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Multimoda l Estima tion  o f D iscontinuous Optica l 
F low Using Markov Random F ields 

Fabrice Heitz and  Patrick Bouthemy 

Abstract-The estimation of dense velocity fields from image 
sequences is basically an ill-posed problem, primarily because 
the data only partially constrain the solution. It is rendered 
especially difficult by the presence of motion boundaries and 
occlusion regions which are not taken into account by standard 
regularization approaches. In this paper, we present a multimodal 
approach to the problem of motion estimation in which the 
computation of visual motion is based on several complementary 
constraints. It is shown that multiple constraints can provide more 
accurate flow estimation in a wide range of circumstances. The 
theoretical framework relies on bayesian estimation associated 
with global statistical models, namely, Markov Random Fields. 
The constraints introduced here aim to address the following 
issues: optical flow estimation while preserving motion bound- 
aries, processing of occlusion regions, fusion between gradient 
and feature-based motion constraint equations. Deterministic 
relaxation algorithms are used to merge information and to 
provide a solution to the max imum a posteriori estimation of 
the unknown dense motion field. The algorithm is well suited 
to a multiresolution implementation which brings an appreciable 
speed-up as well as a significant improvement of estimation when 
large displacements are present in the scene. Experiments on 
synthetic and real world image sequences are reported. 

Index Terms-Visual motion analysis, discontinuities in optical 
flow, occlusion processing, multiple constraints, multiresolution 
analysis, MAP estimate, Markov Random Fields, deterministic 
relaxation. 

I. INTRODUCTION 

T HE recovery of visual motion from image sequences  has  
motivated number  of investigations in the last decade,  [2], 

[26]. The  optical flow field can be  def ined as  the distribution 
of 2D velocities of the br ightness patterns in the image plane. 
As optical flow is usually est imated using the spatiotemporal 
variations of the intensity function within the image sequence,  
its computed version only imperfectly accounts for the real 
underlying velocity field due  to the relative motion between 
the camera and  the objects in the scene. This problem has  
been  thoroughly addressed by  Verri and  Poggio, [34], who  
have  shown that the computed optical flow field is general ly 
different from the true 2-D projected motion field (projection 
on  the image plane of the 3D velocity field of a  moving scene).  
Nevertheless, the discrepancies between the two fields are 
usually not large, in particular in areas of noticeable intensity 
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gradient values, [34]. Thus optical flow conveys significant 
information about  the 3-D environment, including relative 
depth, surface orientation, structure and  motion of objects in 
space and  sensor  motion. Dense optical flow computat ion thus 
appears  directly relevant to numerous problems in dynamic 
scene analysis such as  moving object detection, mot ion-based 
segmentat ion, [l], [25], [35], qualitative kinematic labeling 
of moving objects in a  scene, [8], recovery of 3D motion 
and  structure, [l], [25] with applications to robot navigation, 
obstacle avoidance, [8] or image coding. 

It is well known that the estimation of dense  velocity fields, 
like many  other tasks in low-level vision, is an  il l-posed 
problem. This means  that the available data usually do  not 
sufficiently constrain the solution of the problem. Additional 
smoothness constraints on  the resulting motion fields therefore 
need  to be  introduced, [18], [27]. Unfortunately, the standard 
answers to the problem suffer from several shortcomings. 

Gradient-based local motion measurements are known to 
be  very sensitive to commonly encountered situations such 
as  regions of constant intensity, motion discontinuities or 
occlusions areas, [20]. Large displacements are also beyond  
the scope of those methods. The  need  for several information 
sources appears  clearly to cope with the variety of real-world 
images. The  usual smoothness constraint also has  adverse 
effects on  the estimated optical flow fields because it blurs 
the motion discontinuities. Among these different problems, 
the most difficult one  is certainly the processing of occlusions 
between different moving objects in a  scene. Occlusions 
generate discontinuities in the optical flow field and  give rise 
to regions in which no  valid motion information is available. 
The  usual computat ional approaches are not able to cope 
simultaneously with all these problems, because the constraints 
they introduce on  the desired motion field only imperfectly 
account  for the complexity of real-world scenes.  

In this paper,  we present a  multimodal approach to the 
problem of motion estimation. The  computat ion of apparent  
velocity fields is based  on  several complementary constraints. 
The  constraints introduced here aim at solving the different 
above-ment ioned issues: optical flow estimation while preserv- 
ing discontinuities, processing of occlusions and  introduction 
of additional information sources. Local  motion discontinuities 
are obtained as  a  by-product of the method, a long with 
information allowing the algorithm to distinguish occluding 
regions from occluded ones.  New constraints between motion 
discontinuities, intensity edges  and  velocity vectors are inves- 
tigated. For the local motion measurement,  two information 
sources are considered: a  gradient-based and  a  feature-based 
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motion constraint. In our  experiments, these two constraints 
are shown to be  complementary.  To  combine these constraints 
properly, the validity of each  constraint is locally tested using 
hypothesis tests. A given constraint contributes to the global 
estimation only if it has  been  acknowledged as valid. 

In our  approach,  the theoretical and  computat ional frame- 
work enabl ing a  cooperat ion between several sources of in- 
formation is based  on  bayesian estimation theory and  Markov 
Random Field (MRF) models. MRF models have  been  suc- 
cessfully introduced in several important low-level problems 
of static image processing such as  image restoration, [5], 
[14], image segmentat ion, [13], stereovision, [3], computed 
tomography,  and  surface reconstruction. They have  recently 
been  extended to image sequence analysis, for motion de-  
tection, [9], motion estimation, [15], [22] and  mot ion-based 
segmentat ion, [8], [25]. By defining a  coherent  mathematical 
f ramework for nonl inear global statistical image modeling, 
they lead to significant improvement with respect to local 
methods. Markov Random Fields also appear  to be  an  efficient 
and  powerful formalism for specifying spatial interactions 
between features of a  different nature, that is for combining 
information. MRF model ing allows to jointly handle problems 
of optical flow estimation and  issues of motion discontinuity 
and  occlusion processing. The  algorithm combines gradient- 
based  and  feature-based velocity measurements with ev idence 
on  occlusion areas in order to estimate dense  velocity and  
motion discontinuity maps.  

As far as  motion estimation is concerned,  Markov models 
were first used  by  Konrad and  Dubois, [21], to estimate 
discrete-valued velocity vector fields. In [19] Hutchinson et 
al. descr ibe an  analog and  binary resistive network model  
equivalent to a  Markov Random Field, to perform detection 
of motion edges  simultaneously with the estimation of the 
velocity field. A VLSI implementation is derived. Konrad et 
al., [22] and  the authors, [15] have  independent ly proposed 
to introduce binary edge  sites between velocity vectors to 
estimate discont inuous motion fields. A visual motion estima- 
tion algorithm, including multiple constraints has  also been  
presented by  Black and  Anandan in [6]. These constraints 
include brightness constancy, spatial and  temporal coherence.  
The  optical flow field is obtained by  minimizing a  nonconvex  
objective function, which can be  interpreted as  the energy 
of a  MRF model. Motion discontinuities are handled using 
weak continuity constraints enabl ing outlier rejection in the 
optimization scheme. 

Here, we propose new comprehensive MRF interaction 
models for optical flow estimation which differ from the work 
reported in [6], [15], [19], [22] on  the following points. 

. The  model  can  integrate different sources of motion mea-  
surements. It is illustrated here by  a  cooperat ion between 
gradient-based and  edge-based motion measurements,  but 
can  be  extended to a  cooperat ion with other techniques 
(correlation, similarity functions, etc.). 

l The model  properly copes with the problem of discontinu- 
ity processing in image sequences.  Motion discontinuities 
are modeled by  local binary edges  located midway be- 
tween velocity vectors, but an  additional feature of the 
model  allows us to take into account  whole regions of 

discontinuity and  not only the motion boundary  lines. 
These regions correspond to occlusion parts between 
objects undergoing different motion. This is a  key-point 
since in real world sequences,  taking into account  false 
information within an  occlusion region may lead to wrong 
velocity estimates and  have  an  adverse effect on  the rest 
of the velocity field, [2]. It is demonstrated in several 
examples that the only introduction of local binary motion 
edges  is not sufficient to properly handle discontinuities 
in a  moving scene. 

The  paper  is organized as  follows. In Section II, we present 
the two complementary constraint equations: a  standard 
gradient-based constraint [18] and  a  moving edge  constraint, 
der ived from a  method presented in [7]. Section III is 
concerned with the integration of the different constraints 
within a  global bayesian decision framework, based  on  
MRF models. The  maximum a  posteriori (MAF’) criterion 
is adopted.  Qualitative as  well as  quantitative experiments 
on  synthetic and  real world images are reported in Section 
IV. A multiresolution version for our  MRF-based relaxation 
algorithm is descr ibed in Section V and  Section VI contains 
concluding remarks. 

II. MULTIPLE MOTION CONSTRAINTS 

The multimodal motion estimation scheme relies on  two 
motion measurement  constraint equat ions that will be  def ined 
hereafter. This differs from the so-called “multiconstraint” 
methods which rather consider several inputs to the same 
equation, [24], whereas our  multimodal approach is based  
on  a  cooperat ion between different complementary motion 
constraints. This is a  key-point, since problems often arise 
in the “multiinput” methods because the used  inputs (multi- 
spectral data for instance) do  not supply real complementary 
information, leading to il l-conditioned systems. The  first con- 
straint is the standard motion constraint equat ion proposed by 
Horn and  Schunck [18], and  the second one  is related to a  
moving edge  estimation method recently descr ibed in [7]. The  
reliability of these two different motion constraints is d iscussed 
and  validation factors are associated to both equations, using 
hypothesis testing techniques. 

A. A Gradient-based Motion Constraint 

Let f(x, y, t) denote the observed intensity function, where 
(2, y) designate the 2-D spatial image coordinates and  t the 
time axis. Let 3, =  (u,, ZI,)~, (2~~ = $(s),zJ, =  3(s)) 
denote the velocity vector at point s =  (2, y, t). The  motion 
constraint equat ion is given by, [18]: 

Vf(s).G + h(s) =  0, (1) 

where o’f is the spatial image gradient and  ft s tands for g  
and  denotes the temporal intensity gradient. 

The  gradient-based motion constraint relies on  the funda- 
mental assumption that the br ightness of a  moving point is in- 
variant between time t and  t+dt. This equat ion shows that only 
the velocity component  parallel to the spatial image gradient 
can  in general  be  recovered through local computat ion. This 
is referred to as  the aperture problem. In order to derive the 
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Fig. 1. motion estimation on  the square sequence.  (a)-(b) Original sequence 
(100 x 100): the square undergoes a  translation of (2,2) pixels in the 
image plane. Gaussian white noise (with variance 4.) has been added to 
the background. A linearly varying intensity profile has been def ined inside 
the square. (c) Velocity estimation using a  standard smoothing method. (d) 
Estimation of normal velocities using the moving edge estimator described 
in [7]. 

complete velocity vector, it is usually assumed that points in 
the ne ighborhood of a  given point move with similar velocity. 
Local  optimization approaches [20], assume constant velocity 
in the ne ighborhood whereas globaloptimizationtechniques 
rely on  a  smoothness assumption of the velocity variations 
over the whole image, [18]. 

The  limitations of the early gradient-based techniques ap-  
pear  clearly and  can be  stated as  follows. Relation (1) no  longer 
exists in occluded regions, or on  motion discontinuities and  
also on  intensity discontinuities (on sharp edges,  or in highly 
textured regions for example). Large displacements are also 
beyond  the scope of these techniques for the same reason. 
The  gradient-based schemes are known to be  sensitive to 
ambiguous areas such as  uniform regions or regions exhibiting 
a  linear variation of the intensity in one  direction only. Besides, 
in real world images, the velocity fields are neither locally 
constant nor  globally smooth: they are rather piece - wise 
cont inuous. In practice, however,  the existing schemes show 
(limited) robustness to these different sources of error, mainly 
because they minimize some error function with respect to the 
underlying imperfect model. 

The  performances of a  standard smoothing method based  
on  the image flow constraint equat ion (1) are illustrated on  
a  synthetic image sequence (Fig. l(a)-(b)). The  sequence 
exhibits strong intensity discontinuities inside the square,  a long 
with occlusion areas corresponding to parts of the background 
covered or uncovered by  the moving pattern. The  motion 
discontinuities lie on  the square boundaries.  Inside the square 
the grey value function remains constant a long the vertical 
direction and  shows a  linear variation along the horizontal one.  
The  standard smoothing method, is close to the one  developed 
by  Horn and  Schunck [18] and  has  been  derived from our 
multimodal motion estimator by  retaining only the image flow 
constraint and  discarding motion discontinuities and  occlusion 
areas (see Section III). It assumes global smoothness of the 
flow field. As expected, the resulting velocity field (Fig. l(c)) 
is blurred across the motion discontinuities. Moreover,  poor  
quality estimates can be  observed both on  the central bright 
intensity lines and  in the occlusion areas. These limitations are 
observed for all s tandard smoothing methods. 

Different solutions have  been  suggested to cope with some 
of these problems. The  problem of discontinuities in the mo- 
tion field is considered by  Nagel  and  Enkelmann, [27], who  use 
an  oriented smoothness constraint which prevents smoothing 
of the velocity field in directions where significant variations 
of grey values are detected. Schunck,  [29], investigates clus- 

tering of local gradient-based constraints in order to obtain 
homogeneous  motion measurements.  The  detection of motion 
discontinuities has  been  considered in several recent papers  
as  a  fundamental  issue in motion estimation. Iwo approaches 
have  been  studied: the first one  detects discontinuities after 
comput ing the optical flow, 1321,  the second addresses the 
detection problem prior to or simultaneously with the motion 
field estimation, [15], [19], [22], [23], [32]. Techniques of the 
second class give better results because the prior knowledge 
of motion boundar ies helps to prevent velocity smoothing 
through regions undergoing different movements.  Wohn  and  
Waxman,  [35] study the global analytic structure of a  2-D 
motion field and  propose a  segmentat ion method based  on  
the recovery of boundar ies between regions of analycity in 
the optical flow field. Experiments on  simulated flow fields 
are presented. Peleg et al., [28] descr ibe a  multiresolution 
approach to extract small moving objects from a  static back- 
ground when  camera motion is present. The  depth map  of the 
scene is assumed to be  known. In [6] motion discontinuities are 
handled implicitly by  using outlier rejection techniques in the 
estimation of the velocity vector from a  small neighborhood.  
Outlier rejection enables to eliminate measurements which are 
inconsistent with the local motion, in particular when  a  motion 
boundary  is present in the neighborhood.  Singh [31] has  
developed an  estimation theoretic f ramework associated with 
a  correlat ion-based measurement  approach which is shown 
to perform better than conventional smoothing methods at 
motion boundar ies on  texture-free images. Besides, Spoerri 
et al., [32], Little et al., [23] and  Black et al., [6] have  
proposed several occlusion detection techniques based  on  the 
analysis of the behavior of matching algorithms in the vicinity 
of motion boundaries.  Multiple motion analysis, of interest 
in situations involving for instance semi-transparencies, may 
also be  used to detect motion boundaries,  when  two different 
motions are observed locally. Contributions in this field are 
recent, [4], [30] and  techniques include separat ion in the space-  
time f requency domain, [30] and  iterative compensat ion of 
multiple movements,  [4]. Approaches based  on  MRF [19], 
[22] have  been  ment ioned above.  

B. An Edge-Based Motion Constraint 

W e  consider here a  second complementary motion constraint 
which is feature-based. The  underlying estimation method has  
been  descr ibed in [7]. It will be  called in the subsequent  the 
“moving edge  (ME) estimator” and  is based  on  spatio-temporal 
surface model ing and  hypothesis testing techniques. It simul- 
taneously yields from some local processing the following 
output concerning moving intensity edges:  edge  position d, 
edge  orientation 0  and  velocity vector perpendicular to the 

-I edge  W d  . 
To  this end,  a  spatiotemporal edge  in an  image sequence 

is modeled as  a  spatio-temporal surface patch in the (x, y, t) 
space.  W ithin an  elementary volume ?r in the (2, y, t) space,  
two local configurations may be  encountered:  either there 
is no  spatiotemporal edge  inside x or there is one.  In this 
case, a  surface patch denoted by  S((a) subdivides x into two 
subvolumes ?rr and  7rs. Two compet ing hypotheses Ha and  
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1 region A / region A 1 region A / region B 1 

Fig. 2. Location of moving edges with respect to pixels for a  vertical edge. 
(the case of horizontal edges is similar). a) moving edge within a  region b) 
moving edge between two regions 

H1 are associated to these configurations, [7] and  formalized 
by  the corresponding likelihood functions. Intensities within 
7r are assumed to be  independent  Gaussian random variables 
whose mean  depends  on  the considered hypothesis. 

A log-likelihood ratio test is des igned for a  predef ined 
set of values of the parameters @  describing surface 5’. 
Planar patches are considered. Computat ion mainly reduces 
to local convolut ion operations. Edge location, orientation and  
displacement are directly related to the optimal parameters 4  
of the determined planar surface patch if present. To  decide 
whether a  ME is present or not, the log-likelihood ratio 
is compared to a  threshold X (we refer the reader to [7] 
for more details). The  local motion measurement  is reliable, 
even  on  motion discontinuities and  for important displacement 
magnitudes. Due  to the aperture effect only the perpendicular 
component  of the displacement can be  derived. 

In the ME estimator version we use, edge  sites d  can be 
considered as  located midway between pixel sites (Fig. 2). To  
save computat ion time a  spatial intensity edge  detection, [lo] 
is performed to determine edge  locations. The  ME estimator 
is only appl ied at these locations to estimate vector wd . 

The  velocity component  perpendicular to the edge  at lo- 

-I 
+ wd II w’dl II= 0, 

where w: designates vectors w’, or L&, and  & is the 
unit vector normal to the intensity edge.  The  moving edge  
constraint states that the projection of the unknown velocity 
w’, on  the unit vector perpendicular to the moving edge  is 
equal  to the norm of the perpendicular component  W d  . 

If the detected moving intensity edge  is related to an  
occlusion between two different regions, the constraint only 
holds for the velocity vector belonging to the same region as  
the occluding edge.  In the case of Fig. 2(b) for instance, it 
turns out that the constraint only holds for vector w’,, and  not 
for vector W;. In order to propagate the constraint properly, it 
is necessary to determine to which region the occluding edge  
belongs. Information allowing the algorithm to differentiate 
between the occluding region and  the occluded one  is therefore 
required. This information will be  def ined later in the global 
markovian model ing (Section III-A). It will be  considered 
as  an  additional, unknown feature in the model, and  will be  
estimated in parallel with velocities and  motion discontinuities. 

Fig. 3. Conf idence factor on  the square sequence (for the original sequence 
see Fig. 1). (a) Moving edge constraint: log-likelihood surface for the ME 
estimator. (b) Moving edge constraint: Binary confidence factor trne (d) (black 
points correspond to F,,,(d) =  1). (c) Image flow constraint: Conf idence 
factor Fs (black points correspond to Fs =  0). 

Fig. l(d) presents the result of the moving edge  estimator 
on  the square sequence.  One  can point out that unlike the 
gradient-based approach (Fig. l(c)) the moving edge  estimator 
yields good  measurements on  motion and  intensity disconti- 
nuities (however motion information remains obviously sparse 
and  only perpendicular velocity components  are recovered).  

C. Reliability of Motion Constraints 

The  accuracy and  the reliability of the partial measurements 
associated to motion constraints (1) and  (2) depend  on  the 
adequacy  between the observed variations of the intensity 
pattern and  the spatiotemporal changes  the underlying model  
accounts for. For the different existing motion constraint 
equations, little attention has  been  given to getting reliability 
measurements (apart from [7], [20]). In the following we 
define validation factors associated to the constraints we have  
introduced. They will be  used  to withdraw the contribution of 
invalid local constraints from the global estimation. 
A Validation Factor for the Moving Edge Constraint: As far 
as  the moving edge  constraint is concerned,  the ME estimator 
provides a  natural way to define a  validation factor. Let us  
recall that the determination of a  moving edge  at location d  
leads to compar ison of the log-likelihood ratio associated with 
the two compet ing hypotheses to a  threshold (see Section II-B 
or [7]). The  optimal value of the log-likelihood ratio Ld  at 
location d, with respect to surface parameters 6  can be  used 
to measure the reliability of the corresponding moving edge.  

Fig. 3(a) shows the log-likelihood surface in the case of the 
moving square.  The  likelihood surface indicates high reliability 
in the vicinity of edge  location. W e  introduce following binary- 
valued validation factor Erne : 

Ime(d) =  1, if&(&, to, &, 22)  >  x1, 

Ime = 0, else, (3) 

where X1 is a  threshold. The  validation factor then gives the 
location of the most reliable moving edges  (Fig. 3(b)). 
A Validation Factor for the Image Flow Constraint: Basically 
the image flow constraint (1) holds as  long as  the local inten- 
sity variations and  the observed temporal changes  are related. 
This property refers to the local spatiotemporal linearity and  
derivability of the intensity function. 

To  determine whether the observed variations preserve the 
spatiotemporal relation, it is shown in [16] that it is sufficient 
in practice to test if the first order spatial derivatives of the 
intensity function at point s remain the same between time t 
and  t +  1. The  hypothesis test considered here relies on  a  local 
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l inear model  for intensity function f(z, y, t) at point s =  (2, y) 
in two successive images (t and  t + 1) of the sequence:  

f(a: +  sz, y + sy, t) =  f(z, y, t) +  at62 + bt6y + n1(4) 
f(z +  6x, Y + 6% t +  1) =  f(z, y, t +  1) +  at+1Sz 

+ h+1SY + %, (5) 

where nl and  n2  are assumed to be  independent  zero-mean 
Gaussian noises with the same var iance c2. 

The  reliability of the constraint equat ion is tested by  consid- 
ering two compet ing hypotheses denoted Ho and  HO, where 

Ho : {ut =  at+1 and  bt =  b,+l} in W(s) 
- 

HO : {at #  at+1 orb #  bt+l} in W(s). (6) 

W(s) designates a  local window centered at point s, in which 
the parameters are estimated. The  likelihood functions under  
each  hypothesis are computed,  assuming gaussian noises with 
same var iances for n1  and  n2  and  the log-likelihood ratio is 
compared to a  threshold. As in the case of the ME constraint, 
we define a  binary validation factor for the motion constraint 
at site 3: 

t&l~= 1, if HO is selected (7) 
I&J) = 0, if HO is rejected. 

Fig. 3(c) shows the sites corresponding to &(s) =  0  
issued from test (7) on  the square sequence.  Let us  notice 
that these regions are closely related to the occlusion areas 
(near the square boundar ies)  and  to spatial discontinuities in 
the intensity pattern (along the two central lines). In these 
different areas the image flow constraint is indeed invalid: in 
the following, & will help us  to disregard these wrong local 
constraints. 

As intuitively expected compar ing Fig. 3(b) and  Fig. 3(c), 
one  can see that the two motion constraints are complementary 
in this example. Experiments with other sequences  have  given 
similar results: the gradient-based constraint is invalid in 
regions of “spatiotemporal discontinuity” (within occlusions, 
on  sharp intensity edges  and  in highly textured regions) 
whereas the ME method is reliable at those locations (excepted 
in textured regions). This experimental statement justifies the 
use  of these two particular motion constraints. 

III. A GLOBAL BAYESIAN FORMULATION 
FOR MULTIMODAL MOTION ESTIMATION 

Global bayesian estimation defines a  coherent  mathematical 
f ramework to extract labels describing motion from image 
sequences.  The  estimation process can be  outl ined as  follows. 

l One or more special ized low-level modules extract from 
the image sequence features (gradients, moving edges,  
etc.) that will be  used  as  observat ions in the estimation 
process. 

l Observat ions are combined within local photometric and  
structural models with a  priori generic knowledge on  
the expected result, in order to derive estimates of the 
unknown labels. 

(Obsenrations) Motion Labels 

Fig. 4. The mult imodal interaction model:  interactions between motion labels 
and  observations. Thanks to the MRF model,  the motion discontinuities are 
estimated jointly with the optical flow field. The motion measurement  relies 
on  two complementary motion constraints: gradient and  feature-based. The 
reliability of local motion constraints is tested and they contribute to the global 
estimation only if they are valid. The estimation of motion discontinuities is 
supported by intensity edges. Geometrical constraints are also def ined on  the 
desired discontinuity configurations. 

The spatial interactions between observat ion fields and  
motion labels are specif ied using Markov random field (MRF) 
models. The  random field models are employed to provide 
constraints on  the solution and  to fuse information. 

In the MRF model  des igned here, local motion disconti- 
nuities are simultaneously estimated with the velocity field 
and  multiple local constraints contribute to the estimation of 
those fields. Intensity edges  are used  as  additional ev idence to 
support  the estimation of motion boundar ies (Fig. 4). 

A. Observat ions and  Labels Support ing Motion Information 

In the estimation process, information about  motion is 
summarized in the following labels. 

l Vectorial labels 3,, (~2~ E W2)  corresponding to the 
velocity field w’ = {3,, s E S} where 5’ denotes the set 
of pixel sites in the image plane. A local velocity vector 
is thus associated to every point s in the image plane. 

l A set of discrete labels y =  {yd, d  E D} describing local 
motion discontinuities. D denotes the set of edge  sites 
located midway between the pixel sites. There are three 
possible states for motion discontinuities: yd  = 0,l or 
-1. 
yd  = fl (resp. Td  = 0  ) means  that a  motion dis- 
continuity (resp. no  motion discontinuity) is present at 
location d. In case that Yd = fl the sign of +j’d  codes the 
relative position of the occluding surface with respect to 
the motion discontinuity, (see Fig. 5). ^/d =  +l (resp. 
“/d =  -1) means  that for a  vertical discontinuity the 
occluding region is on  the r ight-hand side (resp. on  the 



1222 IEEE TRANSACTIONS ON PAmERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 12, DECEMBER 1993 

1 region 1  / region 2 1 region 1 I region 2 1 

Fig. 5. The sign of label Y,j defines the region to which the occluding edge 
belongs (case of a  vertical edge) (a) Case Yd =  -1: the occluding edge 
belongs to region 1  (w’dl and  3, are consistent). (b) Case Yd =  +1: the 
occluding edge belongs to region 2  (L&l and  & are consistent). 

left-hand side). A similar code  is used  for horizontal 
discontinuities. This three state edge  description is used  
to propagate the moving edge  constraint to the proper 
region (see Section II-B), but can  also be  considered as  a  
useful by-product of the estimation scheme. 

Observat ions correspond to the output of four independent  
modules. 

l A first module comput ing the spatial and  temporal deriva- 
tives Df =  {o’f(s), g(s),s E S} of the intensity 
function f at every vector site s. 

l The moving edge  estimation module descr ibed in Sec- 
tion II-B, which yields displacement information about  
intensity edges  located on  grid D (only the displacements 
perpendicular to the edges  are determined). The  set of 
sites d  E D, for which a  moving edge  exists, will be  de-  
noted D,,. The  corresponding local motion measurement  
set is denoted &- =  {wd -‘,d E D,,}. 

l The validation factors def ined in Section II-C, & = 
{&ds),s E S), Es(s) E I&l) and  he  = {5me(4,d E 
D} , &(d) E (0, l}. Observat ions Es state, at every 
pixel location s, whether the image flow constraint is 
reliable or not (the same holds for Erne at edge  locations 
d  for the moving edge  constraint). 

l A spatial intensity edge  detector der ived from Canny’s 
criterion proposed by Deriche, [lo], provides a  binary 
information about  intensity discontinuities on  sites d  E D. 
n  =  {r)d, d  E D} designates the binary map  output 
of the intensity edge  detector (rod = 1  if an  intensity 
edge  is detected). Following [12] intensity edges  will be  
used  as  partial ev idence support ing the state of motion 
discontinuities Ed at the same locations. 

As explained in Section II-B, the output of the intensity 
edge  detector is also used  in the moving edge  estimator to 
reduce the global computat ion cost. The  spatial locations of 
the moving edges  w’ thus coincide with the locations of the 
intensity edges  used to support  motion boundary  detection. 

B. Global Bayesian Decision and  the MAP Criterion 
The  maximum a  posteriori (MAR) criterion has  been  widely 

used  in the context of global bayesian decision, [9], [14], [22], 
[25]. To  derive the unknown label fields (3,~) from the ob-  
served fields (Df, WI, &, cme, Q), the following optimization 
problem has  to be  solved: 

where p(2)f, WI, &, Eme, ~,3, y) is the joint distribution of 
the observed and  h idden variables. 

The  distribution of observat ions and  motion labels are 
specif ied using a  coupled Markov Random Field (MRF) model  
whose distribution is written in the following form ([14]): 

is called the energy function of the MRF. The  lowest energies 
correspond to the most likely configurations. Such a  formula- 
tion is possible since we assume that the interactions between 
the different variables remain local, with respect to a  chosen 
ne ighborhood system v (see [14] for a  complete theory of 
MRF). C denotes the set of cl iques associated to ne ighborhood 
system V. Cliques c are subsets of sites which are mutual 
neighbors. The  potential function V, is locally def ined on  
clique c and  expresses the local interactions between the 
different variables of the clique. The  form of the potential 
functions is of course problem dependent .  The  functions that 
we have  def ined for the motion estimation scheme integrate the 
different model ing aspects already discussed: regularization of 
the velocity field a long with preservat ion of motion bound-  
aries, multimodal cooperat ion between different measurement  
sources, discarding of invalid local motion constraints (in 
particular in the occlusion regions), processing of motion 
discontinuities... W ithin this framework, finding the maximum 
a  posteriori estimate amounts  to minimization of the global 
energy function U. 

The  ne ighborhood system Y is def ined on  sets 5’ and  D 
as explained in Fig. 6(a). Interactions between observations, 
velocities, and  motion discontinuities are supported by  mixed 
cliques, whereas edge  cl iques support  the geometr ic propert ies 
of motion discontinuities (Fig. 6(b)). 

Interactions between variables are modeled through the 
following decomposit ion of the global energy function: 

Each term is decomposed into local potential functions def ined 
on  the different cl iques (for the notations see Fig. 5  and  Fig. 
6) in the equat ions at the bottom of the next page  where Qcy3 
is given by  

sign(ll 3, -3, 11 -o/3)(" 
3, -3t 11 -cx3)2 

a32 
, 

the o.i,i =  l,.** ,4, are model  parameters and  the Ci, i =  
l,**. ,8 denote the different cl ique types depicted in Fig. 6(b). 
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pqyq~ 

a : MRF neighborhood system 

El 01° 
c5 

b : cliques associated to 
the MRF neighborhood 

Fig. 6. MRF neighborhood system including vector and  edge sites. 

In this decomposit ion, each  term expresses a  different 
interaction model, each  of which contributes to the global 
estimation process. The  different terms can be  interpreted as  
follows. 

Energies Ul and  Uz (Motion Measurement  Constraints): 
Energies VI and  U2 are related to the motion constraint 
equat ions (1) and  (2) upon  which the motion estimation is 
based.  Those energy functions take into account  the conf idence 
factors d iscussed in Section II-C. For sites s belonging to 
smooth spatiotemporal regions (Es(s) =  l), the image flow 
constraint equat ion is appl ied (energy VI), whereas in sites 
where Eme(s) =  1, (i.e. presence of a  moving edge),  the 
moving edge  constraint is considered (energy U2). 

If the moving edge  at site d  corresponds to a  motion 
discontinuity l~dl =  1, the moving edge  constraint is only 
propagated to the proper region depending on  the sign of Yd. 
For instance for a  vertical motion boundary  (see Fig. 5) when  

“/d = 1, ;(+dl - Yd + 2) = 0 and +(+dj + Td + 2) = 1; 
hence,  the moving edge  constraint is only propagated to the 
vector Gt belonging to the r ight-hand side region (Fig. 5). 
When  Td  = 0, i.e., when  there is no  motion discontinuity at 
site d, the moving edge  constraint is propagated to the regions 
on  both sides. 

Conversely, when  the velocities are given, two configura- 
tions may be  encountered.  

l The measured orthogonal component  w>’ is exactly 
consistent with the neighbor ing velocities w’, and  W;, that 

+I iszt.&-Wd =w’,. & 
+I 

-wd = 0. In this case, 
energy us  has  no  effect on  the choice of y,j. 

l A discrepancy exists between w>l and  its neighbor 
vectors. In this case, energy Uz favors either value Td  = 
-1 or Y,j =  fl according to the lowest local energy.  For 
a  vertical discontinuity for instance, if the perpendicular 
component  w>l is consistent with vector 3, (Fig. 5), the 
value -1 is ass igned to Yd. This means  that the occluding 
surface is on  the left-hand side of the boundary  in this 
case. The  occluding region is the one  containing the 
velocity vector (Gs or &) the most consistent with the 

+I observed component  W d  . 
Let us  point out that energy function U2 does  not decide 

between states Td  = 0  and  lTd[ =  1, i.e. whether a  motion 
boundary  has  to be  introduced or not. Energy Uz only makes 
a  selection among  States Yd = 1  and  Yd = -1, that is, assigns 
an  existing motion boundary  to the region which it be longs 
to. The  decision for the placement of a  motion boundary  at a  
given location is inferred from energy term Us, based  on  the 
variations in the estimated velocity field. 

Energy U3 (Velocity Field Smoothing While Preserving Dis- 
continuities): Interactions between velocities and  motion dis- 
continuities are supported by  mixed cl iques (s, t, d). The  
chosen potential function smooths out the motion field using 
terms of the form 11  3, - L& I(, corresponding to first order 
derivatives (second order terms were also used,  but appeared 
more sensitive to noise). Velocity smoothing is inhibited when  
a  motion boundary  is present ( lYd[ =  1). Conversely when  

+I 

c 
wd 

a2 ~- 
Ime(d>(G. ,I w’dl ,I 11 w’dl ib2;(-hdl - ^ld + 2) 

s~S,d~D,,,(s,d)E{C3}u(c4) 
-I 

+ (112 c 
wd ~- 

&r&Wt~ll w’dl lI 11 w’dl ~~)2~(-t~dl + ?‘d + 2) 

t~S,d~D,,,(t,d)E{C,}u{C2} 

U3(w’,Y) = c @cI,(II G - w’t ll)(l - hi) 
(S,t,d)E{Cs)uIGl 

u4(%7) = a4 x(1 - ~d)h’di 
dED 

U5(r) = c K(r), 

~~{~7}u{~,} 
(10) 
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the vector field shows important variations in edge  vicinity 
(I] w’, - Gt ]I> as), the placement of a  motion discontinuity 
at that site is favored (]rd] =  1  ). 

Energy U4 (Interactions Between Motion Discontinuities and  
Intensity Edges):  Intensity edges  are used  as  partial ev idence 
for the determination of motion boundaries.  In real world 
scenes,  a  3-D configuration resulting in a  motion disconti- 
nuity general ly also contributes to an  intensity edge.  Hence,  
following [12], we assume that motion discontinuities appear  
with a  rather low probability when  there is no  intensity 
edge  at the same location. This is specif ied using energy 
function U4 with a  large positive value for parameter (-114. U4 
prevents configurations in which ]Yd] =  1  and  vd = 0  from 
appearing. This can be  a  limitation in situations in which the 
motion boundar ies are not supported by  underlying intensity 
edges  (two random dot patterns, one  occluding the other, for 
instance). Such (rather uncommon)  situations are beyond  the 
scope of the method. 

Energy U5 (Edge Geometry):  The  edge  cl iques considered 
in U5 help to d iscourage undesirable geometr ic configurations 
(edge ending, isolated or double edges  [14]). Two main 
methods for specifying the geometrical propert ies of edges  
in MRF have  been  proposed,  [13,14]. The  first approach,  [14], 
consists of assigning different weights to the different possible 
local edge  configurations def ined on  the geometrical cliques. 
A large weighting on  a  configuration tends to d iscourage this 
configuration, [14]. The  main drawback of this method is to 
introduce an  important number  of additional parameters in the 
model, corresponding to the different weights. The  tuning or 
learning of those parameters is general ly not an  easy task. As 
we are concerned with a  three state discontinuity description 
and  with the chosen neighborhoods,  the number  of local 
configurations is as  large as  162.  Therefore we have  resorted 
to an  alternate approach recently descr ibed in [13]. This other 
solution consists of introducing forbidden edge  configurations. 
Each forbidden local configuration (edge endings, isolated or 
double edges,  impossible configurations of occluding/occluded 
regions), weighs an  elementary weight of 1  in energy Us. The  
following constrained optimization problem is then solved: 

min (VI +  U2 + U3 + U4) +  asU5 with (~5 = +oo. (11) t3,71 

A constrained optimization may be  obtained in practice by  
letting ~5  /” +ce (see [ 131  for convergence’ theorems). 

C. Energy Minimization Using Deterministic Relaxation 
Finding the MAP estimate of the fields 3  and  y is 

equivalent to minimizing the global energy function 
W fd ,&7,&=9?,4~). This global energy function 
depends  both upon  cont inuous and  discrete valued variables 
( 3  and  y ). To  reach configurations close to the global 
minimum of an  energy function, stochastic optimization 
methods for cont inuous and  discrete variables have  been  
studied [ 141.  Stochastic optimization algorithms are very 
time consuming, especially for cont inuous variables. Most 
of the recent papers  resort to deterministic schemes which 
are more appeal ing, as  far as  computat ion time is concerned.  
Deterministic relaxation converges to a  local minimum of 

the energy function, but this loss of optimality may be  
compensated for by  an  appropriate initial guess.  Besides, in 
many  cases the suboptimal solution can be  considered as  
a  relevant solution. In our  experiments, we use a  modif ied 
version of Iterated Condit ional Modes  [5], a  deterministic 
alternative to simulated anneal ing. In this relaxation scheme 
the final result depends  on  initialization and  site visiting 
order. Satisfactory results are obtained by  initializing vectors 
with 0’ and  motion boundar ies with the intensity edges  map  
qd. This suggests that for the optimization problem at hand,  
the initial guess  for the velocity field is not so  critical. 

In the Iterated Condit ional Modes  relaxation method, the 
global energy function (10) is minimized by  sequential ly 
updat ing the different sites of the velocity and  discontinuity 
fields. The  site visiting order is raster scan, with reverse 
order after every full sweep of the image. Vector sites and  
discontinuity sites are visited in turn. At a  given location, 
the label value assigned to a  site is the one  maximizing 
the decrease of the global energy function. Thanks to the 
decomposit ion of the MRF into local interaction terms, it 
turns out that updat ing a  site leads to the minimization of 
a  local energy function that depends  on  the visited site and  
its neighbors, [ 141.  

The  terms of the local energies are der ived from the global 
one  (lo), apart  from one  except ion concerning the smoothing 
term @oI,(]] w’, - w> ]I), which has  been  replaced by  the 
simplified quadrat ic form crs’ ]I w’, - w< ]I2 in the local energy 
function E(w’,) used  to update w’, (the expression of the local 
energy functions as  well as  other implementation details may 
be  found in [16]). Using such a  simplified form makes the 
computat ion of the minimum of E(3,) easier since it becomes 
quadrat ic with respect to 3,. No visible degradat ion on  the 
final velocity fields was noticed when  this simplification was 
used.  

The  other model  parameters are either set to a  fixed value, 
whatever the sequence at hand,  or computed from the other 
parameters. W e  have  taken or =  1, (~2 = 1, a4  = &. Indeed, 
the only parameters that need  to be  tuned are (11s’ and  as  
which weight the interactions between smoothing of velocities 
and  introduction of motion discontinuities. as’ and  ~3  have  
been  chosen by trial and  error for the different sequences  and  
may change  from one  sequence to another.  Large values for 
parameter ~13’ will favor the smoothing of the velocity field, 
hence  this parameter should be  increased for noisy images. 
Typically na’ = 200  was used for synthetic sequences  whereas 
r~a’ was set to 1000  for real world sequences.  Parameter 
cys acts like a  threshold for detecting motion boundaries:  
small values for os  makes the process sensitive to small 
variations in the vector field and  thus increases the number  of 
detected motion boundar ies whereas large values only retain 
the most relevant discontinuities. The  final results were not 
very sensitive to the value of the ~3’ smoothing parameter:  a  
large range of values gave  similar results. They appear  more 
sensitive to parameter ~3  which has  to be  tuned accurately 
in order to get the relevant motion boundar ies (like with a  
standard edge  detector). Of course, an  efficient data driven 
parameter identification method would be  of great interest 
here. 
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Fig. 7. Velocity fields and  motion discontinuities obtained on  the square 
sequence. (a) Optical flow estimation using a  standard gradient-based smooth- 
ing method. (b) Optical flow and motion discontinuities obtained with our 
algorithm but without the moving edge constraint (02 =  0). (c) Optical flow 
and motion discontinuities obtained by the complete mult imodal estimation 
scheme. (d) Differentiation of occluding surface and occluded surface. Each 
symbolic vector points to the interior of the occluding region. 

In our  experiments, between 200  and  400  iterations (i.e. 
full scans of the image) are usually necessary to lead to 
configurations close to convergence.  This number  of iterations 
seems unusual ly large for a  deterministic scheme. This is due  
to the fact that the velocity vectors are cont inuous-valued: 
in discrete problems, convergence is general ly faster (within 
10  iterations for binary-valued fields, for example). The  num- 
ber  of iterations can be  reduced by using a  multiresolution 
implementation and  other extensions descr ibed in Section V. 

D. Comments about  the Different Elements of the Model  

The  contributions of the different elements of the multi- 
modal  model  are highlighted on  the “square sequence” (Fig. 
l(a)-(b)). Let us  recall that, for this sequence,  the grey value 
function remains constant in the square along the vertical 
direction and  shows a  linear variation along the horizontal 
one.  Two bright horizontal lines (creating sharp intensity 
discontinuities) have  been  added  inside the square (Fig. l(a)). 
This sequence is typical of indoor scenes with texture-free 
objects which are difficult to handle using standard smoothing 
algorithms. 

Fig. 7(a) shows again the flow measurements obtained by  
considering only the image flow constraint (taking into account  
neither the moving edge  constraint, nor  motion discontinuities 
nor  conf idence factors). This field is of the kind of what can  
be  obtained with the standard Horn and  Schunck’s algorithm, 
[18]: the vector field is strongly corrupted near  occlusions and  
intensity discontinuities and  it appears  oversmoothed.  

Fig. 7(b) presents the result of multimodal estimation when  
motion discontinuities and  the conf idence factor & are used  
in the estimation process, but the moving edge  constraint 
is discarded. The  conf idence factor & (see Fig. 3c) vali- 
dates locally the image flow constraint (1). This constraint 
is invalidated on  the boundar ies of the square and  on  the 
two horizontal lines inside the square.  Although the motion 
boundar ies are precisely detected in this case, one  can verify 
that only the horizontal component  of the velocity field can 
be  recovered using the image flow constraint, since the grey 
value function in the square remains constant a long the vertical 
direction. More information is required to recover the second 
component  of velocity. This information can be  obtained, from 
the two horizontal lines inside the square and  from the square 
boundar ies via the moving edge  constraint. 

Fig. 7(c) shows the result considering the full multimodal 
model  obtained by  adding the moving edge  constraint and  

conf idence factors trne (see Fig. 3(b)). The  moving edge  
constraint (2) yields reliable measurements for the points cor- 
responding to intensity discontinuities, i.e. the boundar ies of 
the square and  the two horizontal lines inside the square.  The  
full model  (Fig. 7(c)) actually captures the motion boundar ies 
and  excellent accuracy is reached,  even  in the vicinity of 
discontinuities as  can be  seen.  In this example the estimation 
process propagates the information gained from the moving 
edge  constraint from the two central intensity lines and  the 
square boundar ies to the rest of the field. The  cooperat ion 
between the moving edge  constraint and  the image flow 
constraint allows recovery of the horizontal and  vertical com- 
ponents  of the velocities. The  sign of Td  (Fig. 5) expresses, for 
every motion discontinuity, the relative position of occluding 
and  occluded surfaces (Fig. 7(d)). Each symbolic dash  in Fig. 
7(d) points to the interior of the occluding region. The  result 
is the right one,  except  for one  point on  the boundary.  

This example suggests that, when  the intensity profile shows 
limited variations, (creating ambiguous motion information in 
some areas) a  cooperat ion between different motion cues is 
necessary to recover a  complete motion vector. The  usefulness 
of determining motion discontinuities appears  also clearly. 
Finally, the conf idence factors, associated to each  motion 
constraint avoid to introduce inconsistent constraints, when  
the underlying models are broken. 

The  relative importance of the different elements of the 
model  will typically depend  on  the class of images which 
are considered. In the case of natural outdoor images, with 
texture, the image flow constraint might be  sufficient to recover 
significant motion information. The  motion discontinuities and  
validation factor should of course be  used to avoid smoothing 
near  motion boundar ies and  to prevent a  misuse of the image 
flow constraint in occlusion areas for instance. In the case of 
indoor scenes,  with little texture, the contribution of moving 
edges  can become relevant to recover the motion field in 
ambiguous regions. 

IV. EXPERIMENTS 

Experiments have  been  carried out on  several synthetic and  
real world sequences,  involving qualitative and  quantitative 
evaluation of the performance of the method. Indeed, we 
are usually able to judge the qualitative correctness of the 
estimated velocity fields, especially in the vicinity of motion 
discontinuities and  occlusion areas. 

When  the true motion is known (this is the case in par- 
ticular for synthetic sequences)  a  quantitative evaluation of 
the correctness of the field is possible by  comput ing the 
difference between the estimated field and  the true one  and  
taking some norm of the difference field. Error histograms are 
also presented. 

When  the true motion is unknown (which is usually the 
case), one  can consider frame-to-frame registration and  com- 
pute some norm on  the error between the motion compensated 
frame and  the original one’. The  root mean  square error 
(RMSE) of the resulting difference image is computed in this 

1 More precisely, frame at t ime t is reconstructed from frame at t ime t +  1  
and  from the estimated velocity field between t and  t +  1  
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case. It should however  be  noticed that RMSE only gives a  
very limited insight in the real correctness of a  computed field. 
A perfect intensity image reconstruction does  not necessari ly 
mean  that the computed motion field is physically consistent. 
Pel-recursive methods, though providing quite “surprising” 
motion fields, yet perform good  motion compensat ion.  Hence 
RMSE is not really an  adequate  evaluation of motion field 
correctness (but it remains the only available when  the ground-  
truth is unknown !). For instance, in constant grey level 
areas RMSE does  not depend  on  the computed velocity field. 
Moreover,  a  small error in the vicinity of a  sharp intensity 
edge  will have  a  worse effect on  RMSE than a  large error in 
an  area of slowly varying intensity. W e  have  also noticed that, 
even  if the frame is compensated by  the true displacement 
field, the RMSE can remain arbitrary large if large occlusion 
areas exist in the scene. Occlusion areas can of course not be  
compensated properly by  a  frame-to-frame registration, since 
points belonging to them have  no  cor respondence in the other 
frame. 

W e  have  focused here on  five sequences  corresponding to 
different classes of images and  movements:  indoor scenes 
and  outdoor scenes,  situations comprising static camera and  
moving objects and  situations involving both camera and  
object motions. These sequences  have  been  chosen to illustrate 
different contributions of the multimodal estimation process: 
preservat ion of motion boundaries,  multimodal cooperat ion 
between different measurement  sources, processing of occlu- 
sions... 

A. Experiments on  Synthetic Sequences 

The  contributions of the different model ing parts are best 
highlighted on  a  synthetic sequence,  in which motion can be  
controlled. The  moving square sequence example (Fig. 7) has  
already shown that, even  for the very ambiguous intensity pat- 
tern considered in that case, the multimodal motion estimation 
scheme recovers an  optical flow field close to the true motion. 

The  errors between the true motion and  the estimated fields 
presented in Fig. 7(a), (b), and  (c) have  been  evaluated using 
the following norms: Lr =  & CsES (( Gestim(s) -C&,,,(S) 11  

and  62 = [& CsES II Gstim(s) -G-,,(s) II21 ‘, where N 
is the number  of image sites. 

The  histogram of the local errors II L&,~~~(s) - C&,,,(S) 11, 
s E S, which gives information on  the distribution of errors 
has  also been  computed (Fig. 8). 

Quantitative evaluations of the results are presented in Table 
I. They  make apparent  the large errors in the flow field when  
certain elements of the multimodal scheme are discarded. The  
multimodal method divides the L2  error by  4, with respect to 
the standard smoothing method. 

The  error histograms (Fig. 8) show that, in the case of stan- 
dard smoothing (Fig. 7(a)), the errors are large and  spread over 
a  large range of values. For the full multimodal method (Fig. 
7(c)) the error is strongly reduced and  mainly concentrates 
near  zero. 

W e  present a  second synthetic sequence called moving 
disks, including two disks undergoing different motions and  
occluding each  other (Fig. 9). The  foreground disk moves 

14 
t 

standard smoothing - 

12  

10  

0.2 0.4 0.6 0.8 1  1.2 1.4 1.6 1.8 
error 

14  h full mult imodal model  - 
i 

12  - 

10  - 

8- 

6- 

4- 

2- 

olh:-c:. @  1  I I I 
0  0.2 0.4 0.6 0.8 1  1.2 1.4 1.6 1.8 

error 

Fig. 8. Histogram of the error vector field on  the square sequence.  

TABLE I 
ERRORS ON THE SQUARE SEQUENCE. THE ORIGINAL SEQUENCE IS PRESENTED IN 

FIG. 1. THE DIFFERENT METHODS ARE DESCRIBED IN SECTION III-D 

METHOD Ll error 

standard smoothing (see Fig. 7a) 1.01 
without moving edge constraint (see Fig. 7b) 0.35 
mult imodal model  (see Fig. 7c) 0.13 

L2  error 

1.42 
0.83 
0.37 

parallel to the axis of view, hence  a  dilatation is observed.  This 
disk partially occludes another disk undergoing a  translation of 
3fi pixels toward the lower right corner. White noise (with 
var iance 4.) has  been  added  to the background.  

The  validation factors concerning the gradient-based motion 
constraint are der ived from hypothesis test (7). Sites with 
validation factors equal  to 0  are shown in Fig. 9(b). One  can 
notice that they are closely related to the different occlusion 
areas in the scene: part of the background covered by  the two 
moving objects and  part corresponding to the overlapping of 
the two disks. 

Fig. 9(c) depicts both the intensity edges  detected on  the 
original grey-level image and  the perpendicular velocity com- 
ponents  obtained from the ME estimator (see Section II-B). 
The  intensity edges  are somewhat  noisy, due  to white noise 
added  to the background.  The  velocity components  in Fig. 9c  
measure,  as  expected, the displacement of the moving disks 
perpendicularly to the intensity edges.  

The  fields computed after the two-step relaxation process 
are drawn in Fig. 9(d) and  9(e). 183  iterations were nec- 

- 



HEITZ AND BOUTHEMY: MULTIMODAL ESTIMATION OF DISCONTINUOUS OPTICAL FLOW USING MARKOV RANDOM FIELDS 1227 

Fig. 9. Motion estimation on  the moving disks sequence. (a) First frame 
from the original sequence (256 x 256). The foreground disk undergoes a  
dilatation, the background disk a  translation. White noise has been added to the 
background. (b) Conf idence factor for the gradient-based equation. The black 
areas corresponding to Fs(s) =  0  show the different occlusions in the scene. 
(c) Intensity edges detected on  the first frame by Deriche’s edge detector, 
[lo]. The perpendicular velocity displacements computed by the moving edge 
estimator, have been super imposed on  the intensity edges. (d) Motion bound- 
aries estimated by the mult imodal scheme (corresponding to ]-rd( .s) 1  =  1). (e) 
Result ing optical flow field (183 iterations, (~a’ =  200. as =  0.1) (f) In this 
figure, each dash, computed from the sign of Ed, points to the inner part of 
the occluding region. The disks are occluding the background. The occluded 
regions correspond to the background and the overlapping area between the 
two moving disks. (g) Upper right part of Fig. 9(e)) (100 x 100). (h) Result 
of Horn and Schunck’s method. This field can be  compared with the result 
of the mult imodal scheme (Fig. 9(g)). (i) Result obtained without taking the 
occlusions into account but handl ing the motion boundaries. This shows that 
a  major part of the estimation error comes from the occlusion areas. 

essary here to reach convergence (model parameters: ~a’ = 
200,  ~3  = 0.1). Fig. 9(d) presents the motion discontinuities 
corresponding to l+yd] =  1. The  proposed Markov interaction 
model  filters the noisy detect ions on  the background and  only 
captures the true motion boundaries.  Moreover,  the sign of 
the motion discontinuity labels Yd allows us to differentiate 
the occluding regions from the occluded ones.  In Fig. 9(f), 
each  dash  points to the inner part of the occluding region. The  
performance of the method in the overlapping area between 
the two moving objects should be  noticed: the dashes  point to 
the true occluding disk. The  result is the right one,  except  for 
two small parts of the boundary  of the second disk which in 
fact slide parallel to themselves. There the local information 
remains ambiguous and  it is not possible to differentiate the 
occluding region from the occluded one.  Fig. 9(e) contains 
the estimated motion field: the accuracy is very satisfactory, 
when  compared with the theoretical values, especially near  
the motion boundaries.  

Again, these results have  been  compared to standard 
smoothing obtained by  discarding motion discontinuities, 
occlusion areas and  the moving edge  constraint. Details of 
the fields computed using different methods appear  in Fig. 

TABLE II 
ERRORS ON THE MOVING DISKS SEQUENCE. 

METHOD Ll error L2  error 

standard smoothing 0.58 1.04 
mult imodal model  0.26 0.48 

9(g), (h), and  (i). Fig. 9(g) corresponds to the upper  right 
part of the field estimated by  our  multimodal method (Fig. 
9(e)). Fig. 9(h) presents the results of the standard smoothing 
method. As expected, the resulting motion field is blurred 
across the motion discontinuities. However  introducing motion 
discontinuities without processing occlusions is not sufficient, 
as  shown in Fig. 9(i). The  field in Fig. 9(i) is computed while 
handl ing local motion boundaries,  but without considering 
the invalid sites of Fig. 9(b). Let us  recall that these sites 
correspond to the occlusion areas. As a  result, the final field is 
also very corrupted in this region. By compar ing Fig. 9(h) and  
(i) one  can conclude here that the major error source comes 
from the occlusion area rather than from an  oversmoothing of 
the velocity field. This demonstrates that a  specific processing 
of regions containing invalid observat ions is a  real contribution 
of the multimodal scheme. Error statistics have  been  computed 
in this case for s tandard smoothing and  multimodal estimation 
( II). The  multimodal method brings significant improvement 
in field accuracy: a  factor of 2  is obtained in this case with 
respect to standard smoothing. 

B. Experiments on  Real World Sequences 
Several real-world sequences  have  been  processed,  which 

can be  related to different contexts: traffic scene, TV se- 
quences,  etc. Quantitative results are presented (other experi- 
ments on  real-world sequences  may be  found in [16]). 

A first sequence called interview consists of a  TV sequence:  
the woman on  the right moves up  and  the camera follows her 
motion (Fig. 10). 

A second sequence houses  has  been  acquired by  panning 
an  urban scene. Prominent grey level features appear  on  the 
houses  along with quite uniform regions (Fig. 11). 

The  results presented here are computed from two succes- 
sive frames out of the original sequences.  

As far as  the interview sequence is concerned,  motion 
boundar ies are closely related to the woman’s movement  
(compare Fig. 10(b) with Fig. 10(c)). The  estimated motion 
field accurately reproduces the visual motion in the back- 
ground due  to the camera panning. The  complex motion 
of the woman moving up  (Fig. 10(d)) is recovered with 
good  accuracy, especially near  motion boundaries.  It can  be  
compared to the field computed by  the standard smoothing 
method, Fig. 10(f). The  oversmoothing is very perceptible in 
this last case. The  root mean  square error are respectively 
9.12 (multimodal scheme) and  9.37 (standard smoothing). The  
difference between the two methods seems small because the 
standard smoothing method does  a  good  job in this example 
nearly everywhere,  but in the motion boundary  areas whose 
size is negligible compared to the image size. Again, one  must 
make use of this global quality measure with caution; it cannot  
account  for local artefacts which nevertheless are detrimental. 
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Fig. 10. Mult imodal motion estimation: Inrerview sequence (by courtesy of BBC-UK). (a) First frame of the original sequence 
(134 x 168): the woman at the right moves up  and the camera follows her motion. (b) Intensity edges extracted from Fig. 10(a). 
(c) Motion boundaries estimated by the mult imodal estimation scheme (400 iterations,03 =  1000.. ng  =  0.15). (d) Associated 
optical flow estimation (horizontally and  vertically subsampled by 3). (e) Detail of the optical flow field of Fig. 10(d) showing 
the woman’s head. (f) Result of standard smoothing on  the same detail as in Fig. 10(e). The smoothing of the optical flow 
field across the discontinuities is visible. 

The sequence houses (Fig. 11)  was chosen to show the 
contribution of the moving edge  constraint, when  there are 
many  regions of uniform intensity in the image. This is the 
case in the almost uniform areas of the house  roofs and  walls 
in Fig. 11(a). Fig. 11(b) shows moving edges  detected by  the 
algorithm descr ibed in [7]. Fig. 11(c) and  11(d) present the 
resulting velocity field computed using two different methods. 
The  first one  only makes use  of the gradient-based constraint, 
the second one  includes both the gradient-based and  the 
moving edge  constraint. A low value was chosen here for 
the smoothing parameter cr$ (CX$ = 10)  in order to emphasize 
the differences between the two versions. The  improvement 
due  to the multimodal cooperat ion scheme is visible (Fig. 
11(d)). The  visual motion corresponding to a  translation in 
the image plane is better est imated in the vicinity of moving 
edges  in Fig. lld than in Fig. llc. The  image flow equat ion 
here does  not bring sufficient local information: the use  of an  
additional constraint significantly improves the result. As far 
as  the frame-to-frame registration is concerned,  the root mean  

square of the error image is 14.0 in the first case and  9.4 in 
the second one.  

V. MULTIRESOLUTION MOTION ANALYSIS 

As explained in Section II-A, large displacements are gen-  
erally not reachable using gradient-based motion estimation 
methods. This also concerns our  multimodal scheme, which 
makes use  of the gradient-based constraint. As soon as  the 
displacements become large, the conf idence factor associated 
to the gradient-based measurements decreases very quickly. 
As a  consequence,  a  large part of the gradient-based measure-  
ments do  not take part to the estimation of the final velocity 
field and  in many  cases there is not enough  information 
available to get reasonable results. Besides, iterative relaxation 
schemes are very slow to propagate velocity information into 
image areas with almost homogeneous  or linearly sloping 
grey value distribution, [ll]. A standard solution to these 
problems is to use  a  multiresolution image analysis, [3], [4], 
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Fig. 11. Multimodal motion estimation: houses. (a) First frame of the sequence (170 x 170) .(b) Perpendicular velocity components 
estimated on the intensity edges. (c) Gradient-based only optical flow estimation (400 iterations, oa’ = 10.. na = 1.). (d) Multimodal 
optical flow estimation (horizontally and vertically subsampled by 7) (same parameter values as in Fig. 11 (c)). 

[ 111, [22], [33]. The large displacement vectors are determined 
at lower resolutions, where the interactions between spatial 
and temporal derivatives are maintained. The multimodal 
estimation scheme, leading to a standard relaxation algorithm, 
is naturally well suited to multiresolution processing. 

Multigrid techniques (usual in numerical analysis) have 
been adapted to visual motion computation by Terzopoulos, 
[33] and Enkelmann, [ 111. Multiresolution methods have been 
proposed for MRF-based relaxation algorithms by Barnard, 
[3] for stereo matching and Konrad ef al., [22] for motion 
estimation. 

The implemented multiresolution algorithm consists of a 
coarse-to-fine strategy, starting from the lowest resolution 
and propagating the estimates from the coarse scales to the 
finer ones. A gaussian image pyramid is built up using low- 
pass filtering and subsampling by a factor of 2 the original 
images of the sequence. The optical flow at resolution level 
k  is denoted (3”. Three levels of resolution are used in our 
experiments (/c = 0, 1,2). The multiresolution algorithm can 
be described as follows : 

1) Estimation of the optical flow at the lowest resolution 
level (lc = 2) using the original multimodal scheme. 

2) Repetition and bilinear interpolation of the vectors from 
the coarse level k  to the finer level k  - 1. The inter- 

polation takes into account the location of the motion 
boundaries. The interpolated field is denoted w’t-l. 

+ k-l 
3) Estimation of an incremental optical flow field dw at 

level Ic - 1 introducing a modified version of the image 
flow equation, [ll] in the global energy function: 

-k-l 

-k-l 

, t + At) - f(s, t) = 0 

The relaxation is performed until convergence at that 
level (the convergence criterion is the same as in the 
single resolution case). The final optical flow field at 

-k-l 
level ,r~ - 1 is: GkP1 = w’iU1 + dw . The motion 
boundaries are estimated using the same energy function 
as in the single resolution method. 

4) If the current level is 0, stop; else lc := Ic - 1, goto 2. 
In the experiments carried out, the same parameters values 

are used for the potential functions at each level of the image 
pyramid. 

The contribution of the multiresolution relaxation method 
is illustrated here on one real-world sequence: a TV sequence 
called Mobi comprising large displacements, several different 
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Fig. 12. Multiresolution estimation: Mobi  sequence (by courtesy of CCE’IT-Rennes). (a) First frame of the original sequence (512 X 
512): the scene is composed of a  rolling ball, a  moving toy-train and  a  calendar undergoing a  vertical translation. The camera motion 
corresponds to a  panning of the scene. (b) Optical flow estimation with the original single resolution scheme (horizontally and  vertically 
subsampled by 10). (c) Optical flow estimation with the multiresolution method (horizontally and  vertically subsampled by 10). 

TABLE III 
NUMBER OF ITERATIONS IN THE SINGLE AND 

MULTIRESOLUTION SCHEME (MOBI SEQUENCE).  

Level Iteration No Equ. Iter. 

Multiresolution 0  43  56  
1  37  
2  59  

Monoresolut ion 0  111  111 

Equ. Iter.: Computat ional equivalent of one  complete sweep through the 
image at the finest resolution. 

moving objects and  involving camera motion. The  scene is 
composed of a  rolling ball, a  moving toy-train and  a  calendar 
undergoing a  vertical translation (Fig. 12(a)). The  camera 
motion corresponds to a  panning of the scene, which yields an  
additional horizontal translation component  in the optical flow. 

For the “Mob?  sequence,  due  to large displacements a long 
with important uniform areas (on the calendar and  on  the 
wallpaper for instance) and  sharp edges,  the spatial and  
temporal derivatives interact on  a  very short range in that case. 
Therefore, the final optical flow field computed by  the original 

single resolution scheme is not satisfactory (see Fig. 12(b)). 
The  estimates del ivered by  the multiresolution algorithm, with 
three resolution levels, are presented in Fig. 12(c). Visually 
the optical flow recovered in the multiresolution case is closer 
to the real underlying motion (see for example the apparent  
diagonal translation on  the calendar). Table III shows the 
number  of iterations required at each  resolution level to reach 
convergence.  The  total iteration number  in the multiresolution 
case corresponds to an  equivalent number  of 56  iterations 
at full resolution. This is half that of the single resolution 
algorithm which requires 111  iterations to converge to a  
result of lower quality. The  improvement in frame-to-frame 
registration is highly significant here: RMSE is 27.8 for single 
resolution, 11.8 for multiresolution processing. Multiresolution 
processing brings a  significant improvement in the quality of 
the estimated optical flow fields as  well as  an  appreciable 
speed-up of the algorithm. 

A second possible extension of the proposed scheme is 
related to the processing of multiple frames. Intrinsically, the 
method only considers two successive frames of the sequence.  
There are no  connect ions between the motion estimates de-  
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r ived at different times. However,  the velocities usually vary 
smoothly a long a  sequence;  hence,  the estimated velocities at 
time t can  be  used to support  the estimation at time t +  dt. 
Such an  extension is descr ibed in [16]. 

VI. CONCLUDING REMARKS 

W e  have presented a  general  algorithm for optical flow 
estimation which is able to jointly handle discontinuities and  
occlusions in the motion field. It can  be  interpreted as  a  
general ized regularization approach to the il l-posed problem 
of optical flow computat ion. The  method has  been  called 
multimodal in that it integrates several complementary con- 
straints on  the desired solution. Statistical models express 
the interactions between the different low-level image en- 
tities: velocity vectors, motion boundaries,  occluding and  
occluded surfaces, intensity edges  and  the spatio-temporal 
variations of the br ightness pattern. The  motion measurements 
are based  on  two complementary constraints: gradient-based 
and  feature-based. The  algorithm requires the tuning of only 
two main parameters which balance the smoothing of the 
velocity field and  the sensitivity of the motion boundary  
detection. A multiresolution implementation of this algorithm 
has  been  described, which appears  very efficient for the 
measurement  of large displacements. 

Experiments have  been  carried out on  a  large number  
of real-world sequences:  outdoor and  indoor scenes imaged 
by a  moving camera with several moving objects and  large 
displacements. One  key feature of the descr ibed scheme is its 
ability to handle properly occlusion areas. Indeed, in image 
sequences,  discontinuities are not only local but exist on  large 
areas corresponding to occluded surfaces. This problem has  
been  addressed here by  testing directly the validity of the 
underlying motion measurement  equations. W e  think this is 
an  efficient way to cope with the general  occlusion prob- 
lem. The  experimental results on  synthetic sequences  clearly 
demonstrate the advantages of this approach.  W e  think that 
the multimodal estimation algorithm should be  considered as  
a  step toward a  comprehensive multimodal motion estimation 
scheme. Such a  scheme would enable velocity estimation in 
very general  situations: for textured outdoor scenes as  well 
as  for structured man-made environments with long-range or 
short-range motion. 

Yet, a  perfect detection of motion boundar ies remains dif- 
ficult: for instance the extracted motion boundar ies are some- 
times locally broken. This is mainly due  to two factors: the 
quality of intensity edges  used as  partial support  for estimating 
motion boundar ies and  the use  of a  deterministic optimization 
algorithm which yields suboptimal motion edge  configura- 
tions. However,  the statistical f ramework descr ibed here seems 
flexible enough  to allow several important extensions. For 
instance, in the present scheme, only local motion boundar ies 
are determined. An extension toward a  region-based motion 
segmentat ion algorithm would be  of interest in the context 
of dynamic scene analysis. A partition of a  sequence into its 
constituent moving objects indeed defines a  first key-step in 
many  dynamic scene analysis problems. Such an  extension 
can be  found in [8]. 

Another straightforward addit ion could be  to introduce in 
the multimodal cooperat ion process other local motion mea-  
surements resulting from similarity functions, token tracking 
or grey-value corners matching, for instance. 

Besides, a  significant contribution to MRF model ing would 
be  the development of a  consistent and  tractable theoretical 
f ramework for multiresolution MRF-based image analysis. A 
recent contribution to this problem may be  found in [17]. 

The  last point is the temporal stability of the extracted 
motion cues (motion boundar ies or regions). In the algorithm 
descr ibed here, there is no  a priori model ing of the connect ions 
which naturally exist between estimates obtained at different 
times. It would be  of interest to introduce also a  control on  
the temporal dimension, in order for example to filter and  
to track motion cues along the sequence.  A class of models 
involving temporal ne ighborhoods has  already been  introduced 
in motion detection [9], motion segmentat ion, [25] and  in 
motion measurement,  [6]. They  appear  promising as  far as  
the processing of long sequences  is concerned.  
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