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Representing Moving Images with Layers 
John Y. A. Wang and Edward H. Adelson, Member, IEEE 

A b s h c f -  We describe a system for representing moving im- 
ages with sets of overlapping layers. Each layer contains an 
intensity map that defines the additive values of each pixel, 
along with an alpha map that serves as a mask indicating the 
transparency. The layers are ordered in depth and they occlude 
each other in accord with the rules of compositing. Velocity maps 
define how the layers are to be warped over time. The layered 
representation is more flexible than standard image transforms 
and can capture many important properties of natural image 
sequences. We describe some methods for decomposing image 
sequences into layers using motion analysis, and we discuss how 
the representation may be used for image coding and other 
applications. 

I. INTRODUCTION 

N image coding system involves three parts: the encoder, A the representation, and the decoder. The representation 
is the central determinant of the overall structure of the 
coding system. The most popular image coding systems today 
are based on “low-level’’ image processing concepts such as 
DCT’s, subbands, etc. It may ultimately be possible to encode 
images using “high-level” machine vision concepts such as 
3-D object recognition, but it will be many years before such 
techniques can be applied to arbitrary images. We believe that 
a fruitful domain for new image coding lies in “mid-level” 
techniques, which involve concepts such as segmentation, 
surfaces, depth, occlusion, and coherent motion. We describe 
one such representation based on “layers” and show how i t  
may be applied to the coding of video sequences. 

Consider the language used by a traditional cel animator. 
First a background is painted and then a series of images 
are painted on sheets of clear celluloid (the “cels”). As a 
cel is moved over the background it  occludes and reveals 
different background regions. A similar representation is used 
in computer graphics where a set of images can be composited 
with the aid of “alpha channels” that serve as masks to indicate 
the transparency and opacity of the overlying layers. 

In traditional cel animation one is restricted to rigid motions 
of the backgrounds and the cels. In a digital system, however, it 
is easy to use more complex motions such as affine transforma- 
tions, which include all combinations of translation, rotation, 
dilation, and shear. Such representations will be successful 
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Moving hand Background 
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Fig. I .  The objects involved in a hypothetical scene of a moving hand: (a) 
the hand, which undergoes a simple motion; (b) the background, which is 
translating down and to the left: (c) the observed image sequence. 

insofar as the image model offers an adequate description of 
the motions found in the original sequence. 

Fig. 1 illustrates the concept. Fig. l(a) shows an image 
sequence of a waving hand moving against a moving back- 
ground, shown in Fig. l(b). Suppose that both the hand and the 
background execute simple motions as shown. The resultant 
image sequence is shown in Fig. I(c). 

Given this sequence, we wish to invert the process by 
which it  was generated. Thus we would like to decompose the 
sequence into a set of layers which can be composited so as 
to generate the original sequence. Since the world consists of 
stable objects undergoing smooth motions, our decomposition 
should also contain stable objects undergoing smooth motions. 

In the representation that we use, following Adelson [ 11, 
each layer contains three different maps: (1) the intensity map, 
(often called a “texture map” in computer graphics); ( 2 )  the 
alpha map, which defines the opacity or transparency of the 
layer at each point; and (3) the velocity map, which describes 
how the map should be warped over time. In addition, the 
layers are assumed to be ordered in depth. 

Fig. 2 shows the layered decomposition of the hand se- 
quence. The hand and background layers are shown in Figs. 
2(a) and 2(b), respectively. The resynthesized sequence is 
shown in Fig. 2(c). 

Let us note that traditional motion analysis methods fall 
short of what is needed. Optic flow techniques typically model 
the world as a 2-D rubber sheet that is distorted over time. 
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Fig. 2. The desired decomposition of the hand sequence into layers. (a) The 
background layer. The intensity map corresponds to the checkerboard pattern; 
the alpha map is unity everywhere (since the background is assumed to be 
opaque); the velocity map is a constant. (b) The hand layer. The alpha map is 
unity where the hand is present and zero where the hand is absent; the velocity 
map is smoothly varying. (c) The resynthesized image sequence based on the 
layers. 

However, when one object moves in front of another, as 
moving objects generally do, the rubber sheet model fails. 
Image information appears and disappears at the occlusion 
boundaries and the optic flow algorithm has no way to 
represent this fact. Therefore such algorithms tend to give 
extremely bad motion estimates near boundaries. 

In many image coding systems the motion model is even 
more primitive. A fixed array of blocks is assumed to translate 
rigidly from frame to frame. The model cannot account for 
motions other than translations, nor can it deal with occlusion 
boundaries. 

The layered representation that we propose is also an 
imperfect model of the world but it is able to cope with a wider 
variety of phenomena than the traditional representations. The 
approach may be categorized with object-based methods [l 11, 
r151. 

11. THE LAYERED REPRESENTATION 
As discussed above, a layer contains a set of maps spec- 

ifying its intensity, opacity, and motion. Other maps can be 
defined as well, but these ones are crucial. 

In order to deal with transparency, motion blur, optical blur, 
shadows, etc., it is useful to allow the alpha channel to take on 

Fig. 3. 
“cmp” generates the complement of alpha, (1  - a) .  

A flow chart for compositing a series of layers. The box labeled 

any value between 0 and 1. A flow chart for the compositing 
process is shown in Fig. 3. Each layer occludes the one beneath 
it, according to the equation 

Il(z,Y) = -73o(z1y)(1- al(z,Y)) + -731(z7y)a1(z,y) (1) 

where a1 is the alpha channel of layer El and Eo is the 
background layer. Any number of stages can be cascaded, 
allowing for any number of layers. 

For dealing with image sequences, we allow a velocity 
map to operate on the layers over time. It is as if the cel 
animator were allowed to apply simple distortions to his cels. 
The intensity map and the alpha map are warped together so 
that they stay registered. Since the layered model may not 
adequately capture all of the image change in each layer, we 
also allow for a “delta map,” which serves as an error signal 
to update the intensity map over time. The resulting system is 
shown in Fig. 4. Only one full stage is shown, but an unlimited 
series of such stages may be cascaded. 

Once we are given a description in terms of layers, it is 
straightforward to generate the image sequence. The difficult 
part is determining the layered representation given the input 
sequence. In other words, synthesis is easy but analysis is hard. 
The representation is nonunique: there will be many different 
descriptions that lead to the same synthesized image sequence. 
Indeed it is always possible to represent an image sequence 
with a single layer, where the delta map does all the work of 
explaining the change over time. As our expertise in midlevel 
vision improves we can achieve better representations that 
capture more of the underlying structure of the scene. Thus, 
a layered representation can serve to specify the decoding 
process, while the encoding process remains open to further 
improvement by individual users. 

We will describe some analysis techniques that we have 
applied to a set of standard video sequences. In our present 
implementations we have simplified the representation in 
several ways. The alpha channels are binary, i.e., objects are 
completely transparent or completely opaque. The velocity 

---r 
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and delta maps, D.  

A flow chart for compositing that incorporates velocity maps, 1.. 

maps are restricted to affine transformations, which others 
have found to be successful models for segmenting multiple 
motions [ 3 ] ,  [lo]. There are no delta maps used. In spite of 
these simplifications the representation is able to capture much 
of the desired image information. Earlier discussions of this 
work are contained in [21] and [22]. 

111. ANALYSIS INTO LAYERS 

Let us begin by considering the first layer: the background. 
Sometimes the background is stationary but often it is under- 
going a smooth motion due, for example, to a camera pan. 
Background information appears and disappears at the edges 
of the viewing frame in the course of the pan. It is, of course, 
possible to send updating information on each frame, adding 
and subtracting the image data at the edges. However, with 
layers it is preferable to represent the background as it really 
is: an extended image that is larger than the viewing frame. 
Having built up this extended background, one can simply 
move the viewing frame over it, thereby requiring a minimal 
amount of data. 

Fig. 5(a) shows a sequence of positions that the viewing 
frame might take during a pan over the background. Fig. 5(b) 
shows the image information that can be accumulated from 
that sequence. At any given moment the camera is selecting 
one part of the extended background [IO], [19]. 

To build up the extended background we may consider the 
background to be a continuous function of unlimited spatial 
extent [12], [14]. Each image in a sequence captures a set 
of discrete samples from that function within the bounds 
specified by the viewing frame. The viewing parameters may 
change over time; for example the background image may 
undergo affine or higher-order distortions. If we estimate these 
parameters we can continue to map the image data into our 
extended background image. 

(b) 

Fig. S(a). The frames in the sequence are taken from an original scene that 
i \  larger than any individual frame. (b)  The information from all the frames 
may be accumulated into a single large layer. Each frame is then a glimpse 
into this layer as viewed through a window. 

It is also possible that foreground objects will obscure the 
background from time to time. If there are background regions 
that are always obscured we cannot know their true content. 
On the other hand, since these regions are never seen, we do 
not need to know them in order to resynthesize the sequence. 
Any regions that are revealed can be accumulated into the 
background if we correctly identify them. 

To illustrate how an extended view of a layer can be 
obtained, consider the MPEG Flower Garden sequence, three 
frames of which are shown in Fig. 6. Because the camera is 
translating laterally, the flower bed image undergoes a shearing 
motion, with the nearer regions translating faster than the 
farther regions. The distortion can be approximated by an 
affine transformation. Fig. 7 shows the sequence after the 
motion of the flower bed has been cancelled with the inverse 
affine transformation. When the inverse warp is applied, the 
flower bed is stabilized. The remainder of the image appears 
to move; for example, the tree seems to bend. 

We can generate the entire warped sequence and accumulate 
the pixels with stable values into a single image. This image 
will contain pixels that belong to the flower bed, including 
those that were sometimes hidden by the tree and those that 
were sometimes hidden by the right or left boundary of the 
viewing frame. Such an accumulated image is shown in Fig. 8. 

In the ideal case, i t  will be possible to account for all the 
visible flower bed pixels in every image in the sequence by 
warping and sampling this single accumulated image. And in 
practice we find the process can be fairly successful in cases 
where the region is undergoing a simple motion. 

The same process can be used for any region whose motion 
has been identified. Thus we may build up separate images 
for several regions. These become the layers that we will 
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(C) 

Fig. 6. 
(c) frame 30. 

The MPEG Flower Garden sequence: (a) Frame 0; (b) frame 15; 

composite in resynthesizing the scene. Fig. 12 shows the other 
layers that we extract: one for the house region; one for the 
tree. We will now describe how we use motion analysis to 
perform the layered decomposition. 

IV. MOTION ANALYSIS 

The Flower Garden sequence contains a number of regions 
that are each moving in a coherent fashion. We can use the 

(C) 

Fig. 7(a). Frame 1 warped with an affine transformation to align the 
flowerbed region with that of frame 15; (b) original frame 15 used as reference; 
(c) frame 30 warped with an affine transformation to align the flowerbed 
region with that of frame 15. 

motion to segment the image sequence. In traditional image 
processing systems, segmentation means that each pixel is as- 
signed to a region and the image is cut apart like a jigsaw puz- 
zle without overlap. We do perform such a segmentation ini- 
tially, but our ultimate goal is a layered representation whereby 
the segmented regions are tracked and processed over many 
frames to form layers of surface intensity that have overlapping 
regions ordered in depth. Thus, our analysis of an image 
sequence into layers consists of two stages: 1) robust motion 
segmentation and 2) synthesis of the layered representation. 

We consider that regions undergoing common affine 
motion are likely to arise from the same surface in the world, 
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Fig. 8. Accumulation of the flowerbed. Image intensities are obtained from 
a temporal median operation on the motion-compensated images. Only the 
regions belonging to the flowerbed layer are accumulated in this image. Note 
also that occluded regions are correctly recovered by accumulating data over 
many frames. 

and so we seek out such regions and group them together. 
Affine motion is defined by the equations 

where V, and V, are the z and y components of velocity, 
and the a’s are the parameters of the transformation. If these 
components are plotted as a function of position, then affine 
motions become planes. When we use affine models for ana- 
lyzing motion, we are proposing that the optic flow in an image 
can be described as a set of planar patches in velocity space. 

The concept is easier to visualize in one dimension, as 
shown in Fig. 9(a). Suppose that we have a background 
undergoing one affine motion and a foreground object under- 
going another affine motion. In the illustration the foreground 
object contains two parts, both of which are undergoing the 
same common motion. The velocity field will consist of five 
different patches: three corresponding to the background, and 
two corresponding to the foreground. 

In a standard optic flow algorithm the velocity field will be 
smoothed. Such algorithms generally impose some smoothing 
on the velocity estimates in order to deal with noise, the 
aperture problem, etc. The result is a smooth function, as 
shown in Fig. 9(b). Regions along the boundaries are assigned 
velocities that are intermediate between the foreground and 
background velocities. This is plainly incorrect. It arises from 
the fact that the optic flow algorithm is implicitly using 
something like a rubber-sheet model of the world. The velocity 
field is forced to be single-valued and smooth, and so the 
mixing of the two motions is inevitable. 

The analysis can be improved by allowing for sharp breaks 
in the velocity field, as is often done with regularization [8], 
[16]. The velocity field is now modeled as a set of smooth 
regions interrupted by discontinuities. The result looks like 
that shown in Fig. 9(c). The representation still has problems. 
It does not allow for multiple motion estimates to coexist at 
a point, which is needed for dealing with transparency. And 
it does not tell us anything about the way the regions should 

*.. . . 
*.. 
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Fig. 9(a). Velocity estimates appear as samples in space; (b) standard optic 
flow algorithms impose some smoothing on the velocity estimates in order 
to deal with noise; (c) regularization algorithms model the velocity field as a 
set of smooth regions while allowing for sharp breaks at model boundaries; 
id) shows the representation that we wish to attain. The velocity samples 
are explained by two affine models (straight lines) and discontinuities are 
explained by the occlusion of one object by the other. 

be grouped; it does not know, for example, that all of the 
background segments belong together. 

Fig. 9(d) shows the representation that we wish to attain. 
Since we are modeling the motions with affine transformations, 
we are seeking to explain the data with a set of straight lines. 
In this case we need two straight lines, one for the background 
and one for the foreground. There are no motion discontinuities 
as such; the lines of motion continue smoothly across space. 
The discontinuities are to be explained by the occlusions of one 
object by another-that is, there are discontinuities in visibil- 
ity. The motions themselves are considered to extend contin- 
uously whether they are seen or not. In this representation the 
background pixels all share a common motion, so they are as- 
signed to a single segment, in spite of being spatially noncon- 
tiguous. This represents the first phase of our motion analysis. 

V. ROBUST MOTION SEGMENTATION 
Our robust segmentation consists of two stages: 1) local 

motion estimation; 2 )  segmentation by affine model fitting. 
Critical processing involves motion estimation and segmenta- 
tion. 

A number of authors have described methods for achieving 
multiple affine motion decompositions [3], [ 5 ] ,  [lo]. Our 
method is based on robust estimation and k-means clustering 
in affine parameter space. 

In many multiple motion estimation techniques, a recursive 
algorithm is used is to detect multiple motion regions in the 
scene [3], [lo]. At each iteration, these algorithms assume 
that a dominant motion region can be detected. Once the 
dominant region is identified and the motion within the 
region is estimated, it is eliminated and the next dominant 
motion is estimated from the remaining portion of the image. 
Such methods can have difficulties with scenes containing 
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Fig. 10. The motion segmentation algorithm. Motion models are estimated 
within regions specified by the region generator. Similar models are merged 
by the merger and segmentation obtained by motion classification. Region 
splitter and region filter enforces local connectivity and provides robustness 
to the system. 

several strong motions, since the estimated parameters 
reflect a mixture of sources. 

To avoid the problems resulting from estimating a single 
global motion, we use a gradual migration from a local 
representation to a global representation. We begin with a con- 
ventional optic flow representation of motion. Because optic 
flow estimation is carried out over a local neighborhood, we 
can minimize the problems of mixing multiple motions within 
a given analysis region. From optic flow, we determine a set 
of affine motions that are likely to be observed. Segmentation 
is obtained by classifying regions to the motion model that 
provides the best description of the motion within the region. 

The segmentation framework is outlined in Fig. 10. At each 
iteration, our multiple model framework identifies multiple co- 
herent motion regions simultaneously. Iteratively, the motion 
model parameters are calculated within these coherent regions 
and segmentation is refined. 

Several authors have presented robust techniques for mul- 
tiple motion estimation. Black and Anandan [4] described 
a multiple motion estimation technique that applies image 
constraints via influence functions that regulate the effects 
of outliers in a simulated annealing framework. Darrell and 
Pentland [5] described a multimode1 regularization network 
whereby image constraints are applied separately to each 
model. Depommier and Dubois [6] employed line models 
to detect motion discontinuities. These techniques, however, 
require intensive computation. 

We use a simpler technique for imposing image constraints 
and rejecting outliers. In our algorithm, motion smoothness is 
imposed only within the layer and by having multiple layers 
we can describe the discontinuities in motion. In addition, 
we impose constraints on coherent region size and local 
connectivity by applying simple thresholds to reject outliers 
at different stages in the algorithm, thus providing stability 
and robustness. 

A. Optic Flow Estimation 

Our local motion estimate is obtained with a multiscale 
coarse-to-fine algorithm based on a gradient approach de- 
scribed by [2],  [13], and [17]. For two consecutive frames 
the motion at each point in the image can be described by (4) 
and the linear least-squares solution for motion by (5) 

(4) Itb - K(Z,Y),Y - Vy(z,Y)) = It+l(Zc,Y) 

where I,, Iy ,  and It are the partial derivatives of the image 
intensity at position (x, y) with respect to 2, y, and t ,  respec- 
tively. The summation is taken over a small neighborhood 
around the point (2, y). The multi-scale implementation al- 
lows for estimation of large motions. When analyzing scenes 
exhibiting transparent phenomena, the motion estimation tech- 
nique described by Shizawa and Mase [18] may be suitable. 
However, in most natural scenes, the simple optic flow model 
provides a good starting point for our segmentation algorithm. 

B. Motion Segmentation 

Given the optic flow field, the task of segmentation is to 
identify the coherent motion regions. When a set of motion 
models is known, classification based on motion can directly 
follow to identify the corresponding regions. However, the 
corresponding motion models for the optic flow field are 
unknown initially. One simple solution is to generate a set of 
models that can describe all the motions that might generally 
be encountered in sequences. This results in a large hypothesis 
set, which is undesirable because classification with a large 
number of models will be computationally expensive and 
unstable. 

In our framework, we sample the motion data to derive a 
set of motion hypotheses that are likely to be observed in 
the image. Referring to Fig. 10, the region generator initially 
divides the image into several arbitrary regions. Within each 
region, the model estimator calculates the model parameters 
producing one motion hypothesis for each region. An ideal 
configuration for these regions is one that corresponds to 
the actual coherent regions. However, this configuration is 
unknown and is ultimately what we want to obtain in seg- 
mentation. 

We use an array of nonoverlapping square regions to derive 
an initial set of motion models. The size of the initial square 
regions are kept to a minimum to localize the estimation and 
to avoid estimating motion across object boundaries. Larger 
regions will provide better parameter estimation under noisy 
situations. 

The affine parameters within these regions are estimated by 
standard linear regression techniques. This estimation can be 
seen as a plane-fitting algorithm in velocity space since the 
affine model is a linear model of local motion. The regression 
is applied separately on each velocity component because the x 
affine parameters depend only on the x component of velocity 
and the y parameters depend only on the y component of 
velocity. If we let a? = [a,~,azz,azy,ay~,ay,,ayy,l be the 
ith hypothesis vector in the 6-D affine parameter space with 
a:, = [azo, a,,, azy,] and a: = [a ,~ ,  ayzl ayyt] corresponding 
to the z and y components , and $T = [l x y] be the regressor, 
then the motion fields equations (2) and (3) can be simply 
written as 

and a linear least squares estimate of ai for a given motion 
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field is as follows C. Krgion Assignment by Hypothesis Testing 

We use the derived motion models in a hypothesis testing 
framework to identify the coherent regions. In the hypothesis 
testing, we assign the regions within the image in a way 
that minimizes the motion distortion. We use the distortion 
function, G(i(:r;. y ) ) ,  described by 

r 7 -1 

where each region is indexed with the variable /, and the 
summation is applied within each region. 

Regardless of the initial region size, many of the affine 
hypotheses will be incorrect because the initial square regions 
may contain object boundaries. The reliability of a hypothesis 
is indicated by its residual error, n:, which can be calculated 
as follows 

where N is the number of pixels in the analysis region. 
Hypotheses with a residual greater than a prescribed threshold 
are eliminated because they do not provide a good description 
of motion within the analysis region. 

Motion models from regions that cover the same object 
will have similar parameters. These are grouped in the affine 
motion parameter space with a k-means clustering algorithm 
[20], which is modified to allow k to be determined adaptively. 
In the clustering process, we derive a representative model for 
each group of similar models. This model clustering produces a 
set of likely affine motion models that are exhibited by objects 
in the scene. In addition, it provides more stability in the 
segmentation by preventing multiple models from representing 
a single coherent motion region with a single model instead 
of with various similar models. 

A scaled distance, Drrl(al.as), is used in the parameter 
clustering process in order to scale the distance of the different 
components in the parameter space. Scale factors are chosen 
so that a unit distance along any component in the parameter 
space corresponds to roughly a unit  displacement at the 
boundaries of the image. 

1 0 )  

1 1 )  

where 7' is the roughly the dimensions of the image. 
In our adaptive k-means algorithm, a set of cluster centers 

that are separated by a prescribed distance are initially selected. 
Each of the affine hypotheses is then assigned to the nearest 
center. Following the assignment, the centers are updated 
with mean position of the cluster. The centers are iteratively 
modified until cluster membership, or equivalently, the cluster 
centers, are unchanged. During these iterations, some centers 
may approach other centers. When the distance between any 
two centers is less than a prescribed distance, the two clusters 
are merged into a single cluster, reducing the two centers into 
a single center. In this way the adaptive k-means clustering 
strives to describe the data with a small number of centers 
while minimizing distortion. By selecting the clusters with the 
largest membership, we can expect to represent a large portion 
of the image with only a few motion models. 

G(L(J.  y ) )  = C(V(.c.  !I) - Val ( J .  Y ) ) ~  (12) 
S Y  

where 6 ( : 1 . .  y) indicates the model that location (2; :  y) is as- 
signed to, V(:c. y) is the estimated local motion field, and 
Vas (.I;. :y) is the affine motion field corresponding to the ith 
affine motion hypothesis. From (12) we see that G(i (z ,  9 ) )  
reaches a minimum when the affine models exactly describe 
the motion within the regions. However, this is often not the 
case when dealing with real sequences, so instead we settle 
for an assignment that minimizes the total distortion. 

Since each pixel location is assigned to only one hypothesis, 
we obtain the minimum total distortion by minimizing the 
distortion at each location. This is achieved when each pixel 
location is assigned to the model that best describes the motion 
at that location. Coherent motion regions are identified by 
processing each location in this manner. We summarize the 
assignment in the following equation 

where ~o(.r .  71) is the minimum distortion assignment. 
However, not all the pixels receive an assignment because 

some of motion vectors produced by optic flow estimation 
may not correctly describe image motion. In regions where 
the assumptions used by the optic flow estimation are violated, 
usually at object boundaries, the motion estimates are typically 
difficult to describe using affine motion models. Any region 
where the error between the expected and observed motion is 
greater than a prescribed threshold remains unassigned, thus 
preventing inaccurate data from corrupting the analysis. We 
find by experiment that a value of 1 pixel motion provides a 
reasonable threshold. 

We now define the binary support maps that describe the 
regions for each of the affine hypotheses as 

1 if ~ o ( . r . y )  = 1 c 0 otherwise. P,(.r. y) = 

Thus, for each model, its corresponding region support map 
takes on the value of 1 in regions where it best describes the 
motion, and a value of 0 elsewhere. These maps allow us to 
identify the model support regions and to refine our affine 
motion estimates in the subsequent iterations. 

D. lterutive Algorithm 

In the initial segmentation step, we use an array of square 
regions. These will not produce the best set of affine models 
as discussed above. However, after the first iteration, the algo- 
rithm produces a set of affine models and the corresponding 
regions undergoing affine motion. By estimating the affine 
parameters within the estimated regions, we obtain parameters 
that more accurately describe the motion of the region. At each 
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iteration, the segmentation becomes more accurate because the 
parameter estimation of an affine motion model is performed 
within a single coherent motion region. 

Additional stability and robustness in the segmentation is 
obtained by applying additional constraints on the coherent 
regions. These constraints are applied to the segmentation 
before the models are reestimated. Because the affine motion 
classification is performed at every point in the image with 
models that span globally, a model may coincidentally support 
points in regions undergoing a different coherent motion or 
it may support points that have inaccurate motion estimates. 
Typically, this results in a model supporting sporadic points 
that are disjoint from each other. 

The region splitter and filter as shown in Fig. 10 identify 
these points and eliminate them. When two disjoint regions are 
supported by a single model, the region splitter separates them 
into two independent regions so that a model can be produced 
for each region. Following the splitter is the region filter, which 
eliminates small regions because model estimation in small 
regions will be unstable. Subsequently, the model estimator 
produces a motion model for each reliably connected region. 
Thus the region splitter in conjunction with the region filter 
enforces the local spatial connectivity of motion regions. 

Sometimes the splitting process produces two regions even 
though they can be described by a single model. This, however, 
is not a problem because the parameters estimated for each 
of these regions will be similar. The models corresponding 
to these regions will be clustered into a single model in the 
model merging step. 

Convergence is obtained when only a few points are reas- 
signed or when the number of iterations reaches the maximum 
allowed. This is typically less than 20 iterations. Regions that 
are unassigned at the end of the motion segmentation algorithm 
are reassigned in a refinement step of the segmentation. In 
this step, we assign these regions by warping the images 
according to the affine motion models and selecting the model 
that minimizes the intensity error between the pair of images. 

The analysis maintains temporal coherence and stability 
of segmentation by using the current motion segmentation 
results to initialize the segmentation for the next pair of 
frames. The affine model parameters and the segmentation of 
a successive frame will be similar because an object’s shape 
and motion change slowly from frame to frame. In addition 
to providing temporal stability, analysis that is initialized with 
models from previous segmentation results in fewer iterations 
for convergence. When the motion segmentation on the entire 
sequence is completed, each affine motion region will be 
identified and tracked in the sequence with corresponding 
support maps and affine motion parameters. 

Typically, processing on the subsequent frames requires 
only two iterations for stability, and the parameter clustering 
step becomes trivial. Thus, most of the computational com- 
plexity is in the initial segmentation, which is required only 
once per sequence. 

VI. LAYER SYNTHESIS 

The robust segmentation technique described above pro- 
vides us with a set of nonoverlapping regions, which fit 

together like pieces of a jigsaw puzzle. Regions that are 
spatially separate may be assigned a common label since 
they belong to the same motion model. However, robust 
segmentation does not generate a layered representation in 
and of itself. The output of a segmenter does not provide any 
information about depth and occlusion; the segments all lie in 
a single plane. 

In order to generate a true layered representation we must 
take a second step. The information from a longer sequence 
must be combined over time, so that the stable information 
within a layer can be accumulated. Moreover, the depth 
ordering and occlusion relationships between layers must be 
established. This combined approach-robust segmentation 
followed by layer accumulation-is central to the present 
work. Previous robust segmenters have taken the first step but 
not the second. (For example, [5] use a “multilayer” neural 
network in the robust segmenter, but the neural layers contain 
no information about depth ordering or occlusion, nor do they 
contain overlapping regions.) 

In deriving the intensity and alpha maps for each layer, we 
observe that the images of the corresponding regions in the 
different frames differ only by an affine transformation. By 
applying these transformations to each of the frames in the 
original sequence, corresponding regions in different frames 
can be motion-compensated with an inverse warp. We use 
bicubic interpolation in the motion compensation. 

Thus, when the motion parameters are accurately estimated 
for each layer, the corresponding regions will appear stationary 
in the motion-compensated sequence. The layer intensity maps 
and alpha maps are derived from these motion-compensated 
sequences. 

Some of the images in the compensated sequence, however, 
may not contain a complete image of the object because of 
occlusions. Additionally, an image may have small intensity 
variations due to different lighting conditions. In order to 
recover the complete representative image and boundary of 
the object, we collect the data available at each point in the 
layer and apply a median operation on the data. This operation 
can be easily seen as a temporal median filtering operation 
on the motion compensated sequence in regions defined by 
the support maps. Earlier studies have shown that motion 
compensation median filter can enhance noisy images and 
preserve edge information better than a temporal averaging 
filter [8]. 

where Layer; is the ith layer, and M;,k(z,y) is the motion- 
compensated image obtained by warping frame k of the 
original sequence by the estimated affine transform for layer 
i. Note that the median operation ignores regions that are not 
supported by the layer. These regions are indicated by a 0 in 
the support maps described in (14). 

Finally, we determine occlusion relationships. For each 
layer, we generate a map corresponding to the number of 
points available for constructing the layer intensity map. 
A point in the intensity map generated from more data 
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is visible in more frames and its derived intensity in the 
layer representation is more reliable. These maps and the 
corresponding layer intensity maps are warped to their re- 
spective positions in the original sequence according to the 
inverse affine transformation. By verification of intensities 
and of the reliability maps, the layers are assigned a depth 
ordering. A layer that is derived from more points occludes an 
image that is derived from fewer points, since an occluded 
region necessarily has fewer corresponding data points in 
the motion compensation stage. Thus, the statistics from the 
motion segmentation and temporal median filtering provide 
the necessary description of the object motion, texture pattern, 
opacity, and occlusion relationship. 

VII. EXPERIMENTAL RESULTS 

We have implemented the image analysis technique in C on 
a Hewlett Packard 9000 series 700 workstation. We illustrate 
the analysis, the representation, and the synthesis with the first 
30 frames of the MPEG Flower Garden sequence, of which 
frames 1, 15, and 30 are shown in Fig. 6. Dimensions of the 
image are 720 x 480. In this sequence, the tree, flower bed, and 
row of houses move towards the left but at different velocities. 
Regions of the flower bed closer to the camera move faster 
than the regions near the row of houses, which are in the 
distance. 

Optic flow obtained with a multiscale coarse-to-fine gradient 
method on a pair of frames is shown in Fig. 1 l(a). Notice the 
incorrect motion estimates along the occlusion boundaries of 
the tree as shown by the different lengths of the arrows and 
the arrows that point upwards. 

The segmentation map for the first frame is shown in Fig. 
ll(b). Each affine motion region is depicted by a different 
gray level. The darkest regions along the edges of the tree 
correspond to regions where the motion could not be easily 
described by affine models. Region assignment based on 
warping the images and minimizing intensity error reassigns 
these regions, as shown in Fig. l l (c) .  

We used an initial segmentation map consisting of' 75 
nonoverlapping square regions to derive a set of affine motion 
models. However, we found that the exact number of initial 
regions is not critical in the segmentation. The ten models 
with the lowest residual errors were selected from the k -  
means affine parameter clustering for model testing in the 
assignment stage. After about five iterations, segmentation 
remained stable with four affine models. We find that the 
number of models initially selected can vary from five to 15 
with similar results. This initial segmentation required about 
two minutes of computation time. Total computation time 
for motion analysis on the 30 frames including the median 
operation is about 40 min. 

We used frame 15 as the reference frame for the image 
alignment. With the motion segmentation, we are able to 
remove the tree from the flower bed and house layers and 
recover the occluded regions. The sky layer is not shown. 
Regions with no texture, such as the sky, cannot be readily 
assigned to a layer since they contain no motion information. 
We assign these regions to a single layer that describes 

(c) 

Fig. 1 ](a). The optic flow from multi-scale gradient method; (b) seg- 
mentation obtained by clustering optic flow into affine motion regions; (c) 
segmentation from consistency checking by image warping, representing 
moving images with layers. 

stationary textureless objects. Note that the overlap regions 
in house and flower bed layer are undergoing similar motion, 
and therefore, these regions can be supported by either layer 
without introducing annoying artifacts in the synthesis. 
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(C) 

Fig. 12. The layers corresponding to (a) the tree, (b) the flower bed, and (c) 
the house. The affine flow field for each layer is superimposed. 

We can recreate an approximation of the entire image 
sequence from the layer maps of Fig. 12, along with the 
occlusion information, the affine parameters that describe the 
object motion, and the stationary layer. Fig. 13 shows three 
synthesized images corresponding to the three images in Fig. 
6. The objects are placed in their respective positions and the 
occlusion of background by the tree is correctly described by 
the layers. 

Figs. 15-17 show results of layer analysis on the MPEG 
Calendar sequence. In this sequence, a toy train pushes 
a ball along the track, while the camera pans right and 
zooms out. A small rotating toy in the lower left comer 

(C) 

Fig. 13(a). 
layered representation. 

Frame 0; (b) frame 15; (c) frame 30, as reconstructed from the 

of the image did not produce a layer because its motion 
could not be estimated. In addition, the calendar, which is 
moving downward with respect to the wallpaper, is combined 
into a single layer with the wallpaper. These regions are 
represented with a single layer because motion in these regions 
as estimated from two consecutive frames can be described 
with a single affine motion within specified motion tolerances. 
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(C) 

Fig. 14(a)-(c). The sequence reconstructed without the tree layer 
(C) 

Fig. IS(a). 
sequence. 

Frame 0; (b) frame IS; and (c) frame 30, of the MPEG Calendar 

To handle this problem, we need to consider motion analysis 
and segmentation over different temporal scales. 

Currently, our motion analysis technique performs well 
when motion regions in the image can be easily described 
by the affine motion model. Because our analysis is based 
on motion, regions must be sufficiently textured and large 
in size for stability in the segmentation and layer extraction. 
Therefore, scenes with few foreground objects undergoing 

affine motion are suitable for our analysis. Sequences with 
complicated motions that are not easily described by the 
layered model require special treatment. 

VIII. COMPRESSION 
The layered decomposition can be used for image compres- 

sion. In the case of the Flower Garden sequence, we are able to 
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(c) 
Fig. 16. 
background. 

The layers corresponding to (a) the ball, (b) the train, and (c) the 

synthesize a full 30 frame sequence starting with only a single 
still image of each of the layers. The layers can be compressed 
using conventional still image compression schemes. While 
we have not yet done extensive studies of compression we 
can describe some preliminary results [7], [23] .  

The data that must be sent to reconstruct the Flower Garden 
sequence includes the intensity maps, the alpha maps, and the 
motion parameters for each layer. To compress the intensity 
map we used a JPEG coder. Some blocks in the map are empty, 
being outside the valid region of support for the layer; these are 
coded with a symbol indicating an empty block. Other blocks 
are partially empty, and these were filled in smoothly so that 

(C) 

Fig. 17. 
sequence. These images are generated from the layer images in Fig. 16. 

Synthesis frames (a) 1 ,  (b) 15, and (c) 30 of the MPEG Calendar 

JPEG did not devote bits to coding the sharp (spurious) edge. 
To compress the alpha map we used a chain code, which is 
possible because we are representing alpha as a binary image. 
The motion parameters can be sent without compression 
because they only represent six numbers per layer per frame. 

We are able to code a 30 frame (1 s) color video sequence 
of the Flower Garden using 300 kbits for a resolution of 360 
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x 240, and 700 kbits for a resolution of 720 x 480. Thus. 
the data rates are 300 and 700 kb/s, respectively. The affine 
motion parameters for the sequence required 40 kb. For the full 
resolution sequence, the alpha maps were encoded losslessly 
with chain codes at 60 kb and the color intensity maps encoded 
with JPEG at 600 kb. 

The only artifacts added by the data compression are those 
associated with the JPEG coder, and these are fixed artifacts 
that are rigidly attached to the moving layers. Thus they do 
not “twinkle” or “shimmer” the way temporal artifacts often 
do with traditional coders. At the data rates noted above. the 
JPEG artifacts are only slightly visible with an SNR of 30 dB. 

The layered coding process itself can add artifacts regardless 
of data compression. For example, since the layered segmen- 
tation is imperfect there is a bit of the sky attached to the edge 
of the tree, and this becomes visible when the tree moves over 
the houses. Also, the affine approximation of the motion is 
imperfect so that the synthesized motions of the layers do not 
perfectly match the actual motions in the original scene. And 
the temporal accumulation process can introduce blurring into 
regions where the affine warp is incorrect. We believe that 
all of these artifacts can be reduced by improvements in the 
analysis process. In any case, the reconstructed sequence will 
not generally be a perfect replica of the original sequence even 
if the layers are transmitted without data compression. Error 
images could be sent in order to correct for the imperfections 
of the reconstructed images at a cost of additional data. 

It is interesting to note that some of the artifacts associated 
with the layered coding can be severe in the MSE sense and 
yet be invisible to the human viewer. For example, the naive 
observer does not know that the flower bed’s motion is not 
truly affine. The reconstructed motion is slightly wrong-and 
in the squared error sense it  is quite wrong-but i t  looks 
perfectly acceptable. 

1X. OTHER APPLICATIONS 

Because the layered representation breaks the sequence into 
parts that are meaningfully related to the scene, it becomes 
possible to achieve some interesting special effects. Fig. 14 
shows the Flower Garden sequence synthesized without the 
tree layer. This shows what the scene would have looked 
like had the tree not been present; it is a synthetic sequence 
that has never actually existed. Occluded regions are correctly 
recovered because our representation maintains a description 
of motion in these regions. Note that an ordinary background 
memory could not achieve the effect because the various 
regions of the scene are undergoing different motions. 

The layered representation also provides frame-rate inde- 
pendence. Once a sequence has been represented as layers it  
is straightforward to synthesize the images corresponding to 
any instant in time. Slow-motion and frame-rate conversion 
can be conveniently done by using the layered format. 

X. CONCLUSION 

We employ a layered image representation that provides a 
useful description of scenes containing moving objects. The 
image sequence is decomposed into a set of layers. each layer 

describing a region’s motion, intensity, shape, and opacity. 
Occlusion boundaries are represented as discontinuities in a 
layer’s alpha map (opacity). and there is no need to represent 
explicit discontinuities in velocity. 

To achieve the layered description, we use a robust motion 
segmentation algorithm that produces stable image segmen- 
tation and accurate affine motion estimation over time. We 
deal with the many problems in motion segmentation by 
appropriately applying the image constraints at each step of 
our algorithm. We initially estimate the local motion within the 
image, then iteratively refine the estimates of an object’s shape 
and motion. A set of likely affine motion models exhibited 
by objects in the scene are calculated from the local motion 
data and used in a hypothesis testing framework. Layers are 
accumulated over a sequence of frames. 

The layered representation can be used for image coding. 
One can represent a 30-frame sequence of the MPEG Flower 
Garden sequence using four layers, along with affine motion 
parameters for each layer; each layer is represented by a single 
still image. The layers can be coded using traditional still frame 
coding techniques. 

The synthesized sequence provides an approximate recon- 
struction of the original sequence. One can achieve substantial 
data compression in sequences that lend themselves to layered 
coding. The method is more successful for sequences that 
are easily represented by the layered model, i.e., sequences 
containing a few regions undergoing simple motions. We are 
currently investigating extensions to more complex sequences. 

The layered decomposition also provides useful tools in 
image analysis. frame-rate conversion, and special effects. 
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