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Optimal Visual Motion Estimation: A Note 

Minas E. Spetsakis and Yiannis Aloimonos 

Abstract- We analyze the problem of estimating 3-D motion in an 
optimal manner using correspondences of features in two views. The 
importance of having an optimal estimator is twofold: first, for the 
estimation itself and, second, for the bound it offers on how much sen- 
sitivity one can expect from a two-frame, point-based motion algorithm. 
The optimal estimator turns out to be nonlinear, and for that reason, 
we developed techniques that provide very good initial guesses for the 
iterative computation of the optimal estimator. 

Index Terms- Correspondence, structure from motion, 3-D motion 
estimation. 

I. INTRODUCTION 

In this correspondence, we develop and analyze an optimal esti- 
mator for the structure-from-motion problem’ under the assumption 
of Gaussian noise. The issue of optimal estimation is becoming quite 
important lately because of the potential of applications in robotics. 
It is clear that we need to compute solutions to robot vision problems 
as efficiently and robustly as possible (in other words, the “best” 
solution, in some sense). However, we also need to know how good 
the best is. If the best is unstable, then we should look for a new 
direction in research. If the best is stable, it is not news until an 
efficient way to compute it is developed. 

The formalism of the problem, as found in most of the literature, 
is geared toward studies of uniqueness. In these studies, an ideal 
situation is assumed, and an algorithm is designed. This approach 
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‘The structure-from-motion problem has received a lot of attention in the 

past several years [21]. Depending on context, this problem is also known 
as passive navigation, the kinetic depth effect, or relative orientation, with 
a slightly different meaning each time in robot navigation, psychology, or 
photogrammetry, respectively. Here, we deal with the problem mainly in the 
context of computer vision; in other words, we are looking for algorithms that 
can be implemented on machines, can work without manual intervention, and 
are general enough for a wide spectrum of applications. 

The problem of structure from motion has been studied for both the 
differential (small motion [l], [8], [4], [21], [ll]) and the discrete (large 
motion WI, [191, PI, PI, 171, [lo]) case. Here, the formalism is the one 
of the discrete case, but the results can be applied to the differential case as 
well. The problem in geometric terms can be expressed as follows: Given the 
projections of a number of points on the two image planes and the knowledge 
of the correspondence (i.e., which points in the two frames are the projections 
of the same 3-D point), recover the parameters of the rigid motion between 
the two coordinate systems. , 

With respect to the uniqueness issues associated with the problem, recent 
research [5] investigated the minimum number of points required for the 
problem to be solvable as well as the number of distinct solutions. Research on 
uniqueness concentrates on trying to obtain a closed-form solution for the five 
motion parameters (direction of translation and rotation). Such a closed-form 
solution was developed by Longuet-Higgins [lo] and further analyzed by Tsai 
and Huang [19], [18]. Because this solution, which is based on eight points and 
uses linear least squares for more points, is not robust in the presence of noise, 
researchers have recently concentrated on the development of algorithms that 
exhibit robustness properties [22], [7], using many points and more elaborate 
optimization techniques. In [22], the maximum likelihood principle is applied 
on all the parameters of the problem, and in [7], an expression from [18] is 
minimized using an elaborate technique. 

gave a nice theoretical framework on which to build. However, 
the noise-sensitivity problem was far from solved. Therefore, the 
next step is to acknowledge the existence of noise, decide on 
a model for it, and then formulate the problem as a statistical 
estimation. The result then will be an estimate that is optimal 
under the assumption of the noise model. There are several ways to 
obtain optimal estimates in the sense of being unbiased, possessing 
minimum variance, being asymptotically normal, or any combination 
of these. The most popular is the maximum likelihood estimator. 
Among the desirable features of the maximum likelihood estimator 
is its convergence properties, where for large samples, the estimated 
quantity is normally distributed, and among other asymptotically 
normally distributed estimators, this one has the least asymptotic 
variance. This estimator can also very often be proved unbiased. Since 
the Gaussian assumption for the noise is almost always present, the 
maximum likelihood binds very well with the least squares method. 

We picked the maximum likelihood estimator to build our optimal 
estimator as the most promising among the statistical inference 
techniques. Of course, any other estimator that could give better 
results could replace this one, but most probably, the better one is 
going to be an estimator tailored to the needs of the specific problem 
at hand. After the first version of this correspondence was published 
[15], papers with similar results appeared in the literature [2], [12]. 

II. OVERVIEWOFTHE APPROACH 

The main advantage of using Gaussian assumption for the noise 
is that the maximum likelihood estimation becomes a least squares 
minimization. Unfortunately, the weights suggested by this technique 
are not constant; they depend on the motion parameters. As will 
become evident later, this makes the minimization more expensive 
because the program has to go through all the points in the image at 
each iteration. To speed up the process, we devised a technique that 
finds a suboptimal solution very quickly that, used as an initial guess 
for the optimal estimator, leads to a quick convergence. Therefore, the 
result is an efficient algorithm for the optimal estimation of motion. 

The suboptimal solution can be found by setting the weights in the 
optimal estimator to 1. Then, we can factor out the motion parameters 
and do the minimization without having to go through all the points 
in each iteration; the information from the image points is coded 
in a 9 x  9 matrix, which is then operated on to find the suboptimal 
solution. A somewhat similar approach for a suboptimal solution was 
used by Jerian and Jain [9] and Horn [7]. 

III. PREVIOUS WORKAND STATEMENTOFTHE PROBLEM 

Several algorithms dealing with motion estimation from discrete 
frames have been published. The most notable of them was presented 
and analyzed in [ 181 and [lo]. We summarize it here and then proceed 
to the noise analysis. 

The imaging geometry is the usual one: coordinate system OXYZ, 
image plane 2 = 1, nodal point 0. A point P in 3-D is represented 
by its position vector [X Y ZIT and its image on the image plane 
by&$ = [$ $ I]*. m  3-D coordinates or [Z y/IT in image 
plane coordinates. 

The vector p = fi contains as much information as P. $ and 
has the advantage of constant length. This will be useful later in 
doing least squares; otherwise, the points far away from the center 
of the image get unfairly high weight, which is, in general, different 
from what a sophisticated camera model would suggest. Furthermore, 
when an object point P rotates to R.P, then the corresponding image 
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points are p and R.p if they are normalized to unity and p and $& 
if they are not (2 is the unit vector along the Z axis). This simplifies 
things a lot. Note, however, that we do not use spherical coordinates 
but just a notation that is convenient for mathematical manipulations. 
Therefore, from now on, we use the unit projection vector p instead 
of the projection coordinates. 

A point P in 3-D that projects on p translates by T and then .rotates 
by R (R is a rotation matrix) to P’, which in turn projects to p’. The 
following relation then holds: 

P’=R(P+T) + RT.P’=P+T a 

Tx(RT.P’)=TxP a P.(Tx(RT.P’))=O 

or [P, T, RT . P’] = 0 where [ . , . , . ] is the triple scalar product. 
Dividing by lIPI . IIP’II, we get [p,T, RT .p’] = 0 or 

T.E.p’=O (1) 
where E = TS . RT 

.:,t ] 
0 -t3 t2 

3 0 -t1 

-t2 t1 0 

Equation (1) is a linear equation with unknowns: the elements of 
E. If we take at least eight such equations, we can almost always 
recover the motion parameters [18]. To increase the stability, we 
can take more than eight points and do least squares to minimize a 
quadratic of the form 

.r T.A . .r + min (2) 
where s  is a 9-D vector, where each element is an element of E (its 
columns, one on top of the other, form .r), and il is a matrix that 
depends on the various pairs of points pl, p’, . 

Least squares is the easiest method we can use, but it requires the 
variables (the elements of the vector s) to be independent. Here, this 
is not the case; the solution that least squares finds, without taking 
into consideration the dependency, does not represent a matrix E 
that is decomposable into TS and RT. Even if, from the solution 
that minimizes (2), we find a matrix E that is nearest to being 
decomposable, this might be far from minimizing (2) in the sense 
of finding R, T that do so. 

Another problem is the physical interpretation of what we mini- 
mize. Unless .r is decomposable to R, T, then there is no physical 
interpretation of the quantity we minimize. 

Therefore, two things need to be done: First, use constrained 
minimization for (2), and second, find what the quantity we minimize 
stands for. Finding the physical interpretation of the quantity we 
minimize will help develop the optimal estimator, and the constrained 
minimization will provide a good initial guess for it. Let us now 
introduce the error in correspondence in our calculations. 

A point PI moves to P2 with rigid motion P2 = R(Pl + T). The 
correspondence algorithm matches it incorrectly with P’2 = Pz + 11 
or P’z = R(Pl + T) + n, where n is the error vector. Proceeding 
as before, we finally get 

p;’ E.p’, = 1 or 

pT. E.p’, = [pl,T,n’l (3) 

where 

n’ = RTk. 

The left-hand side of (3) is what we minimize in (2). Therefore, this 
minimization process minimizes a function of the correspondence 

error. The right-hand side of (3) equals 

(pl x  T) . n’. (5) 

First notice that we minimize the component of the error that is 
parallel to pl x  T. The other component is irrelevant to the estimation 
of motion and affects only the estimation of the structure of each 
point; hence, depth estimation for each of these points is at the mercy 
of the error in the pair of its projections. Needless to say, trying to 
minimize both components of the error is impossible. This difficulty 
can be solved with a many-frame formulation of the problem [17]. 
Second, far-away points have less weight because, in (4), llP2 II is 
in the denominator. What we actually minimize is one component 
of the image of the noise vector. Both of the above are natural, and 
both of them are to be expected. 

One of the difficulties inherent in estimating the motion is related 
to the size of the object observed. When the object is both small and 
almost planar, then pure translation and pure rotation may create very 
similar flow patterns or correspondence pairs [l]. This phenomenon 
appears here as well but in a slightly worse form. In (5), the error 
is multiplied by the sine of the angle between pi and T. When the 
field of view is small, then the vectors p, of the points form a tight 
bundle. Then, a choice of T somewhere between them makes both 
the sine of the angle between T and the points very small. Since this 
sine is multiplied by the error, the result is a small number. If the 
noise is sufficiently large, then the solution of T is biased toward 
being pointed to the object. Part of the blame here goes to the sine 
that appears in (5). 

As a conclusion, we can say the following: 
l No matter how many points we use, we cannot reduce the error 

in structure estimation using two fiumes. This problem cannot 
be cured with two frames. 

l When the field of view is small and there is noise, the translation 
is biased toward the observed object. Ultimately, this means high 
error in the output because this estimator is biased. 

We now discuss the minimization, both unconstrained and con- 
strained, and then we discuss the optimal estimation. 

IV. A USEFUL RESULT 

We present a result related to the well-known algorithm by Tsai 
and Huang [18] and Longuet-Higgins [IO] that is going to be useful 
in the next section. 

Definition: We define the vector of a 3 x  3 matrix E to be V(E), 
which is a vector of dimension 9 whose elements are the same as the 
elements of the matrix E and ordered so that they are the columns 
of E one on top of the other. 

Tsai and Huang [18] developed an algorithm that finds T and R, 
given a matrix E for which there exists a vector T and a matrix R 
such that 

E = Ts . R= 

where 

They proved that there are two solutions, and the algorithm can find 
both. Furthermore, the algorithm is very stable in the presence of 
noise, partly making up for the extreme instability of the process of 
finding the matrix E. Overall, though, the algorithm behaved poorly 
due to the difficulties in finding E [Ml, and there is no solution when 
the points in the world lie on some critical surfaces [18], [6].’ Below, 

*In dealing with noise, this is important only when almost all 3-D points 
are on or close to a critical surface. 
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x= 

t3Tz - t2T3 
t1r3 - t3r1 

t2n - t1r2 

t3T5 - t2r6 

tlra - t3T7 = 

t2T7 - tlTs 

t3T8 - t2r9 

tlT9 - t3T7 

t2T7 - tlr8 

71 0 0 7.2 0 0 T3 0 0 

0 Tl 0 0 T2 0 0 T3 0 

0 0 Tl 0 0 T2 0 0 T3 

T4 0 0 Ts 0 0 T6 0 0 

0 T4 0 0 T5 0 0 T6 0 

0 0 T4 0 0 Tg 0 0 T,3 

T7 0 0 Ts 0 0 Tg 0 0 

0 T7 0 0 T8 0 0 Tg 0 

0 0 T7 0 0 T8 0 0 Tg 

961 

0 
--t3 

t2 

t3 

0 
-t1 
--t2 

t1 

0 

we rephrase the algorithm in our notation, 
T that their algorithm finds are such that 

and we prove that the R: 

IlV(E) - V(ilf)ll = min 

where Al = Ts . R”. 
Algorithm: Let E be a 3 x  3 matrix. We find T. R as follows: 
If the singular value decomposition (SVD) of E is 

then T is parallel to the first column 1-1 of L* and llT[l = Q$Q. 
Matrix Ts has two degenerate singular vectors and one parallel to 
C-1: Therefore, one of its possible SVD’s is 

0 
T.s = I7 [ 1 IITII r;*. 

IITII 

Then, R is 

where s  = det(I;) . det(I-) and sr = fl. 
Theorem: The R. T computed above satisfy ]jV( E) - V( .\I)ll = 

min, where Jf = Ts . RT. 
Proof See [15]. 

V. SOLVINGTHE CONSTRAINT MINIMIZATION PROBLEM 

The mathematical problem at hand is to find a 9-D vector .r such 
that 

x T .A.x + min 

and the matrix, whose vector is T, to be decomposable to R, T, as 
described above. The constraint is clearly nonlinear and very difficult 
to be written down analytically. We describe here two methods to treat 
the problem: One is a variation of Newton’s method, and the other 
is a decomposition of the problem into two parts, thus reducing the 
dimensionality. Both of them are efficient. 

3When two or more singular 
singular vectors are not uniquely 

values are equal, then the corresponding 
and are called degenerate. 

A. First Method 
We present the method along with a proof of convergence. Let 

.r = V(E) 

E=Ts.RT= [+ j, ;;I. [$ II; tk] 

[ 

f3T:! - f2T.3 f3Tg - f2Tg f3T8 - f2Tg 

= flT3 - f3Tl tlr8 - f3T7 flTg - f3T; . 

f2Tl - flr2 f2ri - flrj f2r.7 - tlr8 1 
Therefore .r is as defined at the top of this page, or .r = Rb .Tb, where 
Rb and Tb are the above matrix and vector, respectively. Tb depends 
on the three translation parameters. &, depends on the rotation matrix 
R, which in turn depends on the three Rodrigues parameters [2] 
br . bp, b3 of the rotation. Therefore, s  is a function of a 6-D vector 
C = [bl.b2.b3,tl,t2,t3]r. 

The Taylor series expansion of .r is 

x((+AC) = .~(C)+-~(C).I1C+O(~b~)+O(~b~)+...+O(~t~). 

Matrix *4( <) is easy to construct. It has, as columns, the derivatives 
of .r with respect to the elements of <. The derivatives with respect 
to tl. t2. t3 are obvious. The derivatives with respect to bl , b2, b3 are 
x, = $(f?b + f)B,(Rb + 1). Tb, i = 1.2.3, where the B,‘s are 

-0 
0 

0 
0 +1 

B1 = 0 +1 . 
0 +1 

-1 0 
-1 0 

-1 0 

This is similar for B2, BJ. 
The way to achieve convergence is to move in the column space 

of A(<) so that the quadratic is decreasing in value. This, in general, 
will lead to values of s  that do not satisfy the nonlinear condition. 
However, if I is the distance we moved in the column space of A(<), 
then the distance of the nearest vector z  that satisfies the nonlinear 
condition is of order O(j2). This is why we needed to prove that 
the Tsai-Huang algorithm finds the nearest vector. If we are not at a 
local extremum, the quadratic decreases by O(2) and then increases 
by O(Z2) and, for sufficiently small 1, decreases overall. It is easy to 
see that unless this process goes to a local extremum, it eventually 
converges to a minimum. 
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B. Second Method 
This is a method that involves gradient descent in a 3-D space. If 

there is a good guess for the solution, and in this case there is, then 
we need to move around only locally. We have 

-o- -0 0 o- 
-t3 0 0 -1 

t2 0 1 0 
t3 0 0 1 

Tb= 0 = 0 0 0 . T = Ii . T. 
-t1 -1 0 0 
-f2 0 -1 0 

t1 1 0 0 
_ 0 0 0 0 

Then, the quadratic takes the form 

X T.A.x=TT.IiT.Rb7.-4.Rb.Ii.T=TTArT (6) 

where A’ is a 3 x  3 matrix that depends only on the Rodrigues 
parameters of the rotation. 

The value of T that minimizes the quadratic is a vector parallel to 
the eigenvector of A’ that has the smallest eigenvalue. Then, the value 
of the quadratic is the smallest eigenvalue of il’. (There is a factor of 
two missing here; when ll.rll = 1, then the corresponding /Tll = $. 
When we minimize xT .il..r, we silently assume llsll = 1, and when 
we minimize TTd’T. l[Tll = 1. This causes no problem, however.) 

Now, the problem is really broken into two: computing the rotation 
parameters that minimize the smallest eigenvalue of the matrix ;I’ 
and minimizing a quadratic. The second is just an application of 
Rayleigh’s principle; therefore, there is an easy solution. For the first, 
it is easy to use a modified Newton’s method because we can derive 
the analytic expression for the derivative.‘Recall that the minimal 
value of (6) is the smallest eigenvalue of il’. The derivative of d’ 
with respect to the Rodrigues parameters of & is 

dA’ 1. IiT . RT 
db,=2 [ b . A. (Rb + 1) Bit& + 1) 

+(Rb+I)T.B,T(Rb+I)T.;l.Rb .zi. 
I 

This is an unnecessarily complicated expression and can be simplified 
as follows: Form the matrix A, = Rl . A . Rb, and fix the value of 
Rb at the current guess. To do gradient descent, we can perturb d, 
by pre and postmultiplying by the matrix R, (b’ 1. b12, b’s ), which is a 
function of b’, ‘s that now serve as unknowns. The initial guess for RP 
is the identity matrix (e.g., all the Rodrigues parameters bll. b12, b13 
are zero). The expression for the derivative is simplified because we 
take the derivative at the zero point of the parameters. Therefore, 
A’ is now a function of three new parameters that we can perturb 
around zero. Thus 

dA’ 
db’;=2 

1 IiT. btT. A, + A, . B, 
3 

. Ii. 

The derivative of the smallest eigenvalue with respect to the ith 
parameter is 

x(i) = ($T . !I& . c$ = 4 4T . liT . BT . A, . Ii. 4 , 

where C$ is the eigenvector of the smallest eigenvalue. Using the 
modified Newton’s method, we can find the minimum. This method 
results in an algorithm that has a quite large basin of attraction, and 
therefore, it works well if the initial guess is not that good. 

VI. OPTIMALITY 

Here, we are interested in optimal estimation techniques that lead 
to results that can be studied analytically. The maximum likelihood 
estimator is best from this point of view. Assuming a Gaussian 
distribution, it leads to a least-squares formulation on which there 
is a lot of published work. 

The maximum likelihood estimator is formulated as follows: 
Let f(pr ,pz; R, T) be the probability density that pl :p2 are a 
correspondence pair when R, T are the motion parameters. Then 

nf(PtlrPi2r&T) 

is the probability that { (pi1 ,pi2) I i = 1. . .} are the correspondence 
pairs. Therefore, if we find R, T that maximize this probability, we 
have found the most typical solution. 

Now, let pr be an image unit vector in the first frame and p2 in the 
second frame. If pl , p2 is a correspondence pair with R, T as motion 
parameters, then RTp2 should lie on the plane defined by T and pl . 
The error vector on the image has two orthogonal components that 
are assumed independent identically distributed. 

If p2 is corrupted by an error n’, its distance from the plane of 
T,m is 

[(PI x T).@P~] [pl,T.n’] _ (~1 x  T).n’ 6 
11~1 x TII 

=-- 
11~1 x TII llm x TII =llplxTli’ 

As we see, only the component parallel to the unit vector ,,i: z;,, 
affects the distance from the T,pl plane. (The direction of this unit 
vector does not make any difference to the probability distribution 
because n’ is isotropically distributed on the image.) Therefore 

L-1’ IITXPI II 
f(~1.~2: R. T) = QC- 2~ 

where o and u are constants and depend only on the noise distri- 
bution. 

By using the standard procedure for maximum likelihood, we find 
that we have to minimize the quantity 

CL 

2 

i IIT :tplill I 
(7) 

where i is the index for the different points on the image. In the 
previous paragraphs, we discussed the minimization of 

Cc? (8) 

or to be more precise and explicitly incorporate the restriction that 
IITII = 1 

Q$=&& 1 
and now, we see that the optimum has some “weight” factor of 
,,r Xi1i ,,T in the minimization function. 

This has two consequences: First, there is some weight in the 
equations different from 1. This has some small effect on the result. 
The second consequence is more important. Imagine the following 
situation: A small object on the z  axis translates parallel to the s  axis 
without rotation. Then the translation vector T that minimizes C E: 
in the presence of noise is parallel to the 2 axis because most of the 
pr ‘s of the object points are very close to the translation vector T. 
Therefore, (pl, p:!, T) is very close to zero no matter what the error is. 

This way, the solution tends to be parallel to the center of gravity of 
the p,l ‘s  when the noise level is rather high. This happens because we 
pick the eigenvector with the smallest eigenvalue, which minimizes 
(8) but not (7). 
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To incorporate the factor ,,TX~l;,,Z in the computation without 
increasing the complexity much, we approximate the factor with a 
uniform one on the object and try to minimize the function 

TTAIT 
IIT x  Cl* 

where C is the center of gravity of the points that constitute the 
object. This takes the form 

TT . A’ ’ T 
TT . C’ ’ T (9) 

where C’ = I - C. CT, C. CT is the outer product of C with itself, 
and C is a unit vector. This approximation gives very accurate results 
in the case of a small object (small viewing angle). There are more 
details in [16]. In the case of a larger viewing angle, one has to use 
one of the standard routines that minimize nonlinear functions. The 
problem with these is that one has to deal with each point in each 
iteration, which is expensive, compared with the methods discussed 
above that just construct a 9 x  9 matrix and iterate on that. 

A. Relation to Other Approaches 
One proposed approach for motion estimation by Prazdny [ 121 was 

based on the following observation: Since we know that the flow 
pattern of a pure translation is a set of lines converging to a point, 
we can test different rotation matrices with which to derotate until 
we find a flow pattern that looks like a pure translation. Prazdny, 
however, used an overly simplistic measure of similarity to the pure 
flow pattern. Here, we choose the sum of the squares of the distances 
of the unit vector T from the planes defined by ~1, pi. (pi is p2 
derotated and corrupted by noise.) 

In order to find this distance k, we find li such that T + k  ,,~~~11x”p”:, ,, 
is coplanar with ~1, p’*. We have 

0 = 
( 

I 
p1.i2.T + kll;; ; ;,zll 

> 

( 

I 
= h.~‘2.7-) + PLP’~~~~~;; “, g,:,, 

> 

= F+ llYl:P~,ll h~P’,.Pl x P2) = 6 + A.. IlPl x Y’*II 

Therefore, k  = &. 
Although minimization of k, as defined above, is intuitively a good 

idea, it is better once again to use a maximum likelihood argument. 
The variance of k  is approximately 

IIT x ~111~ - 
ai = l/p1 x p’*l)* n 

where fi is proportional to the variance of the error in the image. 
Proceeding as before, we find that the quantity we want to minimize 
is 

c  2 
IIT x mll* 

Not surprisingly, it is the same as before. 

VII. EXPERIMENTS 

We conducted several comparative experiments, testing both the 
improvement over the Tsai-Huang algorithm and the convergence 
of the algorithm to a global minimum with synthetic images. We 
used a three-stage procedure to converge to a global minimum. First, 
we used the Tsai-Huang, Longuet-Higgins algorithm to find a guess 
for the nonlinear subootimal orocedures (both subootimal orocedures 

62h4 
Error in the output 

Fig. 1. Response to noisy input for 10 points. 

Error in the output 

Fig. 2. Response to noisy input for 40 points. 

Fig. 3. Response to noisy input for 160 points. 

6.25&d 
Error in the output 

2 5643 

performed well; the first had faster convergence, and the second had 
a wider basin of attraction). This result was fed as a guess for the 
optimal estimator, which is a standard nonlinear minimization routine. 
In the diagrams, we plot the Tsai-Huang, Longuet-Higgins algorithm 
(the curve with the squares), the suboptimal one (which gives the 
same result as other algorithms using the same norm [7]), and the 
optimal one (with diamond and circle, respectively). The quantity we 
plot is error in input versus error in output. (see Figs. 1,2, and 3) 

The noise in the output of the algorithm was represented by three 
numbers: the angle between the two axes of rotation (actual and 
computed) (phi), the difference in the two rotation angles (theta), and 
the percent difference of the two translation directions (100 times the 
sine of their angle). The synthetic object was 30 units away and two 
units in diameter. 

The computation time was less than 1 s  for Tsai-Huang and for 
each iteration of the other algorithms on a Sun 31280. 
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VIII. CONCLUSIONS 

We have presented a method for computing structure from motion 
in an optimal way. Our contribution lies in showing that our formu- 
lation is provably optimal. In addition, we analyzed this nonlinear 
system in depth so that convergence is fast because we have to deal, 
for the most part, only once with each point. It has been demonstrated 
that we can almost always compute this optimal solution efficiently 
by providing means to compute successively better guesses to the 
nonlinear procedure that computes the optimal estimate. In addition, 
our formulation is a framework where past research efforts fit as 
special cases. 
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