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Abstract. The 3-D motion of acamerawithin a static environment produces a sequence of time-varying images th:
can be used for reconstructing the relative motion between the scene and the viewer. The problem of reconstruct
rigid motion from a sequence of perspective images may be characterized as the estimation of the state of a nonlin
dynamical system, which is defined by the rigidity constraint and the perspective measurement map. The tim
derivative of the measured output of such a system, which is called the “2-D motion field” and is approximated b
the “optical flow”, is bilinear in the motion parameters, and may be used to specify a subspace constraint on t
direction of heading independent of rotation and depth, and a pseudo-measurement for the rotational velocity a
function of the estimated heading. The subspace constraint may be viewed as an implicit dynamical model wi
parameters on a differentiable manifold, and the visual motion estimation problem may be cast in a system-theore
framework as the identification of such an implicit model. We use techniques which pertain to nonlinear estimatio
and identification theory to recursively estimate 3-D rigid motion from a sequence of images independent of th
structure of the scene. Such independence from scene-structure allows us to deal with a variable number of visil
feature-points and occlusions in a principled way. The further decoupling of the direction of heading from the
rotational velocity generates a filter with a state that belongs to a two-dimensional and highly constrained stat
space. As a result, the filter exhibits robustness properties which are highlighted in a series of experiments on re
and noisy synthetic image sequences. While the position of feature-points is not part of the state of the model, t
innovation process of the filter describes how each feature is compatible with a rigid motion interpretation, whicl
allows us to test for outliers and makes the filter robust with respect to errors in the feature tracking/optical flow
reflections, T-junctions. Once motion has been estimated, the 3-D structure of the scene follows easily. By releasi
the constraint that the visible points lie in front of the viewer, one may explain some psychophysical effects on th
nonrigid percept of rigidly moving objects.

Keywords: dynamic vision, recursive rigid motion estimation, nonlinear identification, implicit Extended Kalman
Filter
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enough information for reconstructing the relative optical flow is measured instead of feature tracking),
motion between the camera and the scene. “Visual it is indeed possible to integrate motion information
motion estimation” is one of the oldest (Gibson et al., using a changing set of features, as long as they move
1959; Helmholtz, 1910) and at the same time one of according to the same rigid motion.
the most crucial and challenging problems in computer  The recursive estimation of motion alone is a rel-
vision. Even in the simplest cases, when the scene isatively unexplored subject: to our knowledge, the
represented asrigid set of feature-points in 3-D space  only recursive 3-D motion estimation scheme that is
viewed undeperspectivgrojection, most of the early  independent of the structure of the scene is the so-called
algorithms based upon the analysis of two frames at a “essential filter” (Soatto et al., 1994; 1996).
time are notrobustenough to be employedinreal-world  We present a recursive motion estimator, which we
situations. Multi-frame analysis may be performed ei- call the “subspace filter”, that is based upon the differ-
ther in “batch” or recursively. While batch techniques ential version of the epipolar constraint introduced by
process the whole sequence at once and therefore arel.onguet-Higgins (1981) along the lines proposed by
in principle, more accurate, recursive methods have a Heeger and Jepson (1992). The main advantage con-
number of desirable features: (a) they process informa- sists in the fact that the exponential representation of
tion in an incremental and causal fashion, so that they motion allows us to “decouple” the estimator of the di-
can be employed for real-time closed-loop operations, rection of heading from that of the rotational velocity, in
(b) they allow to easily incorporate model information the lines of Adiv (1985). We can therefore design two
about motion, (c¢) require minimal memory storage and filters, one on atwo-dimensional state-space and one on
computational power, for at each time the past history a three-dimensional one, which are significantly more
is summarized by the present estimate, and only the constrained and therefore more robust than algorithms
current measurement is being processed. based upon Longuet-Higgins’ coplanarity constraint,
In this paper we study the recursive estimation of as we will show in the experimental section.
rigid three-dimensional motion of a scene viewed from
asequence of monocular perspectiveimages. Sinceourl.1. Organization of the Paper
main interest is on real-time causal processing, we do
not review batch techniques here. Recursive estima- We start by showing how the assumptions of rigid-
tion techniques have started being applied to speciality and perspective projectiomefine a nonlinear
instances of the visual motion estimation problem only dynamical model that can be used for designing a fil-
in the last decade (Dickmanns, 1994; Gennery, 1982). ter that simultaneously estimates structure and motion
A number of schemes exist for recursively estimating (Section 2).
structure for known motion (Matthies etal., 1989), mo-  Although the model follows naturally from the def-
tion for known structure (Broida and Chellappa, 1986; inition of the problem, simultaneous structure and
Gennery, 1982, 1992) or both structure and motion si- motion estimation is both problematic from the the-
multaneously (see for instance (Adiv, 1985; Azarbaye- oretical point of view, and impractical (Section 2.3).
jani, 1993; Heel, 1990; Oliensis and Thomas, 1992; The discussion in Section 2.4 serves as a motivation
Young and Chellappa, 1990) and references therein). for introducing, in Section 3, an alternative implicit
We argue against simultaneous structure and mo- constraint on the motion parameters, which is derived
tion estimation for three reasons: (a) complexity— from the work of Heeger and Jepson (1992) and called
including the structure of the scene into the state of the “subspace constraint”.
the filter makes it computationally demanding and re-  The core of the paper starts with the observation that
quires sophisticated heuristics for dealing with a vari- the subspace constraintmay be viewed as an implicit
able number of visible point-features; (b) convergence dynamical system, rather than a nonlinear system
problems—the schemes proposed so far have poorof algebraic equations defined for a pair of images.
model-observability (see (Soatto, 1997) for a thorough In Section 4, we formulate the problem of estimat-
discussion of this issue); (c) occlusions—having struc- ing the direction of translation as the identification
ture in the state allows integrating motion information of an implicit dynamical model with parameters on
only to the extent in which all features are visible. a sphere. The identification task is then carried on
While in realistic sequences the life-time of each in- using local techniques based upon the Implicit Ex-
dividual feature is typically very short (2 frames when tended Kalman Filter. The estimates of the rotational
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velocity come as a byproduct using a simple linear 2.1. Notation
Kalman filter derived from Section 3.2. Once motion
has been estimated, the estimates can be fed, alond.et us callX; = [X; Y; Z]" € R® the coordinates
with the variance of the motion estimation error, in any of theith point in the viewer’s reference frame, which
structure-from-motion module; alternatively, structure is a right-handed frame with origin in the center of
may be estimated independent of motion using essen-projection. TheZ-axis points along the optical axis and
tially the same techniques employed for recovering the the X andY axes form a plane parallel to the imaging
direction of translation. sensor. We call
The experimental Section 5 comprises a number of
tests both on noisy synthetic image sequences and on
real indoor and outdoor scenes, which highlight some
of the main features of the algorithm, such as its ro-
bustness to measurement noise. the corresponding projection onto the image-plane
Some further issues, such as implementation, tun- (Fig. 1). Under the assumption that the scene moves
ing, measurement validation and outlier rejection, are rigidly relative to the viewer, with a translational veloc-
discussed in the experimental section. There we alsoity V and a rotational velocitf, the 3-D coordinates
show some experiments on the “rubbery percept” of of each point evolve according to
rigid shapes when the “positive depth constraint” is

xi =[xyl =7Xi) = [_ _]T R ()

not enforced. Xi=QAXi+V X0 =X, )
yi =7 (X)) +n Vi=1:N
2 Visual Motion Estimation wheren; represents an error in measuring the position
from a Dynamic Model ofthe projection of the point andr represents anideal

perspective projection. Throughout the papgindi-

Let a scene be described by the position of a séf of ~ Cates the noisy version of the projectian= [x; yilT.
feature points in 3-D space. Suppose such points move
rigidly relative to the viewer, while theiperspective
projectiononto an ideal image-plane is measured up to
white and zero-mean noise (see Fig. 1). In this section
we will see how the rigidity constraint and the perspec-
tive measurementiefinea nonlinear dynamical system
involving both structure (position of each pointin 3-D)
and motion (translational and rotational velocity).

2.2. Simultaneous Structure and Motion Estimation

The Egs. (2) may be regarded as a nonlinear dynamical
model having the 3-D position of each feature-point in
the state, and having unknown inputs (or parameters)
V, Q. Solving the visual motion estimation problem
consists in reconstructing the ego-motion parameters
V, @ from all the visible points, i.e., estimating the
unknown inputs of the above system from its noisy
outputs (model inversion).

Since the state of the model (2) is also not known, a
first approach consists in enlarging it as to include all
the unknown parameters, and then use a state observer
(for instance an Extended Kalman Filter), for estimat-
ing both 3-D structure and motion simultaneously. The
reasons why this approach is problematic are both the-
oretical and practical, as discussed in (Soatto, 1997);
the reader interested in the details can consult that ref-
= erence along with Isidori (1989) for an introductory
Y treatment on nonlinear observability. In the next Sec-

tion 2.3, which may be skipped at a first reading, we

briefly summarize the conclusions that motivate the

introduction of structure-independent models for esti-
Figure 1 Notation: the viewer-centered reference frame. mating motion.
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2.3. Against Simultaneous Structure The scheme we present may be considered as a re-
and Motion Estimation cursive solution to the task of Heeger and Jepson us-
ing methods which pertain to the field of nonlinear
The model (2) is not observable “as is”. Metric con- estimation and identification theory. As a result, the
straints must be imposed on the state-space manifold inminimization task which is the core of the subspace
order to achieve local-weak observability. Even after method for recovering rigid motion can be solved in
imposing such metric constraints, the observable man- a principled way using an Implicit Extended Kalman
ifold is covered with three levels of Lie-differentiation, Filter (IEKF) Bucy (1965), Jazwinski (1970), Kalman
which causes the dynamics of the observer to be’slow (1960), Soatto et al. (1996) according to nonlinear
Secondly, having structure in the state causes the di- Prediction-Error criteria (for an introductory treatment
mension of the observer to be very large, as the numberof Prediction-Error methods in a linear context, see for
of features visible in a typical realistic scene is on the example Soderstrom and Stoica (1989)). The method
order of few hundreds. Also, features enter/exit the exploits in a pseudo-optimal manner the information
field of view or appear/disappear due to occlusions, so coming from a long stream of images, making the
one is forced to deal with a variable number of paints ~ scheme robust and computationally efficient.
and motion information can only be integrated to the  Inthe next Section 3, we will re-derive the subspace
extent in which all features are visible. In fact, when- constraint proposed by Heeger and Jepson (1992), and
ever a new feature is inserted into the state, it needsin Section 4 we will view such a constraintas animplicit
to be initialized, and the initialization error affects all dynamical model, and introduce the appropriate tools
the other states—including the motion components— for identifying it.
causing discontinuities in their estimates.
Moreover, the model (2) iblock-diagonawith re- 3. Motion Reconstruction via Least-Squares
spect to the structure parameters, in the sense thatthe | ersion Constrained on Subspaces
coordinates of each poin¢; in (2) are directly cou-
pled only to themselves and to the motion parameters
but not to the coordinates of other poirKs i # j
(of course points are related to each othatirectly
through the motion parameters). This implies that the
observability of the motion parameters does not de-
pend upon the numbeX of visible features. On the
contrary, it is highly intuitive that, the more points are . 1 V(1)
visible, the better the perception of motion ought to be. X (1) = [ZA‘ | Bi] [Q(t)]
These observations, which are discussed in Soatto
(1997), serve to motivate the introduction of structure- Where
independent models for estimating motion. e [1 0 —x ]
=

' Consider the following expression of the first derivative
of the output of the model (2), whichisreferred to inthe
literature as the “motion field” and represents the veloc-
ity of the projection of the coordinates of each feature-
point in the image-plane (Heeger and Jepson, 1992):

3)

0 1 -y
2.4. Towards Structure-Independent 5 - Xy 14+x* -y 4
Motion Estimation = [_1_ Y2 XY Xi } : (4)
In this paper we will show that it is possible to recur- The motion field is not directly measurable. Instead,
sively invert the system (2) and estimate motion (the what we measure are brightness values on the imag-
input)independent of structughe state) using atech-  ing sensor. For practical purposes, the motion field is
nigue which has been recently introduced in Soatto approximated by the “optical flow”, which consists in
etal. (1996) for identifying nonlinear implicit systems  the velocity of brightness patches on the image-plane.

with parameters on a manifold. Such an approximation is by and large satisfied in the
Our scheme is motivated by the work of Heeger and presence of highly textured Lambertian surfaces and
Jepson, who formulated the task astatic optimiza- constantillumination. However, outliers are quite com-

tion problem in Heeger and Jepson (1992), Jepson andmon in realistic image sequences, due to the presence
Heeger (1991). of occlusions, specularities, shadows etc. Any motion
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estimation algorithm willing to operate in real-time on for the inverse depth and rotation:

realistic sequences must be able to deal with such sit-

uations in an automatic fashion. >
In the next sections we will assume that we can mea-

sure directly the motion field, neglecting outliers. Only - | =C% (6)

later, in Section 4.5, will we show how it is possible

to spot-out outliers due, for instance, to T-junctions,

specularities, matching errors from the feature-tracking

algorithm, and reject them before the can affect the \yhere the symbol t denotes the pseudo-inverse. By
estimates of 3-D motion. substituting this result into Eq. (5),

N
AN

[EE

FOlE

3.1. Recovery of the Direction of Translation x = CC™x,
from Two Views
one ends up with ammplicit constraint on the direc-
By observing a sufficient number of poimtsV i = tion of translation, which is represented BY0, ¢).
1--- N, one may use Eq. (3) for writing an overdeter- After rearranging the terms and writing explicitly the
mined system which can be solved for the inverse depth Pseudo-inverse, one gets the following subspace alge-
and the rotational velocity in a least-squares fashion. braic constraint (Heeger and Jepson, 1992):

To this end, rearrange Eq. (3) as e e -
[l —CCTC)" 1T x=C*'x=0. 7)

1
() =[AiV©, ¢) | B] [é((t?)} : It is then possible to exploit this constraint for recover-
ing the direction of translation by solving the following
Since the translational velocity multiplies the inverse  nonlinear optimization problem:
depth of each point, both can be recovered only up to ) _
an arbitrary scale factor. Due to this scale ambigu- V = arg min|C*(x, V)X||. (8)
ity, we may only reconstruct the direction of transla- ves

tion; henceV may be restricted to be of unit norm, | other words one seeks for the best vector in the two-
and represented in local (spherical) coordima®@s  dimensional sphere such thais the null space of the
V@, o) e 2. For instanced may denote the azimuth 0rthogona| Comp|ement of the range @X, V). If
angle in the viewer's reference, apdhe elevation an-  the matrixC was invertible, the above constraint would
gle. If some scale information becomes available, as pe satisfied trivially for all directions of translation.

for example the size of a visible object, it is possible However, when 8 > N + 3, CC' has rank at most
to rescale the depth and the translational velocity, as N + 3, and thereforé- is not identically zero.

we will discuss in the experimental section. WHen Note that the solution consists in “adapting” the or-
points are visible, the equations above may be rear- thogonal complement of the linear space generated
ranged into a vector equality: by the columns offl—which is highly structured as
T a function ofV (6, ¢)—until a given vectok is its null
" 1 1 space. Heeger and Jepson (1992), in their early work,
X_C(X791¢) _1"'a_1Q 5 (5) . . e e .
Z; Zy first solved this task by minimizing the two-norm of

the above constraint (8) using a search aves on a
where sampling of the sphere.
In Section 4 we rephrase the subspace constraints
AV B described in this section as a nonlinear and implicit dy-
: namic model. Estimating motion corresponds to iden-
ANV By tifying such a model with the parameters living on a
sphere: we propose a principled solution for perform-
andx is a 2N column vector obtained by stacking the ing the optimization task, which takes into account the
Xi Vi = 1-.- N ontop of each other. At this pointone temporal coherence of motion and the geometric struc-
could solve the above Eqg. (5) in a least-squares fashionture of the residual (8).

C(x,0,¢) =
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3.2. Recovery of Rotation and Depth to the direction of translation and the rotational veloc-
ity, and then derive an optimization problem similar to
Once the direction of translation has been estimated as(8) for the scaled inverse depth of each point. This idea
V = V(8, $), we may use Eq. (6) to compute a least- is pursued in (Soatto et al., 1995), where the subspace
squares estimate of the rotational velocity and inverse constraint is used to derive a dynamic filter for estimat-

depth from ing structure independent of motion.
1
Z} 4. Solving the Subspace Optimization
i =C'(x, 0, p)x. (9) with a Dynamic Filter
g In this section we will view the subspace constraint

) ) ) from a different perspective. Instead of considering it
Note that, from the variance/covariance of the estima- 5y gigebraic set of nonlinear equations to be solved

tion error of the direction of translatian ¢, itis pos-  for the direction of heading, we view it as a nonlinear
sible to characterize the second order statistics of the anq implicit dynamical system, which has parameters
estimate of the rotational velocitRo. We may there-  constrained onto a two-dimensional sphere. Then we

fore design a simple Iin?ar Kalman filter which USES introduce a local identifier based upon an Implicit Ex-
the above estimates as “pseudo-measurements” and iended Kalman Filter in order to recursively estimate

based upon the linear model the heading direction. Once the heading is estimated,
it can be fed into a simple linear Kalman filter that
Qt+1 =Q@) +n, \ a simpie i
of % 0. OV = (D) + (10) estimates the rotational velocity.
2N+124+3(% 0, 9)X = (1) + Ng Let us definex = [0, ¢]" as the local coordinate

parametrization of the translational velocity 6 is the

i
where the notatioy . 1.on.3 stgnds for the rows f[om azimuth angle, and the elevationx; are measured up
2N + 1 to 2N + 3 of the pseudoinverse of the matéix to some error,

N, is the noise driving the random walk model, which

is to be intended as a tuning parameter, apds an Vi =X +n, (12)
error whose variancR, is inferred from the variance . ) )
of the estimation error faf, ¢. which we model as white, Gaussian and zero-mean:

The equations for the Kalman filter corresponding M € A'(0, Ry). In the presence of outliers, this hy-

found in textbooks; see for example Jazwinski (1970). how to detect and reject such outlier measurements be-
fore they can affect the estimation process. The error

in the location of the features induces an error in the
3.3. Recovery of Structure derivative,

After the rotational and translational velocities have yi =X +ni,
beenrecovered, they may be fed, together withthe vari- ) ) )
ance of their estimation error, into a recursive structure- Which is usually approximated by either the optical
from-motion module which processes motion error, flow, or by first differences of feature positions be-
such as for example Oliensis and Thomas (1992), tween timet andt + 1. Callx the column vector ob-
Soatto etal. (1993). The main focus of this paper is the f@ined by stacking the componentsfsimilarly with
estimation of motion, and in the experimental section *: Now_deflneCL(x, @) asin (5). Then the subspace
we have estimated structure using the estimates of mo-constraint (7) may be written @ (X, )% = 0. Now
tion, asinthe scheme present(_ad in_Soattq etal. (1993). { Pl a)x=0 V(o) € &

However, we just point out in this section an alter-
native way of estimating structure, that comes from
observing that the inverse depth of each point and the represents a nonlinear implicit dynamical system of
direction of translation play interchangeable roles, as a particular class, called Exterior Differential Sys-
it is evident from the motion field Eq. (3). One may tems (Bryantetal., 1992F0lving for the translational
therefore “pseudo-invert” the system (3) with respect velocity is equivalent to identifying the above Exterior

Vi = Xi + Vi =1---N (12)
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Differential System with parametesson a differen- subsection. Before doing that, however, we would like

tiable manifold(the sphere in this case) from the noisy to stress that the functiofiin the model equation (16)

datay. is a design parameter which is left to the engineer, and
depends upon the circumstances in which the algorithm

is to be used.
If the algorithm is intended for general purposes, one
may choose eonservativenodel, which is amodel that
fits a larger class than the actual one, neglecting more
specific dynamics that may be present, for instance,
in vehicle guidance, helicopter flight etc. Should fur-
ther information about the dynamics of the support of
the camera be available, it can easily be exploited by
inserting it into the model (15).
A typical case in which no model like (15) can be
found is when there is no temporal coherence between
C(y,at)y =h (13) subsequent images, which are snapshots of a scene
taken from various points of view at different time in-
wherefiis aresidual noise induced by the measurement gtants. Insuch a case, a batch method is most appropri-
noisen. The parameters must evolve in suchaway  ate. Since we are interested in real-time estimation, we
that the outputg satisfy the above dynamics. Sincethe gways assume that the images are taken sequentially
outputs are directly measured, we could call the above from a camera, so that temporal coherence between
constraint the “a-posteriori” dynamics. However, often subsequent images is guaranteed.
times the direction of translation is not free to change |, this paper, we consider the very simplest instance

arbitrarily, for there is some “a-priori” dynamics itmust ¢ 5 statistical model, which is a first-order random
satisfy. For instance, if the camera is mounted on a yg/k-

vehicle, it must move according to its kinematics and
dynamics, which results in a model of the generic form f(o) = a. a7)

4.1. Identifying Motion Using Local
Implicit Filtering

The direction of translation, encoded by the two-
dimensional vectay, is represented in the above model
(12) as an unknown parameter which is subject to three
types of constraints. First of al/ («) is constrained

to belong to the unit-sphere in3R Secondly, the dy-
namics of the statesinduces trivially a dynamics on
the outputsy:

alt +1) = f(a, ny) (14) It is not superfluous to point out that the first-order
random walk (Brownian motion) does not restrict the

wheren, summarizes all the significant parameters of motion to having constant velocity. The variance of

the.vehicle.lft.hecamerais hand-held, orthe mechanicsthe noise driving it,R,, can be considered a tuning
of its support s unknown, we know at least that veloc- 52 meter that trades off the “speed of convergence”
ity must be a contmu_ous function and the accelerat_lon with the “precision” required. One may consider this
cannot exceed certain vaIue;. [n lack of a mechanical as a starting point: if the dynamics of the camera in a
model, one may employ statistical models as a mean paicyjar experiment are not captured by this simple
of describing some inertia. For instance models of the model, one can move up the class and consider richer

form models. Itis our experience, however, that a first order
att+1) = f(a)+n, Ne e N(O,R,) (15) random walk works quite well in most cases, in the
sense that it allows decent precision while not limiting

where f is a polynomial function and, is a white,  the range of possible motions to a significant extent. In
zero-mean Gaussian noise. the experimental section we will show how the simple

By putting these three constraints together, we can Brownian motion performs on a variety of situations,
write a discrete dynamic model for the parameters  ranging from constant-velocity motion, to sinusoidal,
to discontinuous velocity, without changing any tunin
at +1) = f(a) + ny(t) . y ging any tuning
e ;X or modeling parameters.
C(y,at))y' =n (16)

a €0, ) x [—% %) 4.2. Equations of the Estimator

which can be used for designing an Implicit Extended From the model (16), itisimmediate to derive the equa-
Kalman filter, whose equations we report in the next tion for an Extended Kalman Filter (EKF) (Jazwinski,
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1970; Kalman, 1960) that estimates the direction of
translationn. The only caveat is that the measurement
equation is inimplicit form. The key observation is
that the vector

at+1/t)y

e(t) = CHy), (18)

plays the role of the “pseudo-innovation” process, and

therefore the standard equations of the EKF can be ap-

plied (Jazwinski, 1970). We report here the complete
set of equations for the filter that estimates the direction
of translation using a first-order random walk model.
The reader interested in a detailed derivation of the Im-
plicit Extended Kalman Filter may find it, for instance,
in Soatto et al. (1996).

Prediction step

&(0]0) = ao

P10 = P

at+1]t)=act|t)
Pt+1jt)=P|t)+ R.(1)

Update step

at+1jt+h =&t +1)+Lt+1
CHiy), at +1/t)y

Pt+1[t+1) =Tt+DHPt+1|t)IT(t+1)
+Lt+DDEt+ DRt + 1)
x DTt +DLT(t+1)

where
Lt+1) =Pt+1|HCTt+ DAYt +1D)

At+1) =Ct+DHPt+1|t)CT(t+1)
+ D+ DRt +1)DT(t + 1)

rt+1)=I1—-Lt+DCt+1
aC+x
Dt +1) = (7)
Ix®, ] ly®).yl.a()

aCtx
da(t)

ly(®,&(t)

Ca+Di(

and R; is the variance/covariance matrix of the mea-
surement erron = [n, n’], considered as a white
nois¢. R, is atuning parameter that corresponds to the
variance of the noise driving the random walk model.
Ateach step, the estimates of the direction of transla-
tion can be used fdnstantaneouslyecovering the ro-

Prediction step

Q(0]10) = Qo

{Qa+1u)=ﬁan)
Pa(0]0) = Pq,

Po(t +1[t) = Pa(t|t) + Ru(t)
Update step

QU41t+1) =QU+1|0)+ Lot +1)

X (C;N+1:2N+3(y’ a)y — Q(t + 1 t))
Po(t + 1|t +1) = Ta(t + DPo(t + 1| HIL(t + 1)

+ Lot + DRt + HLL(t + 1)

where the gain matricdsg, I'g are the usual ones of
the linear Kalman Filter (Kalman, 1960).

Itis easy to verify that both the models (16) and (10)
are locally-weakly observable. In fact, the uniqueness
results in the analysis of the algorithm of Jepson and
Heeger (1991) are equivalent to the assessment of the
observability of the model (16), for itis instantaneously
observable. The model (10) is observable, for the state
and measurement models are the identity and the filter
just acts as a smoother. Note that the algorithm just
presented produces a measure of the reliability of the
estimates in the form of the second order statistics of
the estimation erroP and Pg,.

4.3. Enforcing Rigid Motion: The Positive
Depth Constraint

When estimating motion from visible points, we must
enforce the fact that the measured pointsiafeont of

the viewer This may be easily done in the prediction
step by computing the mean distance of the centroid
and checking whether it is positive. If it is negative,
the antipodal point of the state-space sphere is chosen
as the prediction.

When we do not impose such a constraint, the fil-
ter may converge to a rigid motion which corresponds
to points moving behind the viewer, and is therefore
not physically realizable. However, if we allow such a
condition to happen by releasing the positive depth con-
straint, and then feed the estimate into a structure esti-
mation, such as for example a simple Extended Kalman
Filter (Matthies et al., 1989; Oliensis and Thomas,
1992; Soatto et al., 1993) initialized with points at posi-
tive depth and a large model-error variance, the resultis
arubbery percept of structurghich has been observed

tational velocity from (9). Such a pseudo-measurement also in psychophysical experiments (Kolb et al., 1994).

may also be used for updating the state of a linear
Kalman filter based upon the model (10):

A pictorial representation of the rubbery percept is il-
lustrated in Fig. 2.



3-D Visual Motion Estimation 243

! reflection

RIGID PERCEPT "RUBBERY" PERCEPT

Figure 2 Pictorial illustration of the “rubbery” perception: motion is estimated without imposing the positive depth constraint; this may result
in a motion estimate which is compatible with a rigid structure behind the viewer. Once such a structure is interpreted as being in front of th
viewer, it gives rise to the perception of a “rubbery” structure rotating in the opposite direction.

4.4. Independence from Structure Estimation 4.5. Outlier Rejection

It is worth noting that the state of the filter proposed One of the crucial features of the subspace filter, as
contains only the motion parameters, and is therefore well as the essential filter (Soatto et al., 1994), is its
independent from the structure of the observed scene,independence from the structure of the scene. How-
provided some general-position conditions. Such con- ever, each feature-pointis indirectly represented viathe
ditions are satisfied when the scene cannot embed-innovation process (18). In particular, for each feature-
ded in a planar surface, and the motion relative to pointwith projective coordinateg, the components of
the viewer generates non-zero parallax. Such condi- the innovatior;, defined in (18), describe how such
tions describe a zero-measure set in the possible struc-a feature-point is compatible with the current estimate
ture and motion configurations, and the noise in the of motiona. Since at each step the filter computes
image-plane coordinates is sufficient to set the model the pseudo-innovation vector, it is possible to compare
in general position. As a consequence, we do not each component against the same at the previous time
need to track a specific set of features; instead, atinstantand, usingsome simple statistics, rejectthe mea-
each step we can change set of features or locationssurements that give too large a residual before updating
where we compute the optical flow/feature tracking, the estimates of motion. This technique may be ap-
without causing discontinuities in the estimates of mo- plied both for rejecting outliers, such as mismatches in
tion. This is a key property of the filter, since it allows the optical flow, T-junctions, specularities etc. and for
us to deal easily with occlusion and appearance of new segmenting the scene into a number of independently
features. moving rigid objects, as in Soatto and Perona (1994).
Also, note that the filter is able to work properly even
when the number of visible features drops down to less
than five (for small accelerations), since it integrates 5. Experimental Assessment
over time the information from each incoming frame.
This, together with the robustness and noise-rejection In this section we report a series of simulations and ex-
properties, is a substantial advantage over two-views periments on real sequences. Before that, we discuss
schemes. some of the issues on the implementation, stressing
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the fact that the model and the tuning parameters were5.2. Scale Information Recovery
the same for all the experiments, including the one in
Section 5.3.2, which is designed on purpose for chal- The scheme proposed recovers the direction of transla-
lenging the first-order random walk model which we tion as anormalized vector ofiRSuch a normalization
have employed. is necessary because of the presence of a global scale-
factor ambiguity that affects the norm of translation

. and the inverse depth of the visible features, as it can

5.1. Implementation be seen from the Eq. (3). The important fact to realize is
. i ] that there is onlpnescalar ambiguity for the whole se-

We have implemented the filter usingatiab . Each quence so that, should some scale information become
update step consists essentially in 15 products of matri- 5y qilable at any instant, it can be propagated across
ces of size varying from22to 2N x 2N, one inversion time and the scale ambiguity resolved.
of the 2N x 2N variance of the pseudo-innovation, 5 | tact, at each step the normalized translation and
sums and the computation of the Singular Value De- the rotational velocity estimated by the filter may
composition (SVD) ot, foratotal of circa 1 Mflopfor  he ysed for computing some “normalized” structure,
N = 20 points. However, the computation can be cut \yhich can be re-sized to fit the scale information avail-
in half by taking into account the sparse structure of the able, as done in Soatto et al. (1993). If no scale in-
matrices involved in the computation (block-diagonal ormation is available, the initial translation may be
structure ofR, andC). A time-consuming part of the  seq as a unit scale, or the distance between any two
algorithm is also the linearization of the system with eatres for instance. The issue of how to propagate

respect to the measuremertisf + 1). scale information is discussed in Bouguet and Perona
Since the Extended Kalman Filter is based upon the (1gg5).

assumption that the linearization error is negligible,

which is not often the case, we have added to the vari-

anceDR;DT a small symmetric random matrix in or- 5.3. Simulation Experiments

der to account for the linearization error. This practice

typically improves the performance of the Extended We have generated at random a set of 20 points in

Kalman Filter for models which are strongly nonlinear. space, distributed uniformly in a cubic volume of side
A crucial part of the design of an EKF consist in 1 m, with the centroid placed 1.5 m ahead of the image

“tuning” it, i.e., in assigning a value to the elements plane. The points are projected onto an image plane of

of the variance/covariance matrices of the model er- 512 x 512 pixels with focal length of 750 pixels. The

rors: R,, R,,. A custom procedure is to assume that cloud of points rotates about its centroid with a veloc-

these matrices are diagonal, and then play with their ity of circa 5 /frame, with the centroid maintained on

values until the prediction error is as white as possible. the optical axis at a fixed distance from the center of

Standard tests are available for this procedure, such asprojection. White, zero-mean Gaussian noise is added

the “cumulative periodogram” (the integral spectrum to the projections. The motion is roto-translational in

of the prediction error). In our experiments we have the viewer's reference frame, and is challenging since

performed a coarse tuning by changing the variances the effects of rotation and translation superimpose.

of the model errors by one order of magnitude at a  Convergence is reached frararo initial conditions

time. We did not perform any ad-hoc or fine tuning, and noise in the image plane coordinates up to 8 pixel

and the setting was the same throughout the different std. The convergence of the main filter with a noise

experiments. level of 1 pixel std is reported in Fig. 3, while the same
In all experiments, unless stated otherwise, the fil- experimentis repeated with a noise level of 8 pixels std
ter was initialized to zerowg = 0, 29 = 0, and the in Fig. 4. In both cases the positive depth constraint has

initial variance of the estimation errd® and P, was been enforced. The transient for converging from zero

the identity matrix of dimension 2 and 3 respectively, initial conditions ranges from 5 to 40 steps, depending

scaled by 100. on the noise level, the type of motion and the structure
In order to implement the filter, the linearization of of the scene.

the model is needed. In Appendix A we report the  The least-squares pseudo-measurements of the rota-

detailed computation of the local-linearization of the tional velocity, computed as described in Section 3.2,

measurement model. are plotted in Fig. 5 (dashed lines), and compared with
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Direction of translation: 1pixel std noise
0.5 T T T T

Error In the direction of translation: 1 pixe! std noise
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Figure 3 Estimates and errors for the direction of translation when the noise in the image plane has a standard deviation of 1 pixel (accordir
to the performance of common optical flow/feature tracking schemes). Ground truth is displayed in dotted lines. In the left plot the elevatio

angleg is constant and equal to zero, the azim@itis close to— 7. Note that convergence is reached from zero initial conditions in about 10
steps.

Direction of translation: 8 pixel std noise

Error in the direction of translation: 8 pixel std noise
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Figure 4  (Left) estimates of the two components of the direction of translation. In the left plot the elevatiorpaagienstant and equal to
zero, the azimuth is close to-7. The noise in the image plane measurements had 8 pixel standard deviation. The initial conditions were zerc

for both components. The ground truth is in dotted lines. (Right) estimation error for the direction of translation. With noise of 8 pixel std in
the data, the estimates are still within 20% of the true value.
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Figure 5 Estimates for the components of rotational velocity (left) and corresponding error (right). Ground truth is displayed in dotted lines;
the filtered estimates are in solid lines. The least-squares computation of the rotational velocity is in dashed lines.



246 Soatto and Perona

the recursive estimates (solid line) using the linear  In Fig. 8 we report the minimum “thickness” of the
Kalman Filter described in Section 3.2 with a noise rotating cloud that can be tolerated before the scheme

level of 1 pixel std. breaks down. Again, there is a significant advantage
over two-frames based algorithms.
5.3.1. Altering the Basic ExperimentThe basic ex- In Fig. 9 we report the smallest aperture angle under

periment has been modified in order to test the filter which the scene can be seen and its motion estimated
against increasing levels of noise, aspect ratio of the correctly. The subspace filter has a slight advantage
visible scene, size of the visual field and magnitude of with respect to a two-frames based algorithm. How-
motion. ever, all schemes based upon a full perspective model
In Figs. 6 and 7 we show the variance of the pseudo- need to have a large visual field.
innovation and the norm of the estimation error respec-  In Fig. 10, we experiment with dependence upon
tively, as a function of the measurement noise, which image-velocity. The model of the subspace filter is
ranges from 1 to 4 pixels std. The same plots are re- based on a differential (exponential) representation of
ported for the recursive version of Horn’s two-frames motion, and assumes that the velocity of the bright-
algorithm (Horn, 1989; Soatto et al., 1996), which ness patcheg’ can be measured. In practice, first
breaks down consistently for noise levels higher than differences of feature positions are employed as an
1.1 pixels std. approximation to the velocity. Such an approximation
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Figure 6.  Statistics of the innovation vs. noise level and initial conditions(S = subspace, H= recursive Horn.) The average variance of

the innovation over a window of 20 frames is plotted as a function of the noise level. The subspace filter (S) proves robust, and converges 1
zero initial conditions and noise larger than 4 pixels. The variance of its innovation follows the ideal parabola, while the estimate of (H) break
down at a noise level of 1.1 pixel std. Notice that, while the variance of the innovation decreases when the filter diverges, the estimation err
as expected, increases (Fig. 7).
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Figure 7. Estimation error vs. noise level and initial conditions. (S = subspace, H= Horn. log-scale.) The subspace filter converges in
all instances but in 5 cases, where the sample of the estimation error was taken before the filter reached convergence while it was tempore
trapped into a local minimum. The algorithm based on two frames (H) fails consistently for noise levels higher than 1.1 pixel std.
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Figure 8 Critical aspect ratio vs. noise level(S= subspace, H= Horn.) In this experiment we “flatten out” the structure by decreasing the
ratio between the depth and the width of the cloud of points. For any given noise level, we plot the minimum aspect ratio (maximum “flatness’
tolerated by the filters. The aperture angle was 28the noise is small (for example one tenth of a pixel), then the filter can tolerate a very flat
structure (for instance 10% aspect-ratio). As the noise increases, the filter is more and more sensitive to the presence of depth in the struct
The reduction of the aspect ratio could be viewed as a reduction of the aperture while the cloud shows its narrower face to the viewer.
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Figure 9. Critical aperture vs. noise level. (S = subspace, H= Horn.) The minimum aperture angle tolerated by each filter depends upon
the noise level as indicated in the plot above. When the noise is one tenth of a pixel, the filters can estimate the motion of structures viewed
to an angle of 5circa, while as the noise increases up to 1.2 pixels, the aperture angle has to be larget.than 15
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Figure 10 Norm of the estimation error vs. rotation angle. (S = subspace, H= Horn. Log-scale.) The schemes based upon the epipolar
constraint from two frames (H) do not converge for baselines shorter than a threshéloh (hi2 case). Once the threshold is reached, they
improve marginally by increasing the instantaneous baseline. On the contrary, the subspace filter (S), which is based upon an instantane
constraint, degrades as the baseline increases. Note that the subspace filter is implemented in exponential coordinates, which helps corre
for the finiteness of the sampling interval under the assumption of slow accelerations. The field of view was 28 degrees and the noise hal
pixel std.

is honest as long as the image-plane motion is small. state f, depending upon the conditions in which the
As the image-plane motion increases, the performancealgorithm is applied. For instance, if the camera is
degrades as shown in Fig. 10. mounted on a mobile vehicle, we may use the kine-
matics and dynamics of the support for describing the
5.3.2. Challenging the Modelln designing the es-  evolution of the state. If we know that the camera is
timator of the parameterg for the model (16), we  moving with considerable inertia, we may employ a
have wide open choice on the dynamical model for the smoothness constraint etc. In the lack of any model,
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we can employ statistical models, for example fixed  Just for the sake of illustration, we have considered
order random walks. In the experiments reported here the same synthetic experiment described in the previ-
we have chosen the simplest possible, which is the first ous section, and modulated the speed of rotation about
order, corresponding to a Brownian motion. Whether the object’s axis first with ginusoid then with asaw-

this model is rich enough to capture the possible mo- tooth discontinuous function, and then withsacond
tions undergone by the camera is a question of mod- order random walk (which is one step up the ladder
eling which is left to the engineer, who has to judge of the class of random walks, and cannot be captured
the intrinsic tradeoff between flexibility (large model in principle by the Brownian motion). During the lat-
variance) and accuracy or “smoothness” (small model ter phase we have also altered the other components
variance). of the rotational and translational velocity. Eventu-
ally, motion resumed to constant velocity. Note that
the parameter which is modulated is the most difficult
to estimate, since the effects of rotation and transla-
tion are similar (it is one of the manifestations of the
so-called “bas-relief ambiguity”). In order to appreci-
ate the precision of the tracking, we have lowered the

E3 .
¥ oos] 1 noise level down to a tenth of a pixel. In Fig. 11 we
§ 004 1 show the three components of the rotational velocity
g oos . (solid lines) superimposed to the ground truth (dotted
£ 02 1 lines). The two spherical coordinates of the direction
001 1 of translation are plotted in Fig. 12 (solid lines) along
0 W——- with the ground truth (dotted lines). The estimates of
Bl T T T the filter follow closely the motion parameters, even
rame at the discontinuities. It is worth pointing out that the

Figure 11 Convergence of the filter with a first-order randomwalk ~ tuning was exactly the same in all the experiments in
state model in the presence of non-smooth parameter dynamics. Thethis paper, and no ad-hoc tuning was performed. It is
components of the rotational velocity of the camera are first modu- possible to see a small, but not zero-mean, estimation
Iat.ed byasmusmdal,then byadlscontmuoussaw-toth andtheljtljey error, which is a clear symptom that the model em-
drift with a second order random walk before returning to the ini- .

ployed (afirst order random walk) does not capture the

tial constant-velocity setting. The estimates (solid lines) follow the . . . . .
ground truth (dotted lines) despite it evolves according to dynamics true dynamics of the parameters (sinusoidal, discontin-

which are not captured by the state model of the filter. uous or a second-order random walk). If one wanted
1.7 T T T T T T T 01
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Figure 12 Spherical components of the translational velocity for the experiment with non-constant velocity: azimuth (left) and elevation
(right). While the rotational velocity is modulated with sinusoids and saw-tooths, translation is held constant. Between frames 80 and 120 tt
parameters drift according to a second-order random walk. It can be noticed that the filter follows the estimates with a small but non-zero-me
estimation error. This is due to the fact that the model that generates the data is not captured by the model used for the estimation.
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Figure 13  Brightness plots of the residual function. The value of the residual is plotted on the state-space of the filter, which are the loce
coordinates of the sphere of directions of translation. Bright regions denote small residuals. The black asterisk is the “true” motion whic
generated the residual. Note that for small rotations (left) the minimum of the residual coincides with the true motion. When the rotatione
velocity is large (right) the Euler step approximation is no longer valid, and the minimum moves from the true location.

to get rid of these effects, a higher-order random walk
should be considered. However, the one just performed

5.3.4. Convergence and Local Minimalhe reader
may have noticed the presence of local minima in the

is an extreme experiment, and usually real sequencesplots of the residual function (Figs. 13-17): if mo-

taken from video exhibit a considerable amount of iner-
tia. Therefore we will restrict ourselves to the simplest
first-order random walk.

5.3.3. The Residual Plot in the State-Spaca typical

plot of the residual function, which is the value of the
subspace constraint (18) as a function of the parameters
6 €[0,7),¢ € [~%, %), isshowninFig. 13 for a par-
ticular value of the states. The residual depends both on
the motion and structure parameters. For an isotropic
cloud of dots undergoing constant-velocity motion, the
residual is nearly constant. Therefore, itis sufficient to
show just one frame of the residual with the filter tra-
jectory superimposed. In the following subsections we
restrict our attention to the constant-velocity case just
because—the residual function being constant—it is
possible to display it. The bright areas indicate a small
residual value. The black asterisk indicates the motion
(in the local coordinates of the sphere of directions of
translation) which generated the residual. It is noted
that the minimum of the residual is displaced from the
true motion when the norm of the rotational velocity
is large. This is due to the fact that we approximate
the velocity of the projected points (motion field) with
first differences; the approximation is good as long as
R = e = | 4+ QA, i.e,, as long as the norm of the
rotational velocity is small.

tion is estimatednstantaneouslyfrom two frames,

as in Heeger and Jepson (1992), the estimate can be
trapped into a local minimum. In our experiments,
however, we have rarely withessed convergence to a
local minimum, unless temporary. This is due to the

Sanvergenca 1o the solution starting from different inltial conditions

phi

Figure 14 Convergence when the positive depth constraint is not

imposed and the initial condition is chosen at random around the
origin (which appears in the center of the plot): a number of trajec-
tories is shown in black solid lines superimposed on the brightness
plot of the residual function. The filter may converge to either the
correct rigid interpretation (bright region on the top half of the plot)
or to the local minimum corresponding the “rubbery” interpretation
(bright area on the bottom half of the plot).
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Figure 15 (Left) convergence to a shallow local minimum and then to the local minimum corresponding to the rubbery interpretation when
the positive depth constraint is not enforced. (Right) convergence to a shallow local minimum and then to the correct rigid motion (see als

Fig. 16).

Comeergence ko e usbery inlemprelalion

Hosism

ph

Comamance 12 Ina comas! il epreEion

Figure 16 Convergence to the “rubbery interpretation” (left) versus convergence to the rigid motion interpretation (right). The state of the
filter at each step is represented as a blagkand superimposed to the average residual function (darker tones for larger residuals). After the

transient, the states accumulate either around the local minimum corresponding to the rubbery interpretation (the one on the bottom half of 1
plot) or to the one corresponding to the true motion, on the upper half of the plot. The trajectory of the state is also plotted component-wise

Fig. 15.

recursive nature of the scheme, which integrates infor- motion”. When the positive depth constraint is not en-
mation over a large baseline. In Figs. 15 and 16 we forced the filter may converge either to the rigid or to
show a typical example of the temporary convergence the rubbery interpretation (Fig. 14). In Figs. 15 and

of the filter to a local minimum: after few iterations the
observations are no longer compatible with the mo-
tion interpretation, forcing the filter out of the local
minimum.

5.3.5. Rubbery Motion.A qualitatively different lo-
cal minimum is the one corresponding to the “rubbery

16 (left) we show the convergence to the “rubbery mo-
tion interpretation” when the positive depth constraint
is released.

In Figs. 15 and 16 (right) we show the convergence
of the filter to the rigid interpretation. Note that, when
the positive depth constraint is enforced, the estimate is
reflected onto the correct rigid interpretation (Fig. 17).
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Figure 17. Convergence when the positive depth constraint is enforced: (left) trajectory of the filter on top of the brightness plot of the residua
function, (right) corresponding motion components. Initial conditions are zero.

5.3.6. Structure EstimationWhen we feed the mo-  sensitive to noise in the measurements and to the initial
tion estimates into a structure-from-motion module conditions than the essential filter (Soatto et al., 1994).
initialized with points at positive depth and a large In particular, for 20 observed points and 1 pixel std
model-error variance (Soatto et al., 1993), we may ob- noise, the essential filter converges for initial condi-
serve either a rigid set of points which move accord- tions within 30% of the correct solution, while the
ing to the correct motion (a top view of the points is subspace filter converges from any initial condition.
shown in Fig. 18 left) or to a “rubbery” percept (Fig. 18 Furthermore, the subspace filter is less sensitive to dis-
right). Thisisinaccordance with the experience in psy- turbances, and may tolerate up to 5 times more noise
chophysical experiments (Kolb et al., 1994). Note that on the measured image plane coordinates than the es-
the rubbery solution disappears as soon as we imposesential filter. This is due to the simple structure of the

the positive depth constraint. state-space of the filter as well as its low dimensionality.
Once properly initialized, however, the essential fil-
5.3.7. Comparison with the Essential FilterThe fil- ter proves more accurate, achieving easily less than

ter proposed in this paper proves significantly less 1% error in the components of velocity for one pixel

Rigid percent of structure Rubbery percept of structure
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Figure 18 Convergence of a structure-from-motion module to a rigid interpretation of structure (left) or to a rubbery object rotating in the
opposite direction (right). The plots show a top view of the points, with the image plane on the lower end.
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Figure 19 Convergence of the essential filter: the residual function is plotted on a two-dimensional slice of the five-dimensional state spac
The remaining states that are not represented (the ones corresponding to the rotational velocity) are set to the ground truth. On the left plot
filter is initialized with a motion close to the minimum corresponding to the rubbery interpretation. The filter, however, imposes automatically the
positive depth constraint and the estimate switches fast to the correct motion interpretation. (Right) by releasing the positive depth constraint, i
possible for the filter to converge to the rubbery interpretation. The initial condition is assigned with the rotational velocity corresponding exactl
to the rubbery interpretation, and the remaining two states, corresponding to the direction of translation, biased towards the local minimum
the rubbery interpretation.

std error or less, while the subspace filter is more robust the fact that the filter takes about 10 frames to con-
but less accurate, achieving accuracies in the order ofverge, we have doubled the sequence, which is dis-
2-5% under the same conditions. played in Fig. 20. The sequence was provided to us

The essential filter has, in our current implementa- by Oliensis and Thomas, along with approximately
tion, an advantage in terms of complexity as the num- 20 point-features tracked through the 11 frames. A
ber of points increases. In fact the linearization of the qualitative ground truth has also been provided with
measurement equati@hin the subspace filter has di- the original sequence. The results are reported in
mensions & x N+ 3, whereN isthe number of visible  Fig. 20.
feature-points, while in the essential filter it isl2< 9.
However, the linearization of the subspace filter has a
sparse structure that could in principle be exploited.

In the essential filter the positive depth constraint
is encoded directly in the definition of the state-space
manifold (the essential manifold). The convergence of
the essentialfilterisillustrated in Fig. 19: ontheleftthe
convergence is shown when starting from the rubbery
motion interpretation and imposing positive depth. On
the right the positive depth constraint has been release
(equivalently, reflections are allowed in the essential
manifold), and therefore we may observe occasionally
convergence to the local minimum corresponding to
the rubbery interpretation.

5.4.2. The “Box” Sequenceln a second experiment
we consider the motion of a box rotating on top of a
chair (see Fig. 21). The box has a side of approximately
25 cm and its centroid is placed at a distance of about
45 cm from the camera. The features are detected and
tracked using a multiscale Sum of Square Difference
(SSD) method (Lucas and Kanade, 1981). The distance
dbetween two features is chosen as reference in order to
evaluate the scale factor. In order to get rid of the fea-
tures belonging to the background, the scene is first
segmented using an algorithm described in Soatto and
Perona (1994).

The estimates of the direction of translation, with
the error-bars corresponding to the variance of the pre-
5.4. Experiments with Real Image Sequences diction error, are plotted in Fig. 22 (left), and similarly

for the rotational velocity, WhICh is estimated using the
5.4.1. The “Rocket” SceneAs a first example we  pseudo-measuremenis = CZN+1 2NJr3y as input to
report here the filter estimates for the rocket scene, a linear Kalman filter as described in Section 3.2 (see
for comparison with Soatto et al. (1994). Due to Fig. 22 right).
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Figure 20 (Left) estimate of the direction of translation for the rocket scene. (Right) one image of the rocket scene. The ground truth is show
in dotted lines, while the filter estimates are in solid lines. The error-bars are three times the variance of the estimation error.
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Figure 21  One image of the box sequence. Features (marked as

Bouguet et al. inside the corridor of the Beckman In-
stitute at the California Institute of Technology. On
the walls sheets of paper with high contrast provide
sufficient texture for point-feature tracking. The se-
guence is taken while the camera moves along the cor-
ridor on top of a cart which is hand-pushed following
a prescribed path on the floor of the corridor, so that
qualitative ground-truth can be reconstructed. The se-
guence, with the tracking of about 400 feature-points,
the same employed in Bouguet and Perona (1995),
has been kindly provided to us by J.Y. Bouguet. The
features come with a condition number that indicates
the presence of sufficient contrast along both spatial
directions.

We show here only the first 1800 frames, during

white boxes) are selected using the Sum of Square Difference (SSD) Which the cart was turning of 90 degrees at a corri-

criterion and then clustered according to their rigid motion as esti-

dor angle, and then following a shallow s-turn. The

mated between the first two time instants. The distance between two algorithm makes no assumption about the fact that mo-

features is chosen as reference in order to update the scale factor.

Once motion is estimated—together with the appro-
priate variance of the estimation error—it is fed into
a “structure-from-motion” module that processes mo-
tion error (Soatto et al., 1993) in order to estimate the
structure of the scene. Aslice of the scene viewed from
the top is plotted in Fig. 23 (left), and the corresponding
image-plane view is depicted in Fig. 23 (right).

5.4.3. The “Beckman Corridor” SequenceThe com-
plete “Beckman corridor” sequence consists of a
sequence of approximately 8000 frames taken by

tion occurs on a plane, so that we can check whether
the rotation about the fronto-parallel axis and the cyclo-
rotation are estimated as zero, and the elevation angle
is constant. Rotation about the vertical axis should in-
tegrate at about 90 degrees at the end of the experiment.
We have run our algorithm by using only part of the
feature-set. We have fixed the maximum number of
features to 20, so that the average number that pass
the innovation test described in Section 4.5 is about 15,
with aminimum of 3 features atframe 400. The number
of features used by the algorithm as a function of the
current frame is plotted in Fig. 27. It must be noticed
that no particular attention is paid to the location in the
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Figure 22  (Left) estimate of the direction of translation for the rotating box. The error-bars are three times the variance of the estimation erro
(diagonal of theP matrix of the filter). (Right) estimates of the components of rotational velocity, estimated using a linear Kalman filter that
processes the pseudo-measurements derived from the direction of translation, as described in Section 3.2.
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Figure 23  (Left) top view of the estimated scene. Note that some features have been lost during the tracking procedure. The structure was e:
mated using a simple Extended Kalman Filter having as input the feature points and the motion estimates together with their variance/covariar
matrices. (Right) image-plane view of the scene.

image-plane of the features used by the algorithm, so The rotation angle about thé-axis (horizontal) and
it can happen that at some step the scheme uses fewZ-axis (cyclo-rotation) are zero, as reported in Fig. 26.
features that cover only a small portion of the visual The rotational velocity about the vertical axis-re-
field. ported in Fig. 27, shows first the full left turn, then the
In Fig. 25 we show the estimated direction of trans- s-turn left-right. The integral of the velocity along the
lation, consisting of the azimuth angle (direction of whole sequence is 10lwith an overall error of about
heading) and elevation angle. The latter is constant to 10° over 1800 frames. This is the mean integral of the
about 5 degrees, which corresponds to the angle be-error along the whole sequence. In order to appreciate
tween the camera and the horizontal axis on the cart. the convergence of the filter, which was initialized to
The direction of heading points left during the firstturn, zero, we show the components of the main filter for
then slightly right and then left again during the s-turn. the direction of heading, along with the variance of the
This is consistent with the cart having front steering estimation error—plotted as errorbars—during the first
wheels and the camera being mounted on the front. 100 frames (Fig. 28).
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Figure 24 Few images from the “Beckman sequence”. The camera is mounted on a cart which is pushed around a corridor. First the ce
turns left by 90, then right and left again on a s-turn. The sequence consists of approximately 8000 frames. We have processed here only t
first turn of the corridor, which corresponds to the first 1800 frames. The sequence was taken by Bouguet et al., who also performed the feat
tracking using Sum of Square Differences criteria on a multi-scale framework.
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Figure 25 (Left) azimuth angle for the corridor sequence. Zero corresponds to forward translation alahwgutiee The first peak is due

to the left turn, while the subsequent wiggle corresponds to a right-left s-turn. (Right) elevation angle. The camera was pointing downwarc
at an angle of approximately Stherefore the heading direction was approximately constant with an elevatips°ofSince the camera was
hand-held, there is quite a bit of wobbling.

6. Conclusions estimation as an optimization problem constrained on
a subspace. Using standard results from nonlinear esti-
We have formulated a new recursive scheme for esti- mation and identification theory, we formulate a motion
mating rigid motion under perspective by identifying a estimator which is efficient, accurate and remarkably
nonlinear implicit dynamic model with parameters on robust to measurement noise.
a manifold. One of the crucial features of the scheme is the inde-
The motivation comes from the work of Heeger pendence of the motion estimates from the structure of
and Jepson (1992), who first proposed to view motion the scene. This allows us to deal with occlusions and
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Figure 26 Rotational velocity about thé-axis (left) and about th&-axis (right). Since the camera was not pitching nor cyclo-rotating, both
estimates are close to zero as expected. Since the camera was hand-held and no accurate ground-truth is available, it is not easy to sort ol
effects of noise and the ones of small motions or vibrations of the camera.
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Figure 27. (Left) rotational velocity about the vertical axis. First the camera turns left at the corner of the corridor (frames 700 to 1000), then
right and then left again around the s-turn (frames 1000 to 1600). The integral of the rotational velocity should add up to approximately 90
for this is the change of orientation of the camera from beginning to end. The sum of the estimatés é@d@%ponding to an error of 10%

circa on a sequence of 1800 frames. (Right) number of features employed by the algorithm at each time step. On average the algorithm use
feature-points, without particular attention to how they are distributed on the image plane. The maximum number of features used is 20, a
the minimum is 3. Note that two-frames algorithms would not perform in such a case, since at least 5 features need to be visible at all time
The temporal integration involved in the filter, on the contrary, allows us to retain the estimates even in presence of less than 5 features.

appearance of new features in a principled way, and robust to tuning parameters, and needs no ad-hoc ad-
results in a filter with a small, constant-dimensional justments depending upon the experiment. Conver-
and highly-constrained state-space. While structure gence is reached in fractions of a second of video-rate
is not represented explicitly in the state, the innova- from arbitrary initial conditions. This, together with
tion process of the filter describes how each single the light computational load required, makes our ap-
feature-point is compatible with the current motion in- proach suitable for real-time processing on the current
terpretation, and may therefore be used for detecting generation of PC microprocessors, once optical flow
outlier measurements, making the filter robust to error or feature tracking is provided. Extensive experiments
in feature tracking/optical flow. The filter has proven have been performed that highlight such features.
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Figure 28 Close-up view of the transient in the estimates of the direction of translation (azimuth on the left, elevation on the right). The
variance of the estimation error, represented using the error-bars, decreases during the first 20-30 frames, after which it remains bounded arc

the current estimate of the parameter.

Appendix A: Computation of the Local
Linearization of the Model

In this appendix we give the detailed equations for the
linearization of the model of the subspace filter. We
compute the derivative of the implicit measurement
equation

Ct(x, V0, ) (19)

as a function of the derivative of with respect to the
state®), ¢ and the measurementsFrom the definition
of C*+ we have

Ct=@1-CC"0)~ch (20)

If we call « a scalar parameteix (will be either
¢(t),0(t) or one component of the measurements

X (t), y' (1)) and

aC
o

é‘]z

(21)
then we have
Ct=-C,CTO)ICT —¢cC"e) et
T oY1
el 9 e

2 (22)

Since, for a square and invertible matay Al
—A 1A, AL we have

—C,(CTO)7ICT —C(CTO)7CT
—C(CTO)™HCIC +CTC)(CTO)ICT (29)

éj_

we can write, after collecting the common terms,
O =—geot-creTet. (24

If we call
K, =C*C,Ct (25)

and we notice thaf' is a symmetric matrix, we end
up finally with

Ct=—-K,-K]. (26)
We now seek for a cheaper and better-conditioned way
of computing the matriXC. Consider the Singular
Value Decomposition of the matrix

C=UcZ V) (27)
then it is immediate to notice that
Ct=1-U/]. (28)

After substituting for the SVD of and exploiting the
orthogonality ofU andV, we have

Ko = (1 —UUJ) Co Ve U] (29)
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-y Nag - for the Rocket sequence.

Ais 0

Co = 0 (31) Notes

ANEL 0

- - 1. For in introductory treatment on nonlinear observability and its

.. 0 effects on state observation, see Isidori (1989).
. |: Vs i| 2. See MclLauchlan (1994) for a way of dealing with a variable state-

s (32) dimension model.

3. An instance of a spherical coordinate chart is reported in
. 0 Appendix A.

L ’ - 4. It should be noted that is not a white noise, fon andn’ are
effectively correlated. A technique for fixing this inconvenient
0 is described in Soatto et al. (1996). However, we find that the
~ 0 B performance achieved by approximatimgvith a white noise is
Cyi |: j| dy (33) satisfactory in most cases.
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