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Abstract. The 3-D motion of a camera within a static environment produces a sequence of time-varying images that
can be used for reconstructing the relative motion between the scene and the viewer. The problem of reconstructing
rigid motion from a sequence of perspective images may be characterized as the estimation of the state of a nonlinear
dynamical system, which is defined by the rigidity constraint and the perspective measurement map. The time-
derivative of the measured output of such a system, which is called the “2-D motion field” and is approximated by
the “optical flow”, is bilinear in the motion parameters, and may be used to specify a subspace constraint on the
direction of heading independent of rotation and depth, and a pseudo-measurement for the rotational velocity as a
function of the estimated heading. The subspace constraint may be viewed as an implicit dynamical model with
parameters on a differentiable manifold, and the visual motion estimation problem may be cast in a system-theoretic
framework as the identification of such an implicit model. We use techniques which pertain to nonlinear estimation
and identification theory to recursively estimate 3-D rigid motion from a sequence of images independent of the
structure of the scene. Such independence from scene-structure allows us to deal with a variable number of visible
feature-points and occlusions in a principled way. The further decoupling of the direction of heading from the
rotational velocity generates a filter with a state that belongs to a two-dimensional and highly constrained state-
space. As a result, the filter exhibits robustness properties which are highlighted in a series of experiments on real
and noisy synthetic image sequences. While the position of feature-points is not part of the state of the model, the
innovation process of the filter describes how each feature is compatible with a rigid motion interpretation, which
allows us to test for outliers and makes the filter robust with respect to errors in the feature tracking/optical flow,
reflections, T-junctions. Once motion has been estimated, the 3-D structure of the scene follows easily. By releasing
the constraint that the visible points lie in front of the viewer, one may explain some psychophysical effects on the
nonrigid percept of rigidly moving objects.
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1. Introduction

When a camera moves within a static environment, the
stream of images coming out of the sensor contains
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enough information for reconstructing the relative
motion between the camera and the scene. “Visual
motion estimation” is one of the oldest (Gibson et al.,
1959; Helmholtz, 1910) and at the same time one of
the most crucial and challenging problems in computer
vision. Even in the simplest cases, when the scene is
represented as arigid set of feature-points in 3-D space
viewed underperspectiveprojection, most of the early
algorithms based upon the analysis of two frames at a
time are not robust enough to be employed in real-world
situations. Multi-frame analysis may be performed ei-
ther in “batch” or recursively. While batch techniques
process the whole sequence at once and therefore are,
in principle, more accurate, recursive methods have a
number of desirable features: (a) they process informa-
tion in an incremental and causal fashion, so that they
can be employed for real-time closed-loop operations,
(b) they allow to easily incorporate model information
about motion, (c) require minimal memory storage and
computational power, for at each time the past history
is summarized by the present estimate, and only the
current measurement is being processed.

In this paper we study the recursive estimation of
rigid three-dimensional motion of a scene viewed from
a sequence of monocular perspective images. Since our
main interest is on real-time causal processing, we do
not review batch techniques here. Recursive estima-
tion techniques have started being applied to special
instances of the visual motion estimation problem only
in the last decade (Dickmanns, 1994; Gennery, 1982).
A number of schemes exist for recursively estimating
structure for known motion (Matthies et al., 1989), mo-
tion for known structure (Broida and Chellappa, 1986;
Gennery, 1982, 1992) or both structure and motion si-
multaneously (see for instance (Adiv, 1985; Azarbaye-
jani, 1993; Heel, 1990; Oliensis and Thomas, 1992;
Young and Chellappa, 1990) and references therein).

We argue against simultaneous structure and mo-
tion estimation for three reasons: (a) complexity—
including the structure of the scene into the state of
the filter makes it computationally demanding and re-
quires sophisticated heuristics for dealing with a vari-
able number of visible point-features; (b) convergence
problems—the schemes proposed so far have poor
model-observability (see (Soatto, 1997) for a thorough
discussion of this issue); (c) occlusions—having struc-
ture in the state allows integrating motion information
only to the extent in which all features are visible.
While in realistic sequences the life-time of each in-
dividual feature is typically very short (2 frames when

optical flow is measured instead of feature tracking),
it is indeed possible to integrate motion information
using a changing set of features, as long as they move
according to the same rigid motion.

The recursive estimation of motion alone is a rel-
atively unexplored subject: to our knowledge, the
only recursive 3-D motion estimation scheme that is
independent of the structure of the scene is the so-called
“essential filter” (Soatto et al., 1994; 1996).

We present a recursive motion estimator, which we
call the “subspace filter”, that is based upon the differ-
ential version of the epipolar constraint introduced by
Longuet-Higgins (1981) along the lines proposed by
Heeger and Jepson (1992). The main advantage con-
sists in the fact that the exponential representation of
motion allows us to “decouple” the estimator of the di-
rection of heading from that of the rotational velocity, in
the lines of Adiv (1985). We can therefore design two
filters, one on a two-dimensional state-space and one on
a three-dimensional one, which are significantly more
constrained and therefore more robust than algorithms
based upon Longuet-Higgins’ coplanarity constraint,
as we will show in the experimental section.

1.1. Organization of the Paper

We start by showing how the assumptions of rigid-
ity and perspective projectiondefine a nonlinear
dynamical model that can be used for designing a fil-
ter that simultaneously estimates structure and motion
(Section 2).

Although the model follows naturally from the def-
inition of the problem, simultaneous structure and
motion estimation is both problematic from the the-
oretical point of view, and impractical (Section 2.3).
The discussion in Section 2.4 serves as a motivation
for introducing, in Section 3, an alternative implicit
constraint on the motion parameters, which is derived
from the work of Heeger and Jepson (1992) and called
the “subspace constraint”.

The core of the paper starts with the observation that
the subspace constraint may be viewed as an implicit
dynamical system, rather than a nonlinear system
of algebraic equations defined for a pair of images.
In Section 4, we formulate the problem of estimat-
ing the direction of translation as the identification
of an implicit dynamical model with parameters on
a sphere. The identification task is then carried on
using local techniques based upon the Implicit Ex-
tended Kalman Filter. The estimates of the rotational
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velocity come as a byproduct using a simple linear
Kalman filter derived from Section 3.2. Once motion
has been estimated, the estimates can be fed, along
with the variance of the motion estimation error, in any
structure-from-motion module; alternatively, structure
may be estimated independent of motion using essen-
tially the same techniques employed for recovering the
direction of translation.

The experimental Section 5 comprises a number of
tests both on noisy synthetic image sequences and on
real indoor and outdoor scenes, which highlight some
of the main features of the algorithm, such as its ro-
bustness to measurement noise.

Some further issues, such as implementation, tun-
ing, measurement validation and outlier rejection, are
discussed in the experimental section. There we also
show some experiments on the “rubbery percept” of
rigid shapes when the “positive depth constraint” is
not enforced.

2. Visual Motion Estimation
from a Dynamic Model

Let a scene be described by the position of a set ofN
feature points in 3-D space. Suppose such points move
rigidly relative to the viewer, while theirperspective
projectiononto an ideal image-plane is measured up to
white and zero-mean noise (see Fig. 1). In this section
we will see how the rigidity constraint and the perspec-
tive measurementsdefinea nonlinear dynamical system
involving both structure (position of each point in 3-D)
and motion (translational and rotational velocity).

Figure 1. Notation: the viewer-centered reference frame.

2.1. Notation

Let us callX i
.= [Xi Yi Zi ]T ∈ IR3 the coordinates

of the i th point in the viewer’s reference frame, which
is a right-handed frame with origin in the center of
projection. TheZ-axis points along the optical axis and
the X andY axes form a plane parallel to the imaging
sensor. We call

xi
.= [xi yi ]

T = π(X i )
.=
[

Xi

Zi

Yi

Zi

]T

∈ IR2 (1)

the corresponding projection onto the image-plane
(Fig. 1). Under the assumption that the scene moves
rigidly relative to the viewer, with a translational veloc-
ity V and a rotational velocityÄ, the 3-D coordinates
of each point evolve according to{

Ẋ i = Ä ∧ X i + V X i (0) = X i0
yi = π(X i )+ ni ∀ i = 1 : N

(2)

whereni represents an error in measuring the position
of the projection of the pointi , andπ represents an ideal
perspective projection. Throughout the paper,yi indi-
cates the noisy version of the projectionxi = [xi yi ]T .

2.2. Simultaneous Structure and Motion Estimation

The Eqs. (2) may be regarded as a nonlinear dynamical
model having the 3-D position of each feature-point in
the state, and having unknown inputs (or parameters)
V, Ä. Solving the visual motion estimation problem
consists in reconstructing the ego-motion parameters
V, Ä from all the visible points, i.e., estimating the
unknown inputs of the above system from its noisy
outputs (model inversion).

Since the state of the model (2) is also not known, a
first approach consists in enlarging it as to include all
the unknown parameters, and then use a state observer
(for instance an Extended Kalman Filter), for estimat-
ing both 3-D structure and motion simultaneously. The
reasons why this approach is problematic are both the-
oretical and practical, as discussed in (Soatto, 1997);
the reader interested in the details can consult that ref-
erence along with Isidori (1989) for an introductory
treatment on nonlinear observability. In the next Sec-
tion 2.3, which may be skipped at a first reading, we
briefly summarize the conclusions that motivate the
introduction of structure-independent models for esti-
mating motion.
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2.3. Against Simultaneous Structure
and Motion Estimation

The model (2) is not observable “as is”. Metric con-
straints must be imposed on the state-space manifold in
order to achieve local-weak observability. Even after
imposing such metric constraints, the observable man-
ifold is covered with three levels of Lie-differentiation,
which causes the dynamics of the observer to be slow1.

Secondly, having structure in the state causes the di-
mension of the observer to be very large, as the number
of features visible in a typical realistic scene is on the
order of few hundreds. Also, features enter/exit the
field of view or appear/disappear due to occlusions, so
one is forced to deal with a variable number of points2,
and motion information can only be integrated to the
extent in which all features are visible. In fact, when-
ever a new feature is inserted into the state, it needs
to be initialized, and the initialization error affects all
the other states—including the motion components—
causing discontinuities in their estimates.

Moreover, the model (2) isblock-diagonalwith re-
spect to the structure parameters, in the sense that the
coordinates of each pointX i in (2) are directly cou-
pled only to themselves and to the motion parameters,
but not to the coordinates of other pointsX j i 6= j
(of course points are related to each otherindirectly
through the motion parameters). This implies that the
observability of the motion parameters does not de-
pend upon the numberN of visible features. On the
contrary, it is highly intuitive that, the more points are
visible, the better the perception of motion ought to be.

These observations, which are discussed in Soatto
(1997), serve to motivate the introduction of structure-
independent models for estimating motion.

2.4. Towards Structure-Independent
Motion Estimation

In this paper we will show that it is possible to recur-
sively invert the system (2) and estimate motion (the
input) independent of structure(the state) using a tech-
nique which has been recently introduced in Soatto
et al. (1996) for identifying nonlinear implicit systems
with parameters on a manifold.

Our scheme is motivated by the work of Heeger and
Jepson, who formulated the task as astaticoptimiza-
tion problem in Heeger and Jepson (1992), Jepson and
Heeger (1991).

The scheme we present may be considered as a re-
cursive solution to the task of Heeger and Jepson us-
ing methods which pertain to the field of nonlinear
estimation and identification theory. As a result, the
minimization task which is the core of the subspace
method for recovering rigid motion can be solved in
a principled way using an Implicit Extended Kalman
Filter (IEKF) Bucy (1965), Jazwinski (1970), Kalman
(1960), Soatto et al. (1996) according to nonlinear
Prediction-Error criteria (for an introductory treatment
of Prediction-Error methods in a linear context, see for
example Soderstrom and Stoica (1989)). The method
exploits in a pseudo-optimal manner the information
coming from a long stream of images, making the
scheme robust and computationally efficient.

In the next Section 3, we will re-derive the subspace
constraint proposed by Heeger and Jepson (1992), and
in Section 4 we will view such a constraint as an implicit
dynamical model, and introduce the appropriate tools
for identifying it.

3. Motion Reconstruction via Least-Squares
Inversion Constrained on Subspaces

Consider the following expression of the first derivative
of the output of the model (2), which is referred to in the
literature as the “motion field” and represents the veloc-
ity of the projection of the coordinates of each feature-
point in the image-plane (Heeger and Jepson, 1992):

ẋi (t) =
[

1

Zi
Ai | Bi

] [
V(t)
Ä(t)

]
(3)

where

Ai
.=
[

1 0 −xi

0 1 −yi

]
Bi

.=
[ −xi yi 1+ x2

i −yi

−1− y2
i xi yi xi

]
. (4)

The motion field is not directly measurable. Instead,
what we measure are brightness values on the imag-
ing sensor. For practical purposes, the motion field is
approximated by the “optical flow”, which consists in
the velocity of brightness patches on the image-plane.
Such an approximation is by and large satisfied in the
presence of highly textured Lambertian surfaces and
constant illumination. However, outliers are quite com-
mon in realistic image sequences, due to the presence
of occlusions, specularities, shadows etc. Any motion
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estimation algorithm willing to operate in real-time on
realistic sequences must be able to deal with such sit-
uations in an automatic fashion.

In the next sections we will assume that we can mea-
sure directly the motion field, neglecting outliers. Only
later, in Section 4.5, will we show how it is possible
to spot-out outliers due, for instance, to T-junctions,
specularities, matching errors from the feature-tracking
algorithm, and reject them before the can affect the
estimates of 3-D motion.

3.1. Recovery of the Direction of Translation
from Two Views

By observing a sufficient number of pointsxi ∀ i =
1 · · · N, one may use Eq. (3) for writing an overdeter-
mined system which can be solved for the inverse depth
and the rotational velocity in a least-squares fashion.
To this end, rearrange Eq. (3) as

ẋi (t) = [Ai V(θ, φ) | Bi ]

[ 1
Z(t)i
Ä(t)

]
.

Since the translational velocityV multiplies the inverse
depth of each point, both can be recovered only up to
an arbitrary scale factor. Due to this scale ambigu-
ity, we may only reconstruct the direction of transla-
tion; henceV may be restricted to be of unit norm,
and represented in local (spherical) coordinates3 as
V(θ, φ) ∈ S2. For instance,θ may denote the azimuth
angle in the viewer’s reference, andφ the elevation an-
gle. If some scale information becomes available, as
for example the size of a visible object, it is possible
to rescale the depth and the translational velocity, as
we will discuss in the experimental section. WhenN
points are visible, the equations above may be rear-
ranged into a vector equality:

ẋ = C̃(x, θ, φ)
[

1

Z1
, . . . ,

1

ZN
, Ä

]T

, (5)

where

C̃(x, θ, φ) .=

A1V B1

. . .
...

AN V BN


andx is a 2N column vector obtained by stacking the
xi ∀ i = 1 · · · N on top of each other. At this point one
could solve the above Eq. (5) in a least-squares fashion

for the inverse depth and rotation:
1
Ẑ1

...
1

ẐN

Ä̂

 = C̃†ẋ (6)

where the symbol † denotes the pseudo-inverse. By
substituting this result into Eq. (5),

ẋ = C̃C̃†ẋ,

one ends up with animplicit constraint on the direc-
tion of translation, which is represented byV(θ, φ).
After rearranging the terms and writing explicitly the
pseudo-inverse, one gets the following subspace alge-
braic constraint (Heeger and Jepson, 1992):

[ I − C̃(C̃T C̃)−1C̃T ] ẋ .= C̃⊥ẋ = 0. (7)

It is then possible to exploit this constraint for recover-
ing the direction of translation by solving the following
nonlinear optimization problem:

V̂ = arg min
V∈S2
‖C̃⊥(x,V)ẋ‖. (8)

In other words one seeks for the best vector in the two-
dimensional sphere such thatẋ is the null space of the
orthogonal complement of the range ofC̃(x,V). If
the matrixC̃ was invertible, the above constraint would
be satisfied trivially for all directions of translation.
However, when 2N > N + 3, C̃C̃† has rank at most
N + 3, and thereforẽC⊥ is not identically zero.

Note that the solution consists in “adapting” the or-
thogonal complement of the linear space generated
by the columns of̃C—which is highly structured as
a function ofV(θ, φ)—until a given vectoṙx is its null
space. Heeger and Jepson (1992), in their early work,
first solved this task by minimizing the two-norm of
the above constraint (8) using a search overθ, φ on a
sampling of the sphere.

In Section 4 we rephrase the subspace constraints
described in this section as a nonlinear and implicit dy-
namic model. Estimating motion corresponds to iden-
tifying such a model with the parameters living on a
sphere: we propose a principled solution for perform-
ing the optimization task, which takes into account the
temporal coherence of motion and the geometric struc-
ture of the residual (8).
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3.2. Recovery of Rotation and Depth

Once the direction of translation has been estimated as
V̂ = V(θ̂ , φ̂), we may use Eq. (6) to compute a least-
squares estimate of the rotational velocity and inverse
depth from 

1
Z1

...
1

ZN

Ä

 = C̃†(x, θ̂ , φ̂)ẋ. (9)

Note that, from the variance/covariance of the estima-
tion error of the direction of translationθ, φ, it is pos-
sible to characterize the second order statistics of the
estimate of the rotational velocity,RÄ. We may there-
fore design a simple linear Kalman filter which uses
the above estimates as “pseudo-measurements” and is
based upon the linear model{

Ä(t + 1) = Ä(t)+ nrw

C̃†
2N+1:2N+3(x, θ, φ)ẋ = Ä(t)+ nÄ

(10)

where the notatioñC†
2N+1:2N+3 stands for the rows from

2N+1 to 2N+3 of the pseudoinverse of the matrixC̃;
nrw is the noise driving the random walk model, which
is to be intended as a tuning parameter, andnÄ is an
error whose varianceRÄ is inferred from the variance
of the estimation error forθ, φ.

The equations for the Kalman filter corresponding
to the above (linear) model are standard, and can be
found in textbooks; see for example Jazwinski (1970).

3.3. Recovery of Structure

After the rotational and translational velocities have
been recovered, they may be fed, together with the vari-
ance of their estimation error, into a recursive structure-
from-motion module which processes motion error,
such as for example Oliensis and Thomas (1992),
Soatto et al. (1993). The main focus of this paper is the
estimation of motion, and in the experimental section
we have estimated structure using the estimates of mo-
tion, as in the scheme presented in Soatto et al. (1993).

However, we just point out in this section an alter-
native way of estimating structure, that comes from
observing that the inverse depth of each point and the
direction of translation play interchangeable roles, as
it is evident from the motion field Eq. (3). One may
therefore “pseudo-invert” the system (3) with respect

to the direction of translation and the rotational veloc-
ity, and then derive an optimization problem similar to
(8) for the scaled inverse depth of each point. This idea
is pursued in (Soatto et al., 1995), where the subspace
constraint is used to derive a dynamic filter for estimat-
ing structure independent of motion.

4. Solving the Subspace Optimization
with a Dynamic Filter

In this section we will view the subspace constraint
from a different perspective. Instead of considering it
an algebraic set of nonlinear equations to be solved
for the direction of heading, we view it as a nonlinear
and implicit dynamical system, which has parameters
constrained onto a two-dimensional sphere. Then we
introduce a local identifier based upon an Implicit Ex-
tended Kalman Filter in order to recursively estimate
the heading direction. Once the heading is estimated,
it can be fed into a simple linear Kalman filter that
estimates the rotational velocity.

Let us defineα
.= [θ, φ]T as the local coordinate

parametrization of the translational velocityV ; θ is the
azimuth angle, andφ the elevation.xi are measured up
to some error,

yi
.= xi + ni , (11)

which we model as white, Gaussian and zero-mean:
ni ∈ N (0, Rni ). In the presence of outliers, this hy-
pothesis is violated, and we will show in Section 4.5
how to detect and reject such outlier measurements be-
fore they can affect the estimation process. The error
in the location of the features induces an error in the
derivative,

y′i = ẋi + n′i ,

which is usually approximated by either the optical
flow, or by first differences of feature positions be-
tween timet andt + 1. Call x the column vector ob-
tained by stacking the components ofxi , similarly with
ẋ. Now defineC̃⊥(x, α) as in (5). Then the subspace
constraint (7) may be written as̃C⊥(x, α)ẋ = 0. Now{

C̃⊥(x, α)ẋ = 0 V(α) ∈ S2

yi
.= xi + ni ∀ i = 1 · · · N (12)

represents a nonlinear implicit dynamical system of
a particular class, called Exterior Differential Sys-
tems (Bryant et al., 1992).Solving for the translational
velocity is equivalent to identifying the above Exterior
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Differential System with parametersα on a differen-
tiable manifold(the sphere in this case) from the noisy
datay.

4.1. Identifying Motion Using Local
Implicit Filtering

The direction of translation, encoded by the two-
dimensional vectorα, is represented in the above model
(12) as an unknown parameter which is subject to three
types of constraints. First of all,V(α) is constrained
to belong to the unit-sphere in IR3. Secondly, the dy-
namics of the statesx induces trivially a dynamics on
the outputsy:

C̃ (y, α(t)) y′ = ñ (13)

whereñ is a residual noise induced by the measurement
noisen. The parametersα must evolve in such a way
that the outputsy satisfy the above dynamics. Since the
outputs are directly measured, we could call the above
constraint the “a-posteriori” dynamics. However, often
times the direction of translation is not free to change
arbitrarily, for there is some “a-priori” dynamics it must
satisfy. For instance, if the camera is mounted on a
vehicle, it must move according to its kinematics and
dynamics, which results in a model of the generic form

α(t + 1) = f (α, nα) (14)

wherenα summarizes all the significant parameters of
the vehicle. If the camera is hand-held, or the mechanics
of its support is unknown, we know at least that veloc-
ity must be a continuous function and the acceleration
cannot exceed certain values. In lack of a mechanical
model, one may employ statistical models as a mean
of describing some inertia. For instance models of the
form

α(t + 1) = f (α)+ nα nα ∈ N (0, Rα) (15)

where f is a polynomial function andnα is a white,
zero-mean Gaussian noise.

By putting these three constraints together, we can
write a discrete dynamic model for the parameters{

α(t + 1) = f (α(t))+ nα(t)
C̃ (y, α(t)) y′ = ñ

(16)
α ∈ [0, π)×

[
−π

2
,
π

2

)
which can be used for designing an Implicit Extended
Kalman filter, whose equations we report in the next

subsection. Before doing that, however, we would like
to stress that the functionf in the model equation (16)
is a design parameter which is left to the engineer, and
depends upon the circumstances in which the algorithm
is to be used.

If the algorithm is intended for general purposes, one
may choose aconservativemodel, which is a model that
fits a larger class than the actual one, neglecting more
specific dynamics that may be present, for instance,
in vehicle guidance, helicopter flight etc. Should fur-
ther information about the dynamics of the support of
the camera be available, it can easily be exploited by
inserting it into the model (15).

A typical case in which no model like (15) can be
found is when there is no temporal coherence between
subsequent images, which are snapshots of a scene
taken from various points of view at different time in-
stants. In such a case, a batch method is most appropri-
ate. Since we are interested in real-time estimation, we
always assume that the images are taken sequentially
from a camera, so that temporal coherence between
subsequent images is guaranteed.

In this paper, we consider the very simplest instance
of a statistical model, which is a first-order random
walk:

f (α) = α. (17)

It is not superfluous to point out that the first-order
random walk (Brownian motion) does not restrict the
motion to having constant velocity. The variance of
the noise driving it,Rα, can be considered a tuning
parameter that trades off the “speed of convergence”
with the “precision” required. One may consider this
as a starting point: if the dynamics of the camera in a
particular experiment are not captured by this simple
model, one can move up the class and consider richer
models. It is our experience, however, that a first order
random walk works quite well in most cases, in the
sense that it allows decent precision while not limiting
the range of possible motions to a significant extent. In
the experimental section we will show how the simple
Brownian motion performs on a variety of situations,
ranging from constant-velocity motion, to sinusoidal,
to discontinuous velocity, without changing any tuning
or modeling parameters.

4.2. Equations of the Estimator

From the model (16), it is immediate to derive the equa-
tion for an Extended Kalman Filter (EKF) (Jazwinski,
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1970; Kalman, 1960) that estimates the direction of
translationα. The only caveat is that the measurement
equation is inimplicit form. The key observation is
that the vector

ε(t)
.= C̃⊥(y(t), α̂(t + 1 | t))y′ (18)

plays the role of the “pseudo-innovation” process, and
therefore the standard equations of the EKF can be ap-
plied (Jazwinski, 1970). We report here the complete
set of equations for the filter that estimates the direction
of translation using a first-order random walk model.
The reader interested in a detailed derivation of the Im-
plicit Extended Kalman Filter may find it, for instance,
in Soatto et al. (1996).

Prediction step{
α̂(t + 1 | t) = α̂(t | t) α̂(0 | 0) = α0

P(t + 1 | t) = P(t | t)+ Rα(t) P(0 | 0) = P0

Update step
α̂(t + 1 | t + 1) = α̂(t + 1 | t)+ L(t + 1)

C̃⊥(y(t), α̂(t + 1 | t))y′
P(t + 1 | t + 1) = 0(t + 1)P(t + 1 | t)0T (t + 1)

+L(t + 1)D(t + 1)Rn̄(t + 1)
× DT (t + 1)LT (t + 1)

where

L(t + 1) = P(t + 1 | t)CT (t + 1)3−1(t + 1)
3(t + 1) = C(t + 1)P(t + 1 | t)CT (t + 1)

+ D(t + 1)Rn̄(t + 1)DT (t + 1)
0(t + 1) = I − L(t + 1)C(t + 1)

D(t + 1)
.=
(

∂ C̃⊥ẋ
∂[x(t), ẋ]

)
|[y(t),y′],α̂(t)

C(t + 1)
.=
(
∂ C̃⊥ẋ
∂α(t)

)
|y(t),α̂(t)

and Rn̄ is the variance/covariance matrix of the mea-
surement error̄n

.= [n, n′], considered as a white
noise4. Rα is a tuning parameter that corresponds to the
variance of the noise driving the random walk model.

At each step, the estimates of the direction of transla-
tion can be used forinstantaneouslyrecovering the ro-
tational velocity from (9). Such a pseudo-measurement
may also be used for updating the state of a linear
Kalman filter based upon the model (10):

Prediction step{
Ä̂(t + 1 | t) = Ä̂(t | t) Ä̂(0 | 0) = Ä0

PÄ(t + 1 | t) = PÄ(t | t)+ Rrw(t) PÄ(0 | 0) = PÄ0

Update step
Ä̂(t + 1 | t + 1) = Ä̂(t + 1 | t)+ LÄ(t + 1)

×
(
C̃†

2N+1:2N+3(y, α̂)y
′ − Ä̂(t + 1 | t)

)
PÄ(t + 1 | t + 1) = 0Ä(t + 1)PÄ(t + 1 | t)0T

Ä(t + 1)
+ LÄ(t + 1)RÄ(t + 1)LT

Ä(t + 1)

where the gain matricesLÄ, 0Ä are the usual ones of
the linear Kalman Filter (Kalman, 1960).

It is easy to verify that both the models (16) and (10)
are locally-weakly observable. In fact, the uniqueness
results in the analysis of the algorithm of Jepson and
Heeger (1991) are equivalent to the assessment of the
observability of the model (16), for it is instantaneously
observable. The model (10) is observable, for the state
and measurement models are the identity and the filter
just acts as a smoother. Note that the algorithm just
presented produces a measure of the reliability of the
estimates in the form of the second order statistics of
the estimation errorP andPÄ.

4.3. Enforcing Rigid Motion: The Positive
Depth Constraint

When estimating motion from visible points, we must
enforce the fact that the measured points arein front of
the viewer. This may be easily done in the prediction
step by computing the mean distance of the centroid
and checking whether it is positive. If it is negative,
the antipodal point of the state-space sphere is chosen
as the prediction.

When we do not impose such a constraint, the fil-
ter may converge to a rigid motion which corresponds
to points moving behind the viewer, and is therefore
not physically realizable. However, if we allow such a
condition to happen by releasing the positive depth con-
straint, and then feed the estimate into a structure esti-
mation, such as for example a simple Extended Kalman
Filter (Matthies et al., 1989; Oliensis and Thomas,
1992; Soatto et al., 1993) initialized with points at posi-
tive depth and a large model-error variance, the result is
arubbery percept of structurewhich has been observed
also in psychophysical experiments (Kolb et al., 1994).
A pictorial representation of the rubbery percept is il-
lustrated in Fig. 2.
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Figure 2. Pictorial illustration of the “rubbery” perception: motion is estimated without imposing the positive depth constraint; this may result
in a motion estimate which is compatible with a rigid structure behind the viewer. Once such a structure is interpreted as being in front of the
viewer, it gives rise to the perception of a “rubbery” structure rotating in the opposite direction.

4.4. Independence from Structure Estimation

It is worth noting that the state of the filter proposed
contains only the motion parameters, and is therefore
independent from the structure of the observed scene,
provided some general-position conditions. Such con-
ditions are satisfied when the scene cannot embed-
ded in a planar surface, and the motion relative to
the viewer generates non-zero parallax. Such condi-
tions describe a zero-measure set in the possible struc-
ture and motion configurations, and the noise in the
image-plane coordinates is sufficient to set the model
in general position. As a consequence, we do not
need to track a specific set of features; instead, at
each step we can change set of features or locations
where we compute the optical flow/feature tracking,
without causing discontinuities in the estimates of mo-
tion. This is a key property of the filter, since it allows
us to deal easily with occlusion and appearance of new
features.

Also, note that the filter is able to work properly even
when the number of visible features drops down to less
than five (for small accelerations), since it integrates
over time the information from each incoming frame.
This, together with the robustness and noise-rejection
properties, is a substantial advantage over two-views
schemes.

4.5. Outlier Rejection

One of the crucial features of the subspace filter, as
well as the essential filter (Soatto et al., 1994), is its
independence from the structure of the scene. How-
ever, each feature-point is indirectly represented via the
innovation process (18). In particular, for each feature-
point with projective coordinatesxi , the components of
the innovationεi , defined in (18), describe how such
a feature-point is compatible with the current estimate
of motion α̂. Since at each step the filter computes
the pseudo-innovation vector, it is possible to compare
each component against the same at the previous time
instant and, using some simple statistics, reject the mea-
surements that give too large a residual before updating
the estimates of motion. This technique may be ap-
plied both for rejecting outliers, such as mismatches in
the optical flow, T-junctions, specularities etc. and for
segmenting the scene into a number of independently
moving rigid objects, as in Soatto and Perona (1994).

5. Experimental Assessment

In this section we report a series of simulations and ex-
periments on real sequences. Before that, we discuss
some of the issues on the implementation, stressing
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the fact that the model and the tuning parameters were
the same for all the experiments, including the one in
Section 5.3.2, which is designed on purpose for chal-
lenging the first-order random walk model which we
have employed.

5.1. Implementation

We have implemented the filter usingMatlab . Each
update step consists essentially in 15 products of matri-
ces of size varying from 2×2 to 2N×2N, one inversion
of the 2N × 2N variance of the pseudo-innovation, 5
sums and the computation of the Singular Value De-
composition (SVD) of̃C, for a total of circa 1 Mflop for
N = 20 points. However, the computation can be cut
in half by taking into account the sparse structure of the
matrices involved in the computation (block-diagonal
structure ofRn andC̃). A time-consuming part of the
algorithm is also the linearization of the system with
respect to the measurements,D(t + 1).

Since the Extended Kalman Filter is based upon the
assumption that the linearization error is negligible,
which is not often the case, we have added to the vari-
anceDRn̄ DT a small symmetric random matrix in or-
der to account for the linearization error. This practice
typically improves the performance of the Extended
Kalman Filter for models which are strongly nonlinear.

A crucial part of the design of an EKF consist in
“tuning” it, i.e., in assigning a value to the elements
of the variance/covariance matrices of the model er-
rors: Rα, Rrw. A custom procedure is to assume that
these matrices are diagonal, and then play with their
values until the prediction error is as white as possible.
Standard tests are available for this procedure, such as
the “cumulative periodogram” (the integral spectrum
of the prediction error). In our experiments we have
performed a coarse tuning by changing the variances
of the model errors by one order of magnitude at a
time. We did not perform any ad-hoc or fine tuning,
and the setting was the same throughout the different
experiments.

In all experiments, unless stated otherwise, the fil-
ter was initialized to zero:α0 = 0, Ä0 = 0, and the
initial variance of the estimation errorP and PÄ was
the identity matrix of dimension 2 and 3 respectively,
scaled by 100.

In order to implement the filter, the linearization of
the model is needed. In Appendix A we report the
detailed computation of the local-linearization of the
measurement model.

5.2. Scale Information Recovery

The scheme proposed recovers the direction of transla-
tion as a normalized vector of IR3. Such a normalization
is necessary because of the presence of a global scale-
factor ambiguity that affects the norm of translation
and the inverse depth of the visible features, as it can
be seen from the Eq. (3). The important fact to realize is
that there is onlyonescalar ambiguity for the whole se-
quence so that, should some scale information become
available at any instant, it can be propagated across
time and the scale ambiguity resolved.

In fact, at each step the normalized translation and
the rotational velocity estimated by the filter may
be used for computing some “normalized” structure,
which can be re-sized to fit the scale information avail-
able, as done in Soatto et al. (1993). If no scale in-
formation is available, the initial translation may be
used as a unit scale, or the distance between any two
features, for instance. The issue of how to propagate
scale information is discussed in Bouguet and Perona
(1995).

5.3. Simulation Experiments

We have generated at random a set of 20 points in
space, distributed uniformly in a cubic volume of side
1 m, with the centroid placed 1.5 m ahead of the image
plane. The points are projected onto an image plane of
512× 512 pixels with focal length of 750 pixels. The
cloud of points rotates about its centroid with a veloc-
ity of circa 5◦/frame, with the centroid maintained on
the optical axis at a fixed distance from the center of
projection. White, zero-mean Gaussian noise is added
to the projections. The motion is roto-translational in
the viewer’s reference frame, and is challenging since
the effects of rotation and translation superimpose.

Convergence is reached fromzero initial conditions
and noise in the image plane coordinates up to 8 pixel
std. The convergence of the main filter with a noise
level of 1 pixel std is reported in Fig. 3, while the same
experiment is repeated with a noise level of 8 pixels std
in Fig. 4. In both cases the positive depth constraint has
been enforced. The transient for converging from zero
initial conditions ranges from 5 to 40 steps, depending
on the noise level, the type of motion and the structure
of the scene.

The least-squares pseudo-measurements of the rota-
tional velocity, computed as described in Section 3.2,
are plotted in Fig. 5 (dashed lines), and compared with
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Figure 3. Estimates and errors for the direction of translation when the noise in the image plane has a standard deviation of 1 pixel (according
to the performance of common optical flow/feature tracking schemes). Ground truth is displayed in dotted lines. In the left plot the elevation
angleφ is constant and equal to zero, the azimuthθ is close to− π2 . Note that convergence is reached from zero initial conditions in about 10
steps.

Figure 4. (Left) estimates of the two components of the direction of translation. In the left plot the elevation angleφ is constant and equal to
zero, the azimuthθ is close to− π2 . The noise in the image plane measurements had 8 pixel standard deviation. The initial conditions were zero
for both components. The ground truth is in dotted lines. (Right) estimation error for the direction of translation. With noise of 8 pixel std in
the data, the estimates are still within 20% of the true value.

Figure 5. Estimates for the components of rotational velocity (left) and corresponding error (right). Ground truth is displayed in dotted lines;
the filtered estimates are in solid lines. The least-squares computation of the rotational velocity is in dashed lines.
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the recursive estimates (solid line) using the linear
Kalman Filter described in Section 3.2 with a noise
level of 1 pixel std.

5.3.1. Altering the Basic Experiment.The basic ex-
periment has been modified in order to test the filter
against increasing levels of noise, aspect ratio of the
visible scene, size of the visual field and magnitude of
motion.

In Figs. 6 and 7 we show the variance of the pseudo-
innovation and the norm of the estimation error respec-
tively, as a function of the measurement noise, which
ranges from 1 to 4 pixels std. The same plots are re-
ported for the recursive version of Horn’s two-frames
algorithm (Horn, 1989; Soatto et al., 1996), which
breaks down consistently for noise levels higher than
1.1 pixels std.

Figure 6. Statistics of the innovation vs. noise level and initial conditions.(S= subspace, H= recursive Horn.) The average variance of
the innovation over a window of 20 frames is plotted as a function of the noise level. The subspace filter (S) proves robust, and converges for
zero initial conditions and noise larger than 4 pixels. The variance of its innovation follows the ideal parabola, while the estimate of (H) breaks
down at a noise level of 1.1 pixel std. Notice that, while the variance of the innovation decreases when the filter diverges, the estimation error,
as expected, increases (Fig. 7).

Figure 7. Estimation error vs. noise level and initial conditions. (S= subspace, H= Horn. log-scale.) The subspace filter converges in
all instances but in 5 cases, where the sample of the estimation error was taken before the filter reached convergence while it was temporarily
trapped into a local minimum. The algorithm based on two frames (H) fails consistently for noise levels higher than 1.1 pixel std.

In Fig. 8 we report the minimum “thickness” of the
rotating cloud that can be tolerated before the scheme
breaks down. Again, there is a significant advantage
over two-frames based algorithms.

In Fig. 9 we report the smallest aperture angle under
which the scene can be seen and its motion estimated
correctly. The subspace filter has a slight advantage
with respect to a two-frames based algorithm. How-
ever, all schemes based upon a full perspective model
need to have a large visual field.

In Fig. 10, we experiment with dependence upon
image-velocity. The model of the subspace filter is
based on a differential (exponential) representation of
motion, and assumes that the velocity of the bright-
ness patchesy′ can be measured. In practice, first
differences of feature positions are employed as an
approximation to the velocity. Such an approximation
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Figure 8. Critical aspect ratio vs. noise level.(S= subspace, H= Horn.) In this experiment we “flatten out” the structure by decreasing the
ratio between the depth and the width of the cloud of points. For any given noise level, we plot the minimum aspect ratio (maximum “flatness”)
tolerated by the filters. The aperture angle was 28◦. If the noise is small (for example one tenth of a pixel), then the filter can tolerate a very flat
structure (for instance 10% aspect-ratio). As the noise increases, the filter is more and more sensitive to the presence of depth in the structure.
The reduction of the aspect ratio could be viewed as a reduction of the aperture while the cloud shows its narrower face to the viewer.

Figure 9. Critical aperture vs. noise level. (S= subspace, H= Horn.) The minimum aperture angle tolerated by each filter depends upon
the noise level as indicated in the plot above. When the noise is one tenth of a pixel, the filters can estimate the motion of structures viewed up
to an angle of 5◦ circa, while as the noise increases up to 1.2 pixels, the aperture angle has to be larger than 15◦.

Figure 10. Norm of the estimation error vs. rotation angle. (S= subspace, H= Horn. Log-scale.) The schemes based upon the epipolar
constraint from two frames (H) do not converge for baselines shorter than a threshold (2.2◦ in this case). Once the threshold is reached, they
improve marginally by increasing the instantaneous baseline. On the contrary, the subspace filter (S), which is based upon an instantaneous
constraint, degrades as the baseline increases. Note that the subspace filter is implemented in exponential coordinates, which helps correcting
for the finiteness of the sampling interval under the assumption of slow accelerations. The field of view was 28 degrees and the noise half a
pixel std.

is honest as long as the image-plane motion is small.
As the image-plane motion increases, the performance
degrades as shown in Fig. 10.

5.3.2. Challenging the Model.In designing the es-
timator of the parametersα for the model (16), we
have wide open choice on the dynamical model for the

state f , depending upon the conditions in which the
algorithm is applied. For instance, if the camera is
mounted on a mobile vehicle, we may use the kine-
matics and dynamics of the support for describing the
evolution of the state. If we know that the camera is
moving with considerable inertia, we may employ a
smoothness constraint etc. In the lack of any model,
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we can employ statistical models, for example fixed
order random walks. In the experiments reported here
we have chosen the simplest possible, which is the first
order, corresponding to a Brownian motion. Whether
this model is rich enough to capture the possible mo-
tions undergone by the camera is a question of mod-
eling which is left to the engineer, who has to judge
the intrinsic tradeoff between flexibility (large model
variance) and accuracy or “smoothness” (small model
variance).

Figure 11. Convergence of the filter with a first-order random walk
state model in the presence of non-smooth parameter dynamics. The
components of the rotational velocity of the camera are first modu-
lated by a sinusoidal, then by a discontinuous saw-tooth and then they
drift with a second order random walk before returning to the ini-
tial constant-velocity setting. The estimates (solid lines) follow the
ground truth (dotted lines) despite it evolves according to dynamics
which are not captured by the state model of the filter.

Figure 12. Spherical components of the translational velocity for the experiment with non-constant velocity: azimuth (left) and elevation
(right). While the rotational velocity is modulated with sinusoids and saw-tooths, translation is held constant. Between frames 80 and 120 the
parameters drift according to a second-order random walk. It can be noticed that the filter follows the estimates with a small but non-zero-mean
estimation error. This is due to the fact that the model that generates the data is not captured by the model used for the estimation.

Just for the sake of illustration, we have considered
the same synthetic experiment described in the previ-
ous section, and modulated the speed of rotation about
the object’s axis first with asinusoid, then with asaw-
tooth discontinuous function, and then with asecond
order random walk (which is one step up the ladder
of the class of random walks, and cannot be captured
in principle by the Brownian motion). During the lat-
ter phase we have also altered the other components
of the rotational and translational velocity. Eventu-
ally, motion resumed to constant velocity. Note that
the parameter which is modulated is the most difficult
to estimate, since the effects of rotation and transla-
tion are similar (it is one of the manifestations of the
so-called “bas-relief ambiguity”). In order to appreci-
ate the precision of the tracking, we have lowered the
noise level down to a tenth of a pixel. In Fig. 11 we
show the three components of the rotational velocity
(solid lines) superimposed to the ground truth (dotted
lines). The two spherical coordinates of the direction
of translation are plotted in Fig. 12 (solid lines) along
with the ground truth (dotted lines). The estimates of
the filter follow closely the motion parameters, even
at the discontinuities. It is worth pointing out that the
tuning was exactly the same in all the experiments in
this paper, and no ad-hoc tuning was performed. It is
possible to see a small, but not zero-mean, estimation
error, which is a clear symptom that the model em-
ployed (a first order random walk) does not capture the
true dynamics of the parameters (sinusoidal, discontin-
uous or a second-order random walk). If one wanted
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Figure 13. Brightness plots of the residual function. The value of the residual is plotted on the state-space of the filter, which are the local
coordinates of the sphere of directions of translation. Bright regions denote small residuals. The black asterisk is the “true” motion which
generated the residual. Note that for small rotations (left) the minimum of the residual coincides with the true motion. When the rotational
velocity is large (right) the Euler step approximation is no longer valid, and the minimum moves from the true location.

to get rid of these effects, a higher-order random walk
should be considered. However, the one just performed
is an extreme experiment, and usually real sequences
taken from video exhibit a considerable amount of iner-
tia. Therefore we will restrict ourselves to the simplest
first-order random walk.

5.3.3. The Residual Plot in the State-Space.A typical
plot of the residual function, which is the value of the
subspace constraint (18) as a function of the parameters
θ ∈ [0, π), φ ∈ [−π

2 ,
π
2 ), is shown in Fig. 13 for a par-

ticular value of the states. The residual depends both on
the motion and structure parameters. For an isotropic
cloud of dots undergoing constant-velocity motion, the
residual is nearly constant. Therefore, it is sufficient to
show just one frame of the residual with the filter tra-
jectory superimposed. In the following subsections we
restrict our attention to the constant-velocity case just
because—the residual function being constant—it is
possible to display it. The bright areas indicate a small
residual value. The black asterisk indicates the motion
(in the local coordinates of the sphere of directions of
translation) which generated the residual. It is noted
that the minimum of the residual is displaced from the
true motion when the norm of the rotational velocity
is large. This is due to the fact that we approximate
the velocity of the projected points (motion field) with
first differences; the approximation is good as long as
R
.= eÄ∧ ∼= I + Ä∧, i.e., as long as the norm of the

rotational velocity is small.

5.3.4. Convergence and Local Minima.The reader
may have noticed the presence of local minima in the
plots of the residual function (Figs. 13–17): if mo-
tion is estimatedinstantaneouslyfrom two frames,
as in Heeger and Jepson (1992), the estimate can be
trapped into a local minimum. In our experiments,
however, we have rarely witnessed convergence to a
local minimum, unless temporary. This is due to the

Figure 14. Convergence when the positive depth constraint is not
imposed and the initial condition is chosen at random around the
origin (which appears in the center of the plot): a number of trajec-
tories is shown in black solid lines superimposed on the brightness
plot of the residual function. The filter may converge to either the
correct rigid interpretation (bright region on the top half of the plot)
or to the local minimum corresponding the “rubbery” interpretation
(bright area on the bottom half of the plot).
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Figure 15. (Left) convergence to a shallow local minimum and then to the local minimum corresponding to the rubbery interpretation when
the positive depth constraint is not enforced. (Right) convergence to a shallow local minimum and then to the correct rigid motion (see also
Fig. 16).

Figure 16. Convergence to the “rubbery interpretation” (left) versus convergence to the rigid motion interpretation (right). The state of the
filter at each step is represented as a black ‘+’ and superimposed to the average residual function (darker tones for larger residuals). After the
transient, the states accumulate either around the local minimum corresponding to the rubbery interpretation (the one on the bottom half of the
plot) or to the one corresponding to the true motion, on the upper half of the plot. The trajectory of the state is also plotted component-wise in
Fig. 15.

recursive nature of the scheme, which integrates infor-
mation over a large baseline. In Figs. 15 and 16 we
show a typical example of the temporary convergence
of the filter to a local minimum: after few iterations the
observations are no longer compatible with the mo-
tion interpretation, forcing the filter out of the local
minimum.

5.3.5. Rubbery Motion.A qualitatively different lo-
cal minimum is the one corresponding to the “rubbery

motion”. When the positive depth constraint is not en-
forced the filter may converge either to the rigid or to
the rubbery interpretation (Fig. 14). In Figs. 15 and
16 (left) we show the convergence to the “rubbery mo-
tion interpretation” when the positive depth constraint
is released.

In Figs. 15 and 16 (right) we show the convergence
of the filter to the rigid interpretation. Note that, when
the positive depth constraint is enforced, the estimate is
reflected onto the correct rigid interpretation (Fig. 17).
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Figure 17. Convergence when the positive depth constraint is enforced: (left) trajectory of the filter on top of the brightness plot of the residual
function, (right) corresponding motion components. Initial conditions are zero.

5.3.6. Structure Estimation.When we feed the mo-
tion estimates into a structure-from-motion module
initialized with points at positive depth and a large
model-error variance (Soatto et al., 1993), we may ob-
serve either a rigid set of points which move accord-
ing to the correct motion (a top view of the points is
shown in Fig. 18 left) or to a “rubbery” percept (Fig. 18
right). This is in accordance with the experience in psy-
chophysical experiments (Kolb et al., 1994). Note that
the rubbery solution disappears as soon as we impose
the positive depth constraint.

5.3.7. Comparison with the Essential Filter.The fil-
ter proposed in this paper proves significantly less

Figure 18. Convergence of a structure-from-motion module to a rigid interpretation of structure (left) or to a rubbery object rotating in the
opposite direction (right). The plots show a top view of the points, with the image plane on the lower end.

sensitive to noise in the measurements and to the initial
conditions than the essential filter (Soatto et al., 1994).

In particular, for 20 observed points and 1 pixel std
noise, the essential filter converges for initial condi-
tions within 30% of the correct solution, while the
subspace filter converges from any initial condition.
Furthermore, the subspace filter is less sensitive to dis-
turbances, and may tolerate up to 5 times more noise
on the measured image plane coordinates than the es-
sential filter. This is due to the simple structure of the
state-space of the filter as well as its low dimensionality.

Once properly initialized, however, the essential fil-
ter proves more accurate, achieving easily less than
1% error in the components of velocity for one pixel
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Figure 19. Convergence of the essential filter: the residual function is plotted on a two-dimensional slice of the five-dimensional state space.
The remaining states that are not represented (the ones corresponding to the rotational velocity) are set to the ground truth. On the left plot the
filter is initialized with a motion close to the minimum corresponding to the rubbery interpretation. The filter, however, imposes automatically the
positive depth constraint and the estimate switches fast to the correct motion interpretation. (Right) by releasing the positive depth constraint, it is
possible for the filter to converge to the rubbery interpretation. The initial condition is assigned with the rotational velocity corresponding exactly
to the rubbery interpretation, and the remaining two states, corresponding to the direction of translation, biased towards the local minimum of
the rubbery interpretation.

std error or less, while the subspace filter is more robust
but less accurate, achieving accuracies in the order of
2–5% under the same conditions.

The essential filter has, in our current implementa-
tion, an advantage in terms of complexity as the num-
ber of points increases. In fact the linearization of the
measurement equationC in the subspace filter has di-
mensions 2N×N+3, whereN is the number of visible
feature-points, while in the essential filter it is 2N× 9.
However, the linearization of the subspace filter has a
sparse structure that could in principle be exploited.

In the essential filter the positive depth constraint
is encoded directly in the definition of the state-space
manifold (the essential manifold). The convergence of
the essential filter is illustrated in Fig. 19: on the left the
convergence is shown when starting from the rubbery
motion interpretation and imposing positive depth. On
the right the positive depth constraint has been released
(equivalently, reflections are allowed in the essential
manifold), and therefore we may observe occasionally
convergence to the local minimum corresponding to
the rubbery interpretation.

5.4. Experiments with Real Image Sequences

5.4.1. The “Rocket” Scene.As a first example we
report here the filter estimates for the rocket scene,
for comparison with Soatto et al. (1994). Due to

the fact that the filter takes about 10 frames to con-
verge, we have doubled the sequence, which is dis-
played in Fig. 20. The sequence was provided to us
by Oliensis and Thomas, along with approximately
20 point-features tracked through the 11 frames. A
qualitative ground truth has also been provided with
the original sequence. The results are reported in
Fig. 20.

5.4.2. The “Box” Sequence.In a second experiment
we consider the motion of a box rotating on top of a
chair (see Fig. 21). The box has a side of approximately
25 cm and its centroid is placed at a distance of about
45 cm from the camera. The features are detected and
tracked using a multiscale Sum of Square Difference
(SSD) method (Lucas and Kanade, 1981). The distance
between two features is chosen as reference in order to
evaluate the scale factor. In order to get rid of the fea-
tures belonging to the background, the scene is first
segmented using an algorithm described in Soatto and
Perona (1994).

The estimates of the direction of translation, with
the error-bars corresponding to the variance of the pre-
diction error, are plotted in Fig. 22 (left), and similarly
for the rotational velocity, which is estimated using the
pseudo-measurementsÄ̃ = C̃†

2N+1:2N+3y′ as input to
a linear Kalman filter as described in Section 3.2 (see
Fig. 22 right).
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Figure 20. (Left) estimate of the direction of translation for the rocket scene. (Right) one image of the rocket scene. The ground truth is shown
in dotted lines, while the filter estimates are in solid lines. The error-bars are three times the variance of the estimation error.

Figure 21. One image of the box sequence. Features (marked as
white boxes) are selected using the Sum of Square Difference (SSD)
criterion and then clustered according to their rigid motion as esti-
mated between the first two time instants. The distance between two
features is chosen as reference in order to update the scale factor.

Once motion is estimated—together with the appro-
priate variance of the estimation error—it is fed into
a “structure-from-motion” module that processes mo-
tion error (Soatto et al., 1993) in order to estimate the
structure of the scene. A slice of the scene viewed from
the top is plotted in Fig. 23 (left), and the corresponding
image-plane view is depicted in Fig. 23 (right).

5.4.3. The “Beckman Corridor” Sequence.The com-
plete “Beckman corridor” sequence consists of a
sequence of approximately 8000 frames taken by

Bouguet et al. inside the corridor of the Beckman In-
stitute at the California Institute of Technology. On
the walls sheets of paper with high contrast provide
sufficient texture for point-feature tracking. The se-
quence is taken while the camera moves along the cor-
ridor on top of a cart which is hand-pushed following
a prescribed path on the floor of the corridor, so that
qualitative ground-truth can be reconstructed. The se-
quence, with the tracking of about 400 feature-points,
the same employed in Bouguet and Perona (1995),
has been kindly provided to us by J.Y. Bouguet. The
features come with a condition number that indicates
the presence of sufficient contrast along both spatial
directions.

We show here only the first 1800 frames, during
which the cart was turning of 90 degrees at a corri-
dor angle, and then following a shallow s-turn. The
algorithm makes no assumption about the fact that mo-
tion occurs on a plane, so that we can check whether
the rotation about the fronto-parallel axis and the cyclo-
rotation are estimated as zero, and the elevation angle
is constant. Rotation about the vertical axis should in-
tegrate at about 90 degrees at the end of the experiment.

We have run our algorithm by using only part of the
feature-set. We have fixed the maximum number of
features to 20, so that the average number that pass
the innovation test described in Section 4.5 is about 15,
with a minimum of 3 features at frame 400. The number
of features used by the algorithm as a function of the
current frame is plotted in Fig. 27. It must be noticed
that no particular attention is paid to the location in the
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Figure 22. (Left) estimate of the direction of translation for the rotating box. The error-bars are three times the variance of the estimation error
(diagonal of theP matrix of the filter). (Right) estimates of the components of rotational velocity, estimated using a linear Kalman filter that
processes the pseudo-measurements derived from the direction of translation, as described in Section 3.2.

Figure 23. (Left) top view of the estimated scene. Note that some features have been lost during the tracking procedure. The structure was esti-
mated using a simple Extended Kalman Filter having as input the feature points and the motion estimates together with their variance/covariance
matrices. (Right) image-plane view of the scene.

image-plane of the features used by the algorithm, so
it can happen that at some step the scheme uses few
features that cover only a small portion of the visual
field.

In Fig. 25 we show the estimated direction of trans-
lation, consisting of the azimuth angle (direction of
heading) and elevation angle. The latter is constant to
about 5 degrees, which corresponds to the angle be-
tween the camera and the horizontal axis on the cart.
The direction of heading points left during the first turn,
then slightly right and then left again during the s-turn.
This is consistent with the cart having front steering
wheels and the camera being mounted on the front.

The rotation angle about theY-axis (horizontal) and
Z-axis (cyclo-rotation) are zero, as reported in Fig. 26.
The rotational velocity about the vertical axis-X, re-
ported in Fig. 27, shows first the full left turn, then the
s-turn left-right. The integral of the velocity along the
whole sequence is 101◦, with an overall error of about
10◦ over 1800 frames. This is the mean integral of the
error along the whole sequence. In order to appreciate
the convergence of the filter, which was initialized to
zero, we show the components of the main filter for
the direction of heading, along with the variance of the
estimation error—plotted as errorbars—during the first
100 frames (Fig. 28).
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Figure 24. Few images from the “Beckman sequence”. The camera is mounted on a cart which is pushed around a corridor. First the cart
turns left by 90◦, then right and left again on a s-turn. The sequence consists of approximately 8000 frames. We have processed here only the
first turn of the corridor, which corresponds to the first 1800 frames. The sequence was taken by Bouguet et al., who also performed the feature
tracking using Sum of Square Differences criteria on a multi-scale framework.

Figure 25. (Left) azimuth angle for the corridor sequence. Zero corresponds to forward translation along theZ-axis. The first peak is due
to the left turn, while the subsequent wiggle corresponds to a right-left s-turn. (Right) elevation angle. The camera was pointing downwards
at an angle of approximately 5◦; therefore the heading direction was approximately constant with an elevation of+5◦. Since the camera was
hand-held, there is quite a bit of wobbling.

6. Conclusions

We have formulated a new recursive scheme for esti-
mating rigid motion under perspective by identifying a
nonlinear implicit dynamic model with parameters on
a manifold.

The motivation comes from the work of Heeger
and Jepson (1992), who first proposed to view motion

estimation as an optimization problem constrained on
a subspace. Using standard results from nonlinear esti-
mation and identification theory, we formulate a motion
estimator which is efficient, accurate and remarkably
robust to measurement noise.

One of the crucial features of the scheme is the inde-
pendence of the motion estimates from the structure of
the scene. This allows us to deal with occlusions and
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Figure 26. Rotational velocity about theY-axis (left) and about theZ-axis (right). Since the camera was not pitching nor cyclo-rotating, both
estimates are close to zero as expected. Since the camera was hand-held and no accurate ground-truth is available, it is not easy to sort out the
effects of noise and the ones of small motions or vibrations of the camera.

Figure 27. (Left) rotational velocity about the vertical axis. First the camera turns left at the corner of the corridor (frames 700 to 1000), then
right and then left again around the s-turn (frames 1000 to 1600). The integral of the rotational velocity should add up to approximately 90◦,
for this is the change of orientation of the camera from beginning to end. The sum of the estimates is 101◦, corresponding to an error of 10%
circa on a sequence of 1800 frames. (Right) number of features employed by the algorithm at each time step. On average the algorithm uses 15
feature-points, without particular attention to how they are distributed on the image plane. The maximum number of features used is 20, and
the minimum is 3. Note that two-frames algorithms would not perform in such a case, since at least 5 features need to be visible at all times.
The temporal integration involved in the filter, on the contrary, allows us to retain the estimates even in presence of less than 5 features.

appearance of new features in a principled way, and
results in a filter with a small, constant-dimensional
and highly-constrained state-space. While structure
is not represented explicitly in the state, the innova-
tion process of the filter describes how each single
feature-point is compatible with the current motion in-
terpretation, and may therefore be used for detecting
outlier measurements, making the filter robust to error
in feature tracking/optical flow. The filter has proven

robust to tuning parameters, and needs no ad-hoc ad-
justments depending upon the experiment. Conver-
gence is reached in fractions of a second of video-rate
from arbitrary initial conditions. This, together with
the light computational load required, makes our ap-
proach suitable for real-time processing on the current
generation of PC microprocessors, once optical flow
or feature tracking is provided. Extensive experiments
have been performed that highlight such features.



              
P1: SSK/SRK P2: SSK

International Journal of Computer Vision KL-410-03-Soatto March 4, 1997 15:42

3-D Visual Motion Estimation 257

Figure 28. Close-up view of the transient in the estimates of the direction of translation (azimuth on the left, elevation on the right). The
variance of the estimation error, represented using the error-bars, decreases during the first 20–30 frames, after which it remains bounded around
the current estimate of the parameter.

Appendix A: Computation of the Local
Linearization of the Model

In this appendix we give the detailed equations for the
linearization of the model of the subspace filter. We
compute the derivative of the implicit measurement
equation

C̃⊥(x,V(θ, φ))ẋ (19)

as a function of the derivative of̃C with respect to the
statesθ, φ and the measurementsx. From the definition
of C̃⊥ we have

C̃⊥ .= (I − C̃(C̃T C̃)−1C̃T ) (20)

If we call α a scalar parameter (α will be either
φ(t), θ(t) or one component of the measurements
xi (t), yi (t)) and

C̃α
.= ∂ C̃
∂α

(21)

then we have

C̃⊥α = −C̃α(C̃T C̃)−1C̃T − C̃(C̃T C̃)−1C̃T
α

− C̃ ∂(C̃
T C̃)−1

∂α
C̃T . (22)

Since, for a square and invertible matrixA, A−1
α =

−A−1AαA−1, we have

C̃⊥α = −C̃α(C̃T C̃)−1C̃T − C̃(C̃T C̃)−1C̃T
α

− C̃(C̃T C̃)−1
(
C̃T
α C̃ + C̃T C̃α

)
(C̃T C̃)−1C̃T (23)

we can write, after collecting the common terms,

C̃⊥α = −C̃⊥C̃αC̃†− C̃†T C̃T
α C̃⊥. (24)

If we call

Kα
.= C̃⊥C̃αC̃† (25)

and we notice that̃C⊥ is a symmetric matrix, we end
up finally with

C̃⊥α = −Kα −KT
α . (26)

We now seek for a cheaper and better-conditioned way
of computing the matrixK. Consider the Singular
Value Decomposition of the matrix̃C:

C̃ = Uc6cVT
c (27)

then it is immediate to notice that

C̃⊥ = I −UcU
T
c . (28)

After substituting for the SVD of̃C and exploiting the
orthogonality ofU andV , we have

Kα =
(
I −UcU

T
c

)
C̃αVc6

−1
c U T

c . (29)
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In order to compute the full linearization of the im-
plicit measurement equation with respect to the states
θ, φ and the measurementsx, we are only left with
computing the derivatives of the matrixC̃ with respect
to these parameters:

C̃θ =

A1
∂V
∂θ

0
. . . 0

AN
∂V
∂θ

0

 (30)

C̃φ =

A1
∂V
∂φ

0
. . . 0

AN
∂V
∂φ

0

 (31)

C̃xi =


. . . 0[

V3

0

]
∂Bi
∂xi

. . . 0

 (32)

C̃yi =


. . . 0[

0
V3

]
∂Bi
∂yi

. . . 0

 (33)

where

∂V

∂θ
=
−cos(φ) sin(θ)

cos(φ) cos(θ)
0

 (34)

∂V

∂φ
=
−sin(φ) cos(θ)
−sin(φ) sin(θ)

cos(φ)

 . (35)

The spherical coordinates are defined such that

V(θ, φ)
.=
cos(θ) cos(φ)

sin(θ) cos(φ)
sin(φ)

 . (36)

We now have all the ingredients necessary for comput-
ing the linearization of the model:

C
.=
(
∂ C̃⊥ẋ
∂[θ φ]

)
= [C̃⊥θ ẋ C̃⊥φ ẋ

]
(37)

D
.=
(
∂ C̃⊥ẋ
∂[x ẋ]

)
= [C̃⊥x1ẋ C̃⊥y1ẋ · · · C̃⊥yN ẋ | C̃⊥].

(38)
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Notes

1. For in introductory treatment on nonlinear observability and its
effects on state observation, see Isidori (1989).

2. See McLauchlan (1994) for a way of dealing with a variable state-
dimension model.

3. An instance of a spherical coordinate chart is reported in
Appendix A.

4. It should be noted that̄n is not a white noise, forn andn′ are
effectively correlated. A technique for fixing this inconvenient
is described in Soatto et al. (1996). However, we find that the
performance achieved by approximatingn̄ with a white noise is
satisfactory in most cases.
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