans. Pattern Anal. Mach. Intell. 6 (1984) 721—741.

[20] A. Gersho, R. Gray, Vector Quantization and Signal Pro-
cessing, Kluwer Academic Publishers, Dordrecht, 1990.
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