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reflections, shadows, or fragmented occlusion (for exam-
ple, looking through the branches of a tree). The assump-Most approaches for estimating optical flow assume that,

within a finite image region, only a single motion is present. tion may also be violated when the region spans a depth
This single motion assumption is violated in common situations discontinuity in the scene. The standard spatial coherence
involving transparency, depth discontinuities, independently constraint suffers from the same problem. It assumes that
moving objects, shadows, and specular reflections. To robustly the flow within a neighborhood changes gradually since it
estimate optical flow, the single motion assumption must be is caused by a single motion. Optical flow, however, is
relaxed. This paper presents a framework based on robust esti- typically only piecewise smooth since depth boundaries in
mation that addresses violations of the brightness constancy the scene may give rise to discontinuities in the flow field
and spatial smoothness assumptions caused by multiple mo- as a result of motion parallax or the independent motion
tions. We show how the robust estimation framework can be

of objects. In these common situations, most current ap-applied to standard formulations of the optical flow problem
proaches cannot recover the multiple motions, give errone-thus reducing their sensitivity to violations of their underlying
ous motion estimates for the region, and fail to signal thatassumptions. The approach has been applied to three standard
the underlying assumption of a single motion has been vio-techniques for recovering optical flow: area-based regression,
lated.correlation, and regularization with motion discontinuities.

The fundamental problem is that the estimation of opti-This paper focuses on the recovery of multiple parametric mo-
tion models within a region, as well as the recovery of piecewise- cal flow involves the pooling of constraints over some spa-
smooth flow fields, and provides examples with natural and tial neighborhood. To gain accurate estimates this region
synthetic image sequences.  1996 Academic Press, Inc. must be sufficiently large to constrain the solution (the

standard aperture problem), yet the larger the region of
integration the more likely it is to contain multiple motions

1. INTRODUCTION with competing constraints. This has been referred to as
the generalized aperture problem [30]. The pooling of con-

When estimating 2D image velocity, or optical flow, from
straints over a neighborhood is typically performed using

image sequences, it is common to assume that only a single
least-squares estimation. These least-squares formulations

motion is present within any finite image region. This single
average the motions present in a region which results in

motion assumption appears in a variety of forms. For exam-
incorrect motion estimates from the data conservation con-

ple, the standard data conservation constraint assumes that
straint and over-smoothing by the spatial coherence con-

the image brightness of a region remains constant while
straint.

its location may change. This assumption underlies the
When, for example, two motions are present in a neigh-

common correlation and gradient-based approaches and
borhood, one set of constraints will be consistent with one

is violated when a region contains transparency, specular
of the motions and another set will be consistent with the
other motion. When examining one of the motions, the
constraints for the other motion will appear as gross errors* To whom correspondence should be addressed. E-mail: black@parc.

xerox.com. which we refer to as outliers. Least-squares estimation is

75
1077-3142/96 $18.00

Copyright  1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.



76 BLACK AND ANANDAN

well known to lack ‘‘robustness’’ in the presence of outliers. 2. MULTIPLE MOTIONS AND THE ESTIMATION OF
OPTICAL FLOWTo compute optical flow robustly we must reduce the sensi-

tivity of the recovered optical flow to violations of the single
Most current techniques for recovering optical flow ex-motion assumption by detecting and rejecting outliers. This

ploit two constraints on image motion: data conservationpaper shows how a robust statistical formulation of these
and spatial coherence. The data conservation constraint isestimation problems makes the recovered flow field less
derived from the observation that surfaces generally persistsensitive to assumption violations and allows us to accu-
in time and, hence, the intensity structure of a small regionrately recover multiple motions. The main idea is to re-
in one image remains constant over time, although its posi-

formulate the least-squares estimation problems using ro-
tion may change. In many commonly occurring situations,

bust estimation techniques which are less sensitive to this assumption is violated for some subset of the points
outliers. This robust formulation, combined with a deter- within the image region; for example, it is violated at mo-
ministic optimization scheme, provides a framework for tion boundaries and when specular reflections are present.
robustly estimating optical flow and allows assumption vio- The spatial coherence constraint embodies the assump-
lations to be detected. We have applied the framework to tion that surfaces have spatial extent and hence neigh-
a variety of standard techniques for recovering optical flow; boring pixels in an image are likely to belong to the same
these include correlation [7], area-based regression [6], surface. Since the motion of neighboring points on a
correlation with regularization [9], and gradient-based ap- smooth rigid surface changes gradually, we can enforce an
proaches with regularization [6, 10]. implicit or explicit smoothness constraint on the motion of

Previous work in optical flow estimation has focused on neighboring points in the image plane. It has long been
the violation of the spatial coherence assumption at motion realized that such a constraint is violated at surface bound-

aries and much of the recent work in motion estimation hasboundaries [14, 23, 38, 40, 48, 50, 53] while ignoring viola-
focused on where it is violated and how to reformulate it.tions of the data conservation, or brightness constancy,

Below we review the standard formulations of the twoassumption. Within the robust estimation framework, vio-
constraints, illustrate the problems caused by the singlelations of both constraints are treated in a uniform manner
motion assumption, and review previous approaches forand we will demonstrate that the ‘‘robustification’’ of the
dealing with multiple motions.brightness constancy assumption greatly improves the flow

estimates. The robust estimation framework is also closely
2.1. Data Conservationrelated to ‘‘line-process’’ approaches for coping with spa-

tial discontinuities [6, 11, 19]. By generalizing the notion Let I(x, y, t) be the image brightness, or a filtered version
of a binary line process to that of an analog outlier process of the image brightness, at a point (x, y) at time t. The
which can account for violations of both the brightness data conservation constraint can be expressed in terms
and smoothness assumptions the outlier-process formula- of the standard brightness constancy assumption as fol-
tion can be converted into a robust-estimation problem lows:
and vice versa for a particular class of robust estimation
problems [11]. I(x, y, t) 5 I(x 1 udt, y 1 vdt, t 1 dt). (1)

The following section provides a review of optical flow
and multiple motions. Examples are provided to illustrate Here (u, v) is the horizontal and vertical image velocity at
the application of a robust approach. Section 3 provides a a point and dt is small. This simply states that the image
brief introduction to the topic of robust estimation. In value at time t, at a point (x, y), is the same as the value
Section 4, a robust estimation framework is developed and in a later image at a location offset by the optical flow.
applied to a number of common optical flow formulations.

Correlation Methods. The most direct way to use theFor purposes of exposition, we will develop two algorithms
brightness constancy assumption is to formulate the datain detail by applying the robust estimation framework. The
conservation error measure using sum-of-squared differ-first regression-based approach is described in Section 5
ence (SSD) correlation [2]. In this formulation, the imageand applied to problems involving motion boundaries,
velocity is assumed to be approximately constant within afragmented occlusion, transparency, and specular reflec-
local neighborhood, R, and the error associated with a

tions. Section 6 describes a regularization technique which
given displacement is formulated as

uses a robust version of the standard optical flow constraint
equation and a robust first-order smoothness term. The

ED(u, v) 5 O
(x,y)[ R

[I(x, y, t) 2 I(x 1 udt, y 1 vdt, t 1 dt)]2.approach is applied to a number of synthetic and natural
image sequences with piecewise-smooth flow fields to illus-
trate the effects of the robust data and smoothness terms. (2)
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Gradient Methods—Locally Constant Flow. We can to sufficiently constrain the solution and provide insensitiv-
ity to noise; this is commonly referred to as the aperturerewrite (2) by taking the Taylor Series approximation of

I(x 1 udt, y 1 vdt, t 1 dt). Dropping the terms above problem. The larger the region however, the less likely it
is that our assumptions about the motion will be valid overfirst order and simplifying gives the following gradient-

based formulation: the entire region. For example, as the region size grows
so does the likelihood that the region will contain multiple
motions. When this occurs, there will be no single flowED(u, v) 5 O

(x,y)[ R

(Ix(x, y, t)u 1 Iy(x, y, t)v 1 It(x, y, t))2.
u(a) which produces small residuals ((=I)T u(a) 1 It)2 over
the entire region. When solving for one motion the large(3)
residuals corresponding to competing motions can be
viewed as outliers. Additionally, the approaches aboveHere the subscripts indicate partial derivatives of the
make assumptions about the spatial variation of the motionbrightness function with respect to x, y, and t.
within the region; for example, that it is constant or affine.We find it convenient to write this data conservation
These motion models are only good approximations lo-constraint as
cally. For these reasons the region should be small. We
refer to the dilemma surrounding the appropriate size of

ED(u) 5 O
R

((=I)T u 1 It)2, (4) aperture, R, as the generalized aperture problem1 (or
GAP) [30]:

where =I denotes the local brightness gradient vector, and 1. R must be large to sufficiently constrain the solution,
u 5 [u, v]T denotes the flow vector [34]. As the region

2. R must be small to avoid violating the assumptions.
size tends to zero (i.e., if the estimation is restricted to
information at a point in the image) this error measure 2.1.2. Multiple Motions: An Example
becomes the gradient-based constraint used in the Horn

To illustrate the problems posed by multiple motionsand Schunck algorithm [27].
we will briefly consider an example in which we want to

Regression Methods—Affine Flow. In order to allow estimate the motion in Fig. 1a. In this image sequence, the
larger spatial neighborhoods to be used while still retaining camera is stationary and a person is moving behind a plant
the advantage of a closed form estimation of the local flow resulting in ‘‘fragmented occlusion.’’ The motion of the
vectors, the flow field can be modeled as a parametric plant and the person can each be well approximated by a
function of the image coordinates. Assuming a model u(x, constant global translation (the horizontal motion of the
y; a) of the flow within a region, where a are the parameters plant and background is zero and the person is translating
of the model, we can combine information from neigh- approximately 20.79 pixels). Consider what happens when
boring gradient constraint equations to find the parameters we apply the least-squares regression approach to this se-
a that minimize the sum of the constraints over a neighbor- quence (where R is the entire image); that is, we minimize
hood R:

ED(u, v) 5 O
R

(Ixu 1 Iyv 1 It)2. (7)
ED(a) 5 O

R

((=I)Tu(a) 1 It)2. (5)

Each constraint (Ixu 1 Iyv 1 It) forms a line in u-v-
Common models of image flow in a region R include space. Figure 1b shows a small fraction of the constraint
constant, affine, and quadratic. For an affine flow model, lines obtained for the image sequence. In Fig. 1b, two
we have distinct populations of constraint lines are visible corre-

sponding to the two motions present in the region. The
solution obtained by least-squares regression attempts to

u(x, y; a) 5Fu(x, y)

v(x, y)G5Fa0 1 a1x 1 a2y

a3 1 a4x 1 a5y
G . (6) satisfy all these constraints simultaneously. This results in

an erroneous motion estimate ((u, v) 5 (20.19, 0.02))
which lies between the two motions. The white ‘‘cross’’

Parametric models such as this have been used for estimat- marks the location of the least-squares estimate, while the
ing image motion over the entire image or a preselected gray crosses mark the two ‘‘correct’’ motions.
region [4, 13, 16, 17, 31, 34, 58]. The robust estimation framework proposed here pro-

duces a different result. The approach allows the dominant
2.1.1. The Generalized Aperture Problem

The above formulations share a common problem: the 1 Negahdaripour and Yu [41] use the same term to refer to the ill-
conditioning produced by their generalized brightness-change model.choice of the region size for R. A large region R is needed
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FIG. 1. Image sequence with fragmented occlusion. (a) First image. (b) Constraint lines (see text).

motion (of the plant and the background) to be accurately Bergen et al. [5] propose an area-regression approach
for estimating two motions from three frames. The ap-estimated while ‘‘ignoring’’ the motion of the person. Addi-
proach uses an iterative algorithm to estimate one motion,tionally the approach detects where the single motion as-
performs a nulling operation to remove the intensity pat-sumption is violated (i.e., where u((=I)Tu(a) 1 It)u is large).
tern giving rise to the motion, and then solves for theThese violations (or ‘‘outliers’’) appear as dark regions in
second motion. The process is repeated and the motionFig. 2a and correspond to the moving person and his
estimates are refined. In contrast, the robust approach canshadow. The constraint lines associated with the dominant
theoretically recover n motions from two frames, by di-motion are shown in Fig. 2b with the recovered motion
rectly fitting multiple parametric models to the con-((u, v) 5 (20.03, 0.00)) marked with a white cross. These
straint equations.constraint lines are derived from the white areas in Fig. 2a.

Using standard least-squares regression, it is sometimesWe can now examine the constraints that were rejected
possible to detect multiple motions by examining the resid-as outliers to see if they correspond to a consistent motion.
ual of the least-squares solution [29]. After obtaining anThe regions consistent with a second motion and the associ-
initial least-squares estimate, ‘‘outliers’’ are detected andated constraint lines are shown in Fig. 3, and the recovered
removed. The least-squares solution is then recomputedmotion for the person ((u, v) 5 (20.77, 20.03)) is marked
and the process iterates. This type of robust process isby a white cross.
sensitive to the initial quadratic estimate which may be
arbitrarily bad.2.1.3. Previous Approaches

In considering a correlation-based approach, Okutomi
There have been a number of previous attempts to im- and Kanade [42] develop an ‘‘adaptive window’’ technique

prove accuracy and robustness of flow estimates in regions that adjusts the size of the correlation region to minimize
containing multiple motions by relaxing the single motion the uncertainty in the estimate. Their implementation of
assumption. Shulman and Hervé [50] point out that the the approach is limited by the use of a fixed shape (rectan-
standard brightness constancy assumption is commonly vi- gular) window that cannot adapt to irregular surface
olated. While they use robust statistical techniques to cope boundaries. The approach also cannot cope with frag-
with spatial discontinuities, they do not apply robust tech- mented occlusion (for example, trees or fences) where,

regardless of window size or shape, multiple motions areniques to the data term. Instead, they propose a more
general model of image brightness variation. present.
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FIG. 2. Robustly determining the dominant motion. (a) Violations of the single motion assumption shown as dark regions. (b) Constraint lines
corresponding to the dominant motion.

FIG. 3. Estimating multiple motions. (a) White regions correspond to a second consistent motion. (b) Constraint lines corresponding to the
secondary motion.
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Shizawa and Mase [49] model multiple motions within a of the image motion within a region of interest. However,
region as producing an additive superposition of brightness due to the generalized aperture problem, these area-based
distributions. Their ‘‘principle of superposition’’ allows techniques are not globally applicable and, in general, the
them to derive a multiple motion version of the brightness best we can do is compute flow estimates in local regions
constancy assumption in terms of a composition of multiple over the image. However, there may be regions which have
operators applied to the brightness distribution. This is insignificant spatial intensity variation, leading to poor esti-
essentially the same model used by Bergen et al. [5]. mates. Also, as noted earlier, in order to allow the greatest

Unlike the regression techniques that try to find the best spatial variation of the flow field, it may be desirable to
flow given the local intensity constraint equations, Schunck keep the window sizes small, leading to potentially poor
[48] proposes a method of constraint line clustering for local estimates in many regions. The extreme case of this
computing flow estimates near motion discontinuities. The is seen as the standard aperture problem in the case of the
constraint line at the center of a region is intersected with gradient-based formulation, when the window size tends
all the other constraint lines within the region. A robust to zero and the local flow is only partially constrained by
one-dimensional clustering operation is performed to de- the data conservation constraint
tect the dominant cluster of constraint line intersections.
The approach has two serious limitations. First, the accu-

Ixu 1 Iyv 1 It 5 0.racy of the result depends on the accuracy of the center
constraint line, and at motion boundaries this will likely

The standard approach for handling the ill-conditioningbe inaccurate. Unfortunately, this is exactly the place
that occurs from lack of sufficient intensity variation withinwhere we want a robust approach. Second, the one-dimen-
local regions is to add a spatial coherence assumption insional clustering implicitly assumes a constant flow model;
the form of a regularizing term ESwe would like to be able to use more realistic models of

the local flow variation.
Wang and Adelson [57] assume that an image region is E(u) 5 ED(u) 1 lES(u)

modeled by a set of overlapping ‘‘layers.’’ They compute
5 (Ixu 1 Iyv 1 It)2 1 lES(u),initial motion estimates using a least-squares approach

within image patches [34]. They then use K-means cluster-
ing to group motion estimates into regions of consistent where l controls the relative importance of the data con-
affine motion. Jepson and Black [30] also assume a layered servation and spatial coherence terms. The introduction
representation and model the constraint lines within a re- of a spatial coherence constraint restricts the class of admis-
gion as a mixture of distributions corresponding to the sible solutions, making the problem well-posed. Such regu-
different layers. They then use an iterative algorithm that larization techniques have received a great deal of atten-
assigns constraints to the different layers and estimates the tion [36, 44]. The most common formulation of ES is the
affine motion of each layer. In similar work, Adiv [1] used first-order, or membrane, model [27]
a generalized Hough technique to estimate the parameters
of multiple motions. While the approach is robust, it is ES(u, v) 5 u2

x 1 u2
y 1 v2

x 1 v2
y , (8)

discrete and computationally expensive. Each of these ap-
proaches is designed to estimate multiple parametric mo-

where the subscripts indicate partial derivatives in the xtion models within some fixed image region. These ap-
or y direction. For an image of size n 3 n pixels, we defineproaches do not appear to offer a general framework which
a grid of sites,can also cope with piecewise-smooth flow fields.

In [7], we replaced the quadratic error norm used in
correlation with a robust error norm. We observed that, S 5 hs1 , s2 , . . . , sn2 u ;w, 0 # i(sw), j(sw) # n 2 1j,
when multiple image motions are present, the robust for-
mulation results in better defined ‘‘peaks’’ corresponding

where (i(s), j(s)) denotes the pixel coordinates of site s. Theto the multiple motions. Robust correlation was later used
first-order smoothness constraint can then be discretized asto provide a robust data term for estimating dense flow

fields [9]. In [6, 10], a robust error norm is used to reject
data outliers which occur with gradient-based approaches

ES(u) 5 O
s[S
F1

8 O
n[ Gs

[(us 2 un)2 1 (vs 2 vn)2]G , (9)and robust regression was proposed in [6] to recover multi-
ple motions within an image region.

2.2. Spatial Coherence
where the subscripts s and n indicate sites in S and where
Gs represents the set of north, south, east, and west neigh-The various formulations of the data conservation con-

straint described above are attempts to provide an estimate bors of s in the grid.
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tions, or outliers, are shown in black in Fig. 7. Notice in
Fig. 7a that the spatial outliers correspond to the motion
boundary. Of particular interest are the data outliers; even
in this synthetic example, with no added noise, violations
of the data conservation constraint, (Ixu 1 Iyv 1 It) 5 0,
occur at the motion boundary. The estimate of the deriva-
tives Ix , Iy , and It require the pooling of information over
some finite spatial neighborhood. When this neighborhood
spans a motion boundary, the derivatives may be incorrect
and the resulting constraint equation cannot be trusted.

2.2.2. Previous Approaches
FIG. 4. Smoothing across a flow discontinuity.

A large number of researchers have focused on reformu-
lating the regularization problem to allow discontinuities.
An important class of techniques for coping with spatial

2.2.1. Problems Posed by Motion Boundaries
discontinuities are the Markov random field (MRF) formu-
lations [19] which a number of authors have applied to theAs in the case of the data conservation term, the spatial

coherence term above is formulated in terms of least- optical flow problem [8, 9, 32, 38, 54]. These approaches
represent discontinuities either explicitly with the use ofsquares estimation. This formulation assumes that the opti-

cal flow corresponds to a single (continuously varying) a ‘‘line process’’ [19] or by using weak continuity constraints
[12, 23].motion locally; that is, the variation in (us 2 un) is assumed

to be Gaussian. As noted by Shulman and Hervé [50], this The use of the gray-level intensity image to control the
behavior of the smoothness constraint in optical flow hasassumption is incorrect at motion boundaries and, more-

over, we do not know what the true distribution should be. also been explored. These approaches disable the smooth-
ness term at intensity edges [14] or constrain it to be en-Consider what happens if the flow field is discontinuous;

that is, there are multiple image motions present in the forced only along the directions for which the gray-level
variation is not sufficient to determine the flow vector [40].neighborhood. Figure 4 illustrates the situation which oc-

curs at a motion boundary. With the least-squares formula- A related class of approaches uses confidence measures
computed from the data to propagate flow measurementstion the local flow vector ui, j is forced to be close to the

average of its neighbors. When a motion discontinuity is from areas of high confidence to areas of low confidence
[2]. Singh [51], for example, uses covariance matrices com-present this results in smoothing across the boundary which

reduces the accuracy of the flow field and obscures im- puted from the SSD surfaces and the distribution of flow
vectors in small neighborhoods to determine an optimalportant structural information about the presence of an

object boundary. flow estimate.
Schunck [48] interleaves discontinuity detection and reg-This oversmoothing is illustrated with an example. Con-

sider the synthetic image sequence in Fig. 5 in which the ularization. Given an estimate of the optical flow, motion
discontinuities are detected in the flow field [53] and thenleft half of the image (Fig. 5a) is stationary and the right

half is moving one pixel to the left between frames. The a smoothness operator is applied that prevents smoothing
across the boundary. This gives a new flow estimate andhorizontal and vertical components of the flow are shown

with the magnitude of the flow represented by intensity, the process is repeated.
Darrell and Pentland [15] have noted the limitationswhere black indicates motion to the left and up and gray

indicates no motion. The true horizontal and vertical mo- of edge-based schemes when recovering multiple image
motions in cases of fragmented occlusion. Instead, theytions are shown in Figs. 5b and 5c, respectively.

Figure 6 shows a plot of the horizontal motion where propose a scheme in which different motions are assigned
to multiple layers using a Markov random field approach.the height of the plot corresponds to the recovered image

velocity. Figure 6a shows that the application of the least- Madarasmi et al. [35] take a similar approach in the recov-
ery of multiple transparent surfaces from depth data. Theysquares formulation (Horn and Schunck [27]) results in

motion estimates which vary smoothly thus obscuring the detect and reject outlying data measurements by confining
them to a separate layer.motion boundary. When we recast the problem in the

robust estimation framework, the problems of over- Shulman and Hervé [50] first pointed out that spatial
discontinuities in optical flow can be treated as outlierssmoothing are reduced (Fig. 6b). Moreover, the robust

approach allows violations of the data conservation and and they proposed a robust regularization approach based
on Huber’s minimax estimator [28]. Their formulation re-spatial coherence assumptions to be detected. These viola-
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FIG. 5. Random noise example. (a) First random noise image in the sequence. (b) True horizontal motion (black 5 21 pixel, white 5 1 pixel,
gray 5 0 pixels). (c) True vertical motion.

sulted in a convex optimization problem which avoided 3. ROBUST STATISTICS
the problem of local minima. Black and Anandan [9] for-
mulated the regularization problem using a robust error The previous section illustrated the generality of the

problem posed by motion discontinuities; measurementsnorm with a redescending influence function for better
outlier rejection. They also introduced a robust data term are corrupted whenever information is pooled from a spa-

tial neighborhood that contains multiple image motions.which was missing in previous approaches. Finally, Black
and Rangarajan [11] have shown that there is a deep rela- Model violations such as these result in measurements that

can be viewed in a statistical context as outliers. We appealtionship between these robust approaches and the tradi-
tional line-process approaches. to the field of robust statistics [22, 28] to solve the problem
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FIG. 6. Horizontal displacement. The horizontal component of motion is interpreted as height and plotted. Plotting the results illustrates the
oversmoothing of the least-squares solution (a), and the sharp discontinuity which is preserved by robust estimation (b).

of estimation when the assumptions about the world are in a growing interest in the use of robust statistics in com-
puter vision (see [37] for a discussion). As mentioned in theidealized and one expects that the assumptions will occa-

sionally be violated. This section introduces the robust previous section, robust statistical techniques have been
applied to the problem of image velocity estimation [48,statistical techniques relevent to the proposed framework;

for a mathematical details, see [22, 28, 47]. 50], but these previous formulations lack a coherent, uni-
fied, framework for addressing the effects of multiple im-As identified by Hampel et al. [22], the main goals of

robust statistics are to recover the structure that best fits age motions on both the data conservation and spatial
coherence assumptions.the majority of the data while identifying and rejecting

‘‘outliers’’ or ‘‘deviating substructures.’’ While most of the Robust estimation [22, 28] addresses the problem of
finding the values for the parameters, a 5 [a0 , . . . , an],work in computer vision has focused on developing optimal

strategies for exact parametric models, there is a growing that best fit a model, u(s; a), to a set of data measurements,
d 5 hd0 , d1 , . . . , dSj, s [ S, in cases where the data differsrealization that we must be able to cope with situations

for which our models were not designed. This has resulted statistically from the model assumptions. In fitting a model,

FIG. 7. Random noise sequence outliers. (a) Motion discontinuities where the smoothness constraint is violated. (b) Data outliers.
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FIG. 8. Common r and c Functions.

the goal is to find the values for the parameters, a, that measurements are normally distributed, the optimal r-
function is the quadraticminimize the size of the residual errors (ds 2 u(s; a)),

min
a

O
s[S

r(ds 2 u(s; a), ss), (10)
r(ds 2 u(s; a), ss) 5

(ds 2 u(s; a))2

2s 2
s

, (11)

where ss is a scale parameter, which may or may not be
present, and r is our error norm. When the errors in the which gives rise to the standard least-squares estimation
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problem. Minimizing (10) results in an M-estimate since ously varying flow fields involving explicit spatial smooth-
ness constraints using this technique.this corresponds to Maximum-likelihood estimation. The

choice of different r-functions results in different robust We prefer to work in the context of optimization, and
formulate our minimization problems to account for outli-estimators and the robustness of a particular estimator

refers to its insensitivity to outliers or gross errors. ers by using the robust r-functions described above. Al-
though this approach is less robust than the LMedS
method, it provides a natural framework for ‘‘robustifying’’3.1. Robust Estimation
problems in optical flow. It decouples the problem of for-
mulating an optimization problem robustly from the prob-As demonstrated in the previous section, least-squares

estimation is not appropriate when multiple image motions lem of recovering the solution.
are present. The application of least squares in these situa-
tions caused the recovered flow to be incorrect. The prob- 4. ROBUST ESTIMATION FRAMEWORK
lem with the least-squares solution is that outlying mea-

Section 2 introduced three standard approaches for esti-surements are assigned a high ‘‘weight’’ by the quadratic
mating optical flow which were all posed in terms of least-r-function (Fig. 8a, left). One way to see this is by consider-
squares estimation. To improve the robustness, withouting the influence function associated with a particular r-
sacrificing the simple models of image brightness and spa-function. The influence function characterizes the bias that
tial coherence, the minimization problems are reformu-a particular measurement has on the solution and is pro-
lated to account for outliers by using the robust r-functionsportional to the derivative, c, of the r-function [22]. In the
described in the previous section.least-squares case, the influence of data points increases

The regression approach is simply reformulated aslinearly and without bound (Fig. 8a, right).
To increase robustness, a r-function must be more for-

giving about outlying measurements; in particular, we will min
a

ED(a) where ED(a) 5 O
R

r((=I)Tu(a) 1 It , s), (12)
consider r-functions with redescending c-functions for
which the influence of outliers tends to zero. One of the

where r is a robust r-function. Similarly, correlation canmost common robust r-functions in computer vision is the
be reformulated as the minimization oftruncated quadratic (Fig. 8b). Up to a fixed threshold,

errors are weighted quadratically, but beyond that, errors
ED(u) 5 O

(x,y)[ R

r(I(x, y, t) 2 I(x 1 u dt, y 1 v dt, t 1 dt), s).receive a constant value. By examining the c-function we
see that the influence of outliers goes to zero beyond
the threshold. (13)

There are numerous other r-functions that have been
used in the computer vision literature, each with different The objective function for the regularization approach,
motivations and strengths (see [6] for a review), but their with a gradient-based data term, becomes
common property is their ability to reduce the effect of
outliers. Two examples are the Geman–McClure and E(us) 5 rD(Ixus 1 Iyvs 1 It , sD)

(14)Lorentzian r-functions (Figs. 8c and 8d) which we will
1 l O

n[ Gs

[rS(us 2 un , sS) 1 rS(vs 2 vn , sS)],consider in the remainder of the paper. These functions
have differentiable c-functions which provide a more grad-
ual transition between inliers and outliers than does the
truncated quadratic. where rD and rS may be different r-functions. Such an

approach can likewise be taken with many other early
vision problems that are formulated in terms of least-3.2. Related Approaches
squares optimization.

Notice that we have simply taken these standard formu-There are many avenues by which to approach the prob-
lem of robustness. One common approach is to detect lations of optical flow and made the observation that they

correspond to least-squares estimation. Because each ap-outliers by examining the least-squares residuals. Unfortu-
nately, even a small number of outliers can arbitrarily proach involves pooling information over a spatial neigh-

borhood these least-squares formulations are inappropri-corrupt the initial estimate, making the residuals meaning-
less. Another approach involves the use of robust iterative ate when multiple image motions are present. By treating

the formulations in terms of robust estimation, the prob-procedures like least-median-of-squares (LMedS) [37, 47].
While this approach can tolerate a large percentage of lems of oversmoothing and noise sensitivity typically asso-

ciated with these approaches are alleviated.outliers, it is most suited to regression or piecewise regres-
sion formulations. It is not clear how to estimate continu- This approach has a number of advantages. The formula-
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tion of minimization problems in the robust estimation [56], but the rate of convergence is sensitive to the exact
value of g. The term T(us) is an upper bound on the secondframework is very similar to the familiar least-squares for-

mulations and this gives the robust formulations an intu- partial derivative of E,
itive appeal. Robust r-functions and their influence func-
tions are also powerful formal and qualitative tools that

T(us) $
­2E
­u2

s
, ;s [ S. (16)

are useful for analyzing robustness. In particular, examina-
tion of the influence functions provides a means of compar-
ing r-functions and their effects on outliers. Additionally, Details of the robust parametric regression and robust
as shown in [11], robust r-functions are closely related regularization algorithms are provided in the following two
to the traditional line-process approaches for coping with sections along with experimental results.
discontinuities. For many r-functions it is possible to re-

Graduated Non-Convexity. To find a globally optimalcover an equivalent formulation in terms of analog line
solution when the objective function is nonconvex weprocesses. Thus, one can adopt the robust formulation
choose a robust r-function with a control parameter andpresented here and, if desirable, convert the optimization
we solve the minimization problem using a continuationproblem into one with explicit line (or outlier) processes.
method [46]. The general idea is to take the nonconvex
objective function and construct a convex approximation.4.1. Minimization
This approximation is then readily minimized, using, for

Given a robust formulation, there are numerous optimi- example, the SOR technique above. Successively better
zation techniques that can be employed to recover the approximations of the true objective function are then
motion estimates and the most appropriate technique will constructed and minimized starting from the solution of
depend on the particular formulation and choice of r- the previous approximation. For a given objective function
function. In general, the robust formulations do not admit the challenge is to construct the sequence of approxima-
closed form solutions, and often result in an objective func- tions.
tion that is nonconvex. We have explored the use of sto- Blake and Zisserman [12] developed a continuation
chastic minimization techniques such as simulated anneal- method called Graduated Non-Convexity by constructing
ing [9] but have found deterministic continuation methods a parameterized piecewise polynomial approximation to
[10] to be more efficient and practical. the truncated quadratic. Various other r-functions have

been proposed for use in continuation methods [18, 33]
4.1.1. Continuation Methods and these approaches are closely related to ‘‘scale-space’’

techniques [43].If we choose a robust r-function that is twice differen-
Formally, the objective function E is convex when thetiable then local minima of (12), (13), and (14) can be found

Hessian matrix, H, of E is positive definite. This conditionusing any number of descent methods (e.g., simultaneous
is met if and only if both eigenvalues of the matrix H areover-relaxation (SOR)). Also, many robust r-functions
positive. This gives us a simple test for convexity. It is easyhave ‘‘scale’’ parameters which allow the shape of the
to show that E is locally convex when r0(x, s) . 0, ;x;function to be changed. These parameters allow the robust
that is, s is chosen so that there are no outliers.estimation problems to be solved using a continuation

Beyond some threshold, t, redescending r-functions be-method.
gin to reduce the influence of measurements. Measure-

Simultaneous Over-Relaxation. Simultaneous over-re- ments greater than this threshold can be considered outli-
laxation (SOR) belongs to a family of relaxation techniques ers. Consider, for example, the Lorentzian r-function:
which include Jacobi’s method and the Gauss–Seidel
method [45, 52, 56]. For illustration, we consider minimiz-

r(x, s) 5 log S1 1
1
2 Sx

s
D2D , c(x, s) 5

2x
2s 2 1 x2 .ing the objective function E(u, v) with respect to u, but

the same treatment applies for v, or for the ai in the case
of a parametric motion model. The iterative update equa- To construct a convex approximation of E(u), we want all
tion for minimizing E at step n 1 1 and at site s is simply [12] measurements to be treated as inliers. The point where

the influence of outliers first begins to decrease as the
magnitude of the residuals increases from zero occurs whenu(n11)

s 5 u(n)
s 2 g

1
T(us)

­E
­us

, (15)
the second derivative of the r-function is zero. For the
Lorentzian, the second derivative

where 0 , g , 2 is an overrelaxation parameter which is
used to overcorrect the estimate of u(n11) at stage n 1 1. ­2r

­x2 5
­c

­x
5

2(2s2 2 x2)
(2s2 1 x2)2When 0 , g , 2 the method can be shown to converge
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FIG. 9. Graduated Non-Convexity. r(x, s) and c (x, s) plotted for thresholds t [ h16, 8, 4, 2, 1j. (a) Error measure r(x, s).
(b) Influence, c (x, s).

equals zero when t 5 6Ï2·s. If the maximum expected 5. ROBUST REGRESSION EXPERIMENTS
residual is t, then choosing s 5 t/Ï2· will result in a convex

To illustrate the robust estimation framework we firstoptimization problem. A similar treatment applies to other
consider the regression approach where the goal is to re-robust r-functions. Notice that this also gives a simple test
cover the affine parameters a that minimizeof whether or not a particular residual is treated as an

outlier. In the case of the Lorentzian, a residual x is an
ED(a) 5 O

R

r((=I)Tu(a) 1 It , s), (17)outlier if uxu $ Ï2·s.
The minimization can begin with the convex approxima-

tion and the resulting estimate will contain no outliers. In
where s is a control parameter, R is taken to be the entirethis sense it will be very much like the least-squares esti-
image for these experiments, and r is the Geman–McCluremate. Outliers can be gradually introduced by lowering
norm [20]the value of s and repeating the minimization. While this

approach works well in practice, it is not guaranteed to
converge to the global minimum since, as with least r(x, s) 5

x2

s 1 x2 , c(x, s) 5
2xs

(s 1 x2)2 .
squares, the solution to the initial convex approximation
may be arbitrarily bad. Figure 9 shows the Lorentzian

Also, recall that the affine flow in a region is described byerror function (Fig. 9a) and its c-function (Fig. 9b) for
various values of t 5 Ï2·s.

u(x, y; a) 5 Fu(x, y)

v(x, y)
G5 Fa0 1 a1x 1 a2y

a3 1 a4x 1 a5y
G . (18)

4.2. Large Motions

To cope with motions larger than a single pixel, a coarse-
The iterative update equations from the previous sec-to-fine strategy [2, 21] is employed in which we construct

tion area pyramid of spatially filtered and sub-sampled images.
Beginning at the lowest spatial resolution with the flow u
being zero, the change in the flow estimate du is computed. a(n11)

i 5 a(n)
i 2 g

1
Tai

­ED

­ai
, (19)

The new flow field, u 1 du, is then projected to the next
level in the pyramid (scaled as appropriate) and the first
image at that level is warped toward the later image using for each of the six motion parameters where g 5 1.995

for all experiments. Details of the update equations arethe flow information. The warped image is then used to
compute the du at this level. The process is repeated until given in Appendix A. Finally, the spatial and temporal

derivatives (Ix , Iy , It) were estimated using the simple tech-the flow has been computed at the full resolution. Details
of the coarse-to-fine strategy are given in the following nique described by Horn [26].

The algorithm begins by constructing a Gaussian pyra-sections and warping in the case of affine motion is de-
scribed in Appendix B. mid. At the coarse level all affine parameters are initially
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zero. The translational terms a0 and a3 are solved for first Figure 11 shows the results of the experiment. The domi-
nant horizontal motion is shown as a solid line; initiallyby performing n iterations of the update equations above

(or until the change in the parameters is less than a thresh- the horizontal motion is 1.0 and then, when 50% of the
region is occupied by the distractor, the horizontal motionold). For all experiments in this section n is 30 and the

threshold is 1026. If the image at the current level is larger is 0.0. The robust formulation does a good job of recovering
the dominant horizontal motion and ignoring the dis-than 50 3 50 then the linear terms (a1 , a2 , a4 , a5) are

found in the same manner. For smaller images, the affine tracting motion until approximately 40% of the region is
occupied by the distractor. Not surprisingly, the least-parameters cannot be determined with sufficient ro-

bustness. squares approach performs poorly, producing the mean
horizontal motion rather than the dominant one.The next level in the pyramid is then processed. The

initial estimates at this level are (2a0 , a1 , a2 , 2a3 , a4 , a5).
5.2. Fragmented Occlusion: Multiple Affine MotionsThese parameters are used to warp the first image toward

the second (see Appendix B for details). The change in The synthetic image sequence shown in Figs. 12a and
the affine parameters is then computed using the iterative 12b contains two affine motions and is a good example of
update scheme. The process is repeated until the full reso- fragmented occlusion. It is difficult to see in this figure,
lution is reached. but there is a crowd of people in the background that is

A continuation method is used during the iterative up- occluded by the trees in the foreground. A four-level pyra-
dating of each level. At each iteration, the control parame- mid was used and the value of the control parameter was
ter s is lowered according to the schedule st11 5 0.95st . lowered from s 5 25.0Ï3· to s 5 15.0Ï3·. The processing
The effect of this process is that initially all points in the took approximately 100 s on a SPARCstation 10 to recover
region contribute to the solution and gradually the influ- the two motions for the 256 3 192 pixel image.
ence of outlying residuals is reduced. The dominant motion was recovered and the outliers

Once the dominant motion has been determined the were detected. Figure 12c shows these outliers as black
outlying measurements can be determined by checking regions. These regions were then used to estimate a second
whether u(=I)Tu(a) 1 It)u $ t, where t is determined by affine motion for the background; the constraints consis-
the error norm and the control parameter. For the Geman– tent with the background motion are shown in Fig. 12d
McClure norm t 5 s/Ï3·. If a sufficient number of outliers in white.
are present then we perform the affine regression again The recovered affine parameters of the foreground and
using only the outlying constraints. This process of robustly background are:
fitting affine motions continues until the number of con-
straints remaining unaccounted for is below a threshold. a0 a1 a2 a3 a4 a5

This section presents four different experiments which
Foreground 0.765940 0.010489 0.001311 22.137969 0.001398 0.003769show the robust regression approach applied to motion
Background 23.539432 0.003995 0.002025 23.527813 20.000553 0.003694

boundaries, fragmented occlusion, transparency, and spec-
ular reflections. The parameters in all experiments are the

To demonstrate the accuracy of the estimated motion wesame unless otherwise noted. The only parameters that
warp the first image toward the second using the affinevary are the starting and ending values of s and the solu-
motion. The pixel difference between the warped imagetions are fairly stable for changes in s of less than an order
and the second image is computed and shown in Figs. 12eof magnitude.
and 12f. The nulling of the foreground and background in
the figures attempts to illustrate that the correct motions

5.1. Motion Boundaries: Estimating the have been recovered (see [5] for comparison).
Dominant Motion

5.3. Transparent Motion
The first experiment illustrates the robust estimation of

a single dominant image motion within a region. For clarity Multiple image motions can also occur as the result of
transparency and reflection. Figure 13a shows an examplewe consider a simple case involving two constant motions.

Figure 10 shows an experiment using a translational model of transparent motion in which the head of a person ap-
pears reflected in the glass of a photograph. In additionwhere the goal is to estimate the horizontal component of

the dominant motion within the region. There are two to assuming a single motion within a region, the brightness
constancy assumption assumes that the brightness of arandom noise patterns present in the window; one moving

to the right, the other moving up. The best estimate of the pixel corresponds to a single surface in the scene. In the
case of reflections this assumption is violated [5, 49].horizontal component is computed as increasing amounts

of the upward motion (the distractor) are added to the The dominant motion for the entire image is estimated
using an affine flow model and a three-level pyramid. Theregion.
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FIG. 10. Constant model experiment.

value of the control parameter was lowered from s 5 This nulling of the dominant motion reveals the reflected
face in the difference image. Similarly, Figure 13e shows20.0Ï3· to s 5 7.5Ï3·. The pixels that were unaccounted

for by the dominant motion were used to compute a second the difference image obtained using the motion of the
reflected face. In this case, the face motion is compensatedmotion using the same parameters. The two motions took

49 s to estimate on a 75-MHz SGI Indy workstation for for and, hence, the woman appears in the difference image.
For this experiment we had no ‘‘model’’ of transparentthe 320 3 420 pixel image.

The recovered parameters are: image formation (e.g., [5, 49]). Instead, we used the stan-
dard brightness constancy assumption which gave enough

a0 a1 a2 a3 a4 a5 ‘‘good’’ constraints to estimate both motions. This ap-
proach, however, will not work for general transparentDominant 0.28426820.005267 0.00202120.75751820.00339320.004080
motion. Instead, we need to obtain our motion constraintsSecondary 1.59504220.00166220.003794 0.033757 0.001282 0.001587
using an approach which is more suited for transparency
(e.g., the phase-based approach of Fleet and Jepson [17]).The dominant motion corresponds to the image of the

woman in the photograph. Figure 13b shows in black the
outliers where the brightness constancy assumption is vio-
lated for the dominant motion. These outliers correspond 5.4. Specular Reflections
primarily to the figure of the face reflected in the photo-

Finally, we consider the problem of specular reflectionsgraph. The pixels used to compute the motion of the re-
within a region. In general, the motion of a specularity willflected face are shown in Figure 13c.
not be consistent with the motion of the surfaces that giveFigure 13d shows the result obtained by warping the
rise to it. For example, consider the image in Fig. 14a infirst image by the dominant motion and computing the

difference image between the warped and second images. which the camera is translating toward a Coke can. The

FIG. 11. Constant model experimental results. Error for quadratic and robust formulations as a function of the amount of distractor.
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FIG. 12. Multiple affine motion experiment. (a, b). Images in the Skater sequence containing two affine motions. (c). Black regions correspond
to outliers (i.e., the white regions are consistent with the dominant motion of the foreground). (d). White regions correspond to data consistent
with the motion of the background. (e, f). Warped difference images corresponding to the foreground and background motions respectively (see text).
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FIG. 13. Transparency sequence. (a) First image of a face reflected in a framed photograph. (b) Black pixels indicate where the brightness
constancy assumption is violated. (c) White pixels correspond to points used for estimating the second motion. (d) Difference image obtained by
warping the first image by the dominant velocity and computing the pixel differences between the warped and the second images. (e) Difference
image obtained using the second estimated motion.
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FIG. 14. Specular reflections. (a). Portion of the NASA Coke can sequence with the camera translating along the camera axis. (b). Recovered
affine flow shows the image expansion. (c). Specular reflections on the can are not consistent with the affine expansion and are treated as data
outliers (in black).
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dominant motion of the image region is well modeled by ­E
­us

5 O
s[S

[lDIxc(Ixus 1 Iyvs 1 It , sD)
affine flow, yet the background and foreground have
slightly different motions and there are specular reflections

1 lS O
n[ Gs

c(us 2 un , sS)], (23)on the surface of the can.
The affine flow recovered by the robust regression ap-

proach is seen in Fig. 14b. A three-level pyramid was used, ­E
­vs

5 O
s[S
FlDIyc(Ixus 1 Iyvs 1 It , sD)and the initial and final values for s were 20Ï3· and 10Ï3·,

respectively. The motion took approximately 24 s to com-
pute on a SPARCstation 10 for the 128 3 200 pixel image.

1 lS O
n[ Gs

c(vs 2 vn , sS)G . (24)
The recovered affine parameters are:

a0 a1 a2 a3 a4 a5 While determining the optimal value of the overrelaxation
0.050001 0.017162 0.001172 0.327598 0.000948 0.018397 parameter, g, is difficult in the case of a nonlinear problem,

we can approximate it with the optimal value for Jacobi
Figure 14c shows the detected data outliers in black. These relaxation which is determined by the largest eigenvalue
outliers correspond predominantly to the specular reflec- (emax) of the Jacobi iteration matrix
tion on the Coke can. The background motion is very
similar to that of the Coke can and hence only a few outliers

emax 5 cos fh, h 5
1

(n 1 1)
, (25)are detected in the textured regions of the sweater.

6. ROBUST REGULARIZATION EXPERIMENTS for an n 3 n problem [52]. The approximation to the
optimal overcorrection is then

We now turn to see how the robust estimation frame-
work can be applied to another common approach for

gopt 5
2(1 2 Ï1 2 e2

max)
e2

max
. (26)estimating optical flow. We consider a robust gradient-

based formulation,

In practice, this approximation works well and, for an
n 3 n image, acceptable convergence is reached withinE(u, v) 5 O

s[S
FlDrD(Ixus 1 Iyvs 1 It , sD)

only n iterations. Faster convergence can be achieved using
Chebyshev acceleration [45].

Recall that the terms T(us) and T(vs) are upper bounds1 lS FO
n[ Gs

rS(us 2 un , sS) (20)
on the second partial derivatives of E. The second deriva-
tive is maximized when both the data and smoothness
errors are zero everywhere, which means we can take1 O

n[ Gs

rS(vs 2 vn , sS)GG ,

T(us) 5
lDI 2

x

s 2
D

1
4lS

s 2
S

, T(vs) 5
lDI 2

y

s 2
D

1
4lS

s 2
S

. (27)where r is a robust error norm and where sD and sS are
the control parameters. For historical reasons, in this set
of experiments we take rS 5 rD to be the Lorentzian error Recall the outlier threshold for the Lorentzian, in terms
norm. The exact choice of error norm is less important of s, is given by t 5 6Ï2·s. For the spatial coherence
than the qualitative shape of its influence function which, term, the value of tS is determined experimentally. Motion
in the case of the Lorentzian, is similar to the Geman– discontinuities ls,t between pixel sites s and t can be recov-
McClure norm used in the previous section. ered from the computed flow field by examining where the

The iterative update equations for minimizing E at step threshold tS is exceeded
n 1 1 are simply [12]

u(n11)
s 5 u(n)

s 2 g
1

T(us)
­E
­us

, (21) ls,t 5H0, uus 2 utu $ tS or uvs 2 vtu $ tS ,

1, otherwise.
(28)

v(n11)
s 5 v(n)

s 2 g
1

T(vs)
­E
­vs

, (22) A coarse-to-fine strategy is used with a fixed number of
iterations of the SOR algorithm at each level in the pyramid
where an iteration involves the updating of every site inwhere
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FIG. 15. Effect of robust data term (10% uniform noise). (a) Least-squares (quadratic) solution. (b) Quadratic data term and robust smoothness
term. (c) Fully robust formulation.

the flow field. When a level is finished the flow field is effects of the robust data and smoothness terms, the
behavior of the continuation method, and the accuracyprojected to the next level in the pyramid and the first

image is warped using this flow field: of the recovered flow. The experiments use a linear
continuation schedule which lowers the control parame-
ters more gradually than the geometric schedule used

Iwarped(x, y) 5 I(x 2 u(x, y), y 2 v(x, y)). (29)
in the previous section. In the case of the parametric
models a large number of constraints and a small number
of parameters mean that the solution typically convergesThe image derivatives are then computed at this level
quickly and a rapid continuation method can be used.using the warped image as opposed to the original image.
With regularization, the convergence is slower and bene-When the flow has been updated the process repeats
fits from a more gradual lowering of the control param-until the flow has been computed at the finest level.
eters.After the coarse-to-fine strategy has been applied to the

All parameters were exactly the same in all the experi-convex approximation, the values of sS and sD are
lowered according to the annealing schedule and the ments illustrating the stability of the robust approach. A

three-level pyramid was used with a six stage continuationentire coarse-to-fine strategy is repeated. As the coarse-
to-fine process is repeated, a flow vector is projected to method in which sD varied linearly from 18/Ï2· to

5/Ï2· and sS varied linearly from 3/Ï2· to 0.03/Ï2·. Thethe next finer level only when it differs significantly from
the current estimate at the fine level (see [6] for details). weights for the data and spatial terms were lD 5 5 and

lS 5 1, respectively. Twenty iterations were performedThe remainder of this section contains experiments
with natural and synthetic images that illustrate the at each level of the pyramid.
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FIG. 16. Outliers in the smoothness and data terms (10% uniform noise). (a) Flow discontinuities. (b) Data outliers.

6.1. Robust Data and Smoothness Terms Table 1 summarizes the results. The purely quadratic
solution attempts to be faithful to both the smoothnessA significant difference between the robust gradient
model and the noisy data; the result is moderately highmethod and previous approaches to computing optical flow
errors in both the flow estimate and the brightness con-with discontinuities is that here the data component of
straint. Adding a robust smoothness term (for example bythe objective function is made robust. A more traditional
employing a line process) results in lower errors in theformulation of the problem would include a line process
brightness constraint equation but with higher error in theor weak continuity constraint for the smoothness term [12,
flow estimate. With such a formulation, gross errors in the19, 23] and leave a quadratic data term.
brightness data pull the solution away from the true flow,The first experiment involves a synthetic sequence con-
while the robust term compounds matters by allowing dis-taining two textured surfaces, one which is stationary and
continuities to be introduced. The fully robust version ap-one which is translating one pixel to the left. The second
pears to provide the best balance. The robust data termimage in the sequence has been corrupted with 10% uni-
allows the brightness constraint to be violated and, conse-form random noise. We compare the performance of three
quently, this version has the highest brightness error andcommon approaches: a purely quadratic formulation
the lowest error in the recovered flow field.(Horn and Schunck), a version with a quadratic data term

The results are illustrated in Fig. 15. The top row showsand robust smoothness term, and the fully robust formula-
the horizontal motion and the bottom row shows the verti-tion described here.
cal motion recovered by each of the approaches (black 5
21 pixel, while 5 1 pixel, gray 5 0 pixels). Figure 15a

TABLE 1 shows the noisy, but smooth, results obtained by least-
Behavior of Data Term squares. Figure 15b shows the result of introducing a robust

smoothness term alone. The recovered flow is piecewiseRMS RMS
smooth, but the gross errors in the data produce spuriousflow brightness

Approach error error motion discontinuities. Finally, Figure 15c shows the im-
provement realized when both the data and spatial termsBoth terms quadratic 0.1814 2.600
are robust.Quadratic data, robust smoothness 0.2208 1.889

Both terms robust 0.0986 2.653 Outliers are detected where the final values of the data
coherence and spatial smoothness terms are greater thanNote. The table shows the effects of the robust data and smoothness
the outlier thresholds tD and tS (Ï2sD and Ï2sS for theterms. The root-mean-squared errors in the horizontal flow estimate and

the data term, (Ixu 1 Iyv 1 It), are shown for three common approaches. Lorentzian). Motion discontinuities are simply outliers
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FIG. 17. The Pepsi sequence; horizontal flow. Results of the continuation method stages 1–5 (see text).

with respect to spatial smoothness (Fig. 16a). A large num- Note that the diagonal banding visible in the early stages
ber of data points are treated as outliers by the data term; is apparently noise in the image sequence and can also be
especially when the motion is large (Fig. 16b). seen in the results of Heel [25].

The effect of lowering the parameters is seen in Figs.

6.2. Pepsi Sequence 18 and 19 which show the data and spatial outliers at each
stage in the continuation method. Figure 18 shows that the

To illustrate the behavior of the continuation method data outliers occur at motion boundaries and in the area
we consider a natural image sequence containing a Pepsi of banded noise in the upper right portion of the image.
can and a textured background in which the camera motion Figure 19 illustrates how spatial outliers are introduced as
is parallel to the image plane. The first image is shown in the value of sS is lowered. The final outliers correspond
the Fig. 17a. The can is displaced approximately 1.6 pixels well to the boundary of the Pepsi can.
to the left between frames, while the background moves
approximately 0.7 pixels to the left. The images are 201 3

6.3. The SRI Tree Sequence201 pixels and each of the six stages took approximately
49 s to compute on a SPARCstation 10. The next experiment is more complex in that there are

Figure 17 (1–5) shows the horizontal component of the more spatial discontinuities, but the motion is still simple
flow field at stages 1–5 of the continuation method. Initially translation parallel to the image plane. The first image in
the flow is smooth but noisy. As the control parameters are the SRI tree sequence is seen in Fig. 20a. The images are
lowered the flow becomes smoother until discontinuities 256 3 233 pixels, and each of the six stages took approxi-

mately 72 s to compute on a SPARCstation 10.begin to appear; the flow then becomes piecewise-smooth.
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FIG. 18. The Pepsi sequence; data outliers. Results of the continuation method stages 1–5 (see text).

Figure 20 shows the evolution of the horizontal compo- quence with more complex camera motion than the previ-
ous experiments. This is a challenging sequence due tonent of the flow field after stages 1–5 of the continuation

method. The flow is poor in the early stages but is refined aliasing, discontinuities, and the large range of motion (the
as the control parameters are lowered and discontinuities largest displacement is approximately four pixels). Most
are introduced. The robust flow exhibits sharp motion published optical flow algorithms have great difficulty with
boundaries yet still recovers the smoothly varying flow of this sequence (see [3] for a detailed analysis of the common
the ground plane. techniques applied to this sequence). The images are

We compare this robust solution to the least-squares 316 3 252 pixels, and each of the six stages took approxi-
result in Fig. 21 and, as expected, the least-squares flow mately 78 s to compute on a SPARCstation 10.
estimate (Fig. 21a) shows a good deal of over-smoothing. Figures 24a and 24b show frames 13 and 14 of the image
The least-squares flow was generated using the coarse- sequence, respectively. The true flow field is shown in Fig.
to-fine version of the Horn and Schunck algorithm 24c, while Fig. 24d shows the flow field recovered by the
[27]. robust gradient-based algorithm. Inspection reveals that

Finally, Figs. 22 and 23 show the evolution of the data the recovered flow is visually similar to the original with
and spatial outliers, respectively, over the six-stage contin- some errors near the boundaries.
uation method. The banding present in the data outliers The error in the estimated flow is computed using the
is the result of noise in the image sequence. angular error measure of Barron et al. [3]. They represent

image velocities as 3D unit direction vectors6.4. Yosemite Fly-Through

The synthetic Yosemite fly-through sequence tests the v ; 1

Ïu2 1 v2 1 1
(u, v, 1)T.

accuracy of the robust algorithm on a realistic image se-
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FIG. 19. The Pepsi sequence; spatial outliers. Results of the continuation method stages 1–5 (see text).

The error between the true velocity vt and the estimated here to give a rough idea of how the robust approach
performs with respect to other common approaches.velocity ve is given by arccos (vt ? ve). The performance of

the algorithm can be quantified as follows: The first set of algorithms in the table produce dense
flow fields and generally have large average angular errors.

Percent of flow vectors The second set of algorithms produce lower angular errors,
with error less than: but do not provide flow estimates everywhere; there is a

Average Standard
trade-off of density for accuracy. The robust formulationerror deviation 18 28 38 58 108
described here produces errors in the range of the most

4.468 4.218 6% 22% 40% 75% 93% accurate approaches, but still gives dense estimates.

Note that flow errors were not computed in the sky since 7. CONCLUSION
unlike the Barron et al. images which contained clouds,
our images were cloudless. If vision research is to make the journey from the care-

fully controlled environment of the research laboratory toThese results compare favorably with previous ap-
proaches. Table 2 lists the results of a number of algorithms the unconstrained and unpredictable world of humans and

commercial applications then vision algorithms must beapplied to this sequence. The numbers reported from [3]
are for a version of the Yosemite sequence containing robust. In this paper, we have considered the issues of

robustness related to the recovery of optical flow withclouds. Barron et al. report that if the sky is removed from
consideration, the accuracy of the approaches improves by multiple motions. In this regard, it is important to recognize

the generality of the problems posed by multiple motions;approximately 25%, but the density of the estimates re-
mains effectively unchanged. The numbers are reproduced measurements are corrupted whenever information is
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FIG. 20. SRI tree sequence; horizontal flow. Horizontal flow at each stage in the continuation method.

FIG. 21. The SRI tree sequence; horizontal flow. (a) Least-squares flow. (b) Robust gradient flow.
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FIG. 22. SRI tree sequence; data outliers. Data outliers are shown at each stage in the continuation method.

pooled from a spatial neighborhood which spans a motion manner. The approach provides an alternative interpreta-
tion of line processes and weak continuity constraints whileboundary. This applies to both the data conservation and

spatial coherence assumptions and violations of these as- generalizing their application to cope with nonspatial out-
sumptions cause problems for the standard least-squares
formulations of optical flow. By recasting these formula-
tions within the robust estimation framework, erroneous
measurements at motion boundaries are treated as outliers

TABLE 2and their influence is reduced.
Comparison of Various Optical Flow AlgorithmsThe paper demonstrates the application of the robust

(Adapted from [3])
estimation framework to two common techniques for esti-

Average Standard Densitymating optical flow. In particular, it shows how area-based
Technique error deviation (%)regression techniques can be made robust to multiple mo-

tions resulting from occlusion, transparency, and specular Horn and Schunck [27] 32.438 30.288 100
reflections and how piecewise-smooth flow fields can be Anandan [2] 15.848 13.468 100

Singh [51] 13.168 12.078 100recovered using a robust gradient-based algorithm. The
Nagel [39] 11.718 10.598 100approach differs from previous work in that both the data
Uras et al. [55] 10.448 15.008 100and spatial terms are made robust. This results in the rejec-

tion of outlying data constraints which result from noise Heeger [24] 10.518 12.118 15.2
or multiple motions and prevents over-smoothing across Fleet and Jepson [17] 4.298 11.248 34.1

Lucas and Kanade [34] 4.108 9.588 35.1motion boundaries.
Weber and Malik [59] 3.428 5.358 45.2The approach has a number of advantages. It allows

us to treat the effects of multiple motions on the data
Robust formulation 4.468 4.218 100

conservation and spatial coherence constraints in a uniform
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FIG. 23. SRI tree sequence; spatial outliers. Spatial outliers are shown at each stage in the continuation method. As the scale parameter decreases,
more discontinuities appear.

liers. The approach allows us to detect model violations and ­ED

­a3
5 O

R

Iyc((=I)Tu(a) 1 It , s)hence to recover motion boundaries. Finally, the robust
estimation framework has more general applicability than
the recovery of optical flow; it provides a general frame- ­ED

­a4
5 O

R

Iyxc((=I)Tu(a) 1 It , s)
work for dealing with model violations which can be ap-
plied to a wide class of problems in early vision (see
[11] for examples of robust image and surface reconstruc- ­ED

­a5
5 O

R

Iy yc((=I)Tu(a) 1 It , s).
tion).

The scale parameters Tai
used in the minimization are just

APPENDIX A: AFFINE REGRESSION DETAILS
Ta0

5 I2
x max

x
r0(x) Ta3

5 I2
y max

x
r0(x)

The partial derivatives of the robust regression equation
(17) are Ta1

5 I2
xx2 max

x
r0(x) Ta2

5 I2
y y2 max

x
r0(x)

Ta4
5 I2

yx2 max
x

r0(x) Ta5
5 I2

y y2 max
x

r0(x).­ED

­a0
5 O

R

Ixc((=I)Tu(a) 1 It , s)

For the Lorentzian estimator, we have
­ED

­a1
5 O

R

Ixxc((=I)Tu(a) 1 It , s)
c(x, s) 5

2x
2s 2 1 x2 and max

x
r0(x, s) 5

1
s 2 ,

­ED

­a2
5 O

R

Ixyc((=I)Tu(a) 1 It , s)
and for the Geman–McClure estimator,
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FIG. 24. Yosemite sequence results. (a, b) Iages 13 and 14, respectively. (c) Actual flow field. (d) Recovered flow field.

where
c(x, s) 5

2xs

(s 1 x2)2 and max
x

r0(x, s) 5
2

s 2 .

A 5 Fa1 a2

a4 a5
G.

APPENDIX B: AFFINE WARPING
Inverting this affine transformation gives

The affine parameters estimated using the robust regres-
sion approach describe the motion from the first image (x̂ 2 cx , ŷ 2 cy)T 5 (I 1 A)21(x 2 cx , y 2 cy)T 2 (a0 , a3)T.
toward the second. To warp the first image, we must take (31)
each pixel (x, y) in the warped image and ask ‘‘where did

Rearranging terms, we getthis pixel come from in the first image?’’. This ‘‘backward
warp’’ gives us a location (x̂, ŷ) in the first image. We then

(x̂, ŷ)T 5 (x, y)T 1 (b0 , b3)T 1 B p (x 2 cx , y 2 cy)T, (32)linearly interpolate the pixels in the neighborhood of (x̂,
ŷ) to find the brightness value at (x, y). where

Let (cx , cy) be the coordinates of the center of the image
region. Given the affine motion from (x̂, ŷ) to (x, y), B 5 (I 1 A)21 2 I (33)

(b0 , b3)T 5 2(I 1 B) p (a0 , a3)T. (34)
(x, y)T 5 (x̂, ŷ)T 1 (a0 , a3)T 1 A p (x̂ 2 cx , ŷ 2 cy)T
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