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Motion and Structure from Two Perspective Views: 
Algorithms, Error Analysis, and Error Estima tion 
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Abstract-This paper deals with estimating motion parameters and  
the structure of the scene from point (or feature) correspondences he- 
tneen two perspective views. 

First, a  new algorithm is presented that gives a  closed-form solution 
for motion parameters and  the structure of the scene. The algorithm 
exploits redundancy in the data to obtain more reliable estimates in the 
presence of noise. 

Then, an  approach is introduced to estimating the errors in the mo- 
tion parameters computed by the algorithm. Specifically, standard de- 
viation of the error is estimated in terms of the variance of the errors 
in the image coordinates of the corresponding points. The estimated 
errors indicate the reliability of the solution as well as any degenerac! 
or near degeneracy that causes the failure of the motion estimation 
algorithm. The presented approach to error estimation applies to a  
wide variety of problems that involve least-squares optimization or 
pseudoinverse. 

Finall!, the relationships between errors and  the parameters of mo- 
tion and  imaging system are analyzed. The results of the analysis show, 
among  other things, that the errors are ver) sensitive to the translation 
direction and the range of field of vie\r. 

Simulations are conducted to demonstrate the performance of the 
algorithms, error estimation, as well as the relationships between the 
errors and  the parameters of motion and imaging systems. The algo- 
rithms are tested on  images of real world scene5 with point correspon- 
dences computed automaticallj. 

Ifzdex Terms-Computer vision, error anal>cis, error estimation. 
image sequence analysis, motion estimation, perturbation theory. 

I. INTRODUCTION 

0 NE of our approaches to estimating three-dimen- 
sional motion parameters from image sequences can 

be divided into three steps. The first step is to establish 
feature correspondences for all pairs of consecutive image 
frames in a sequence. The second step is to estimate mo- 
tion parameters for each such pair (called two-view mo- 
tion parameters) The third step is using the two-view mo- 
tion parameters to understand the local motion (short term 
motion. over. say. ten, twenty or more image frames) 
based on a model of object dynamics 1301. The approach 
is characterized by first estimating two-view motion pa- 
rameters and then combining these parameters from more 
images. One of the major advantages of this approach is 
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that features used for analysis does not have to be reliably 
traced over entire image sequence. In other words, a  dif- 
ferent set of features can be used for different pairs of 
images. Such an advantage is significant since a feature 
may disappear due to occlusion, or eventually leave the 
field of view as motion continues. 

Alternatively, more image frames may be treated as a 
whole for correspondence based motion analysis. Such an 
approach requires that the features be identified and traced 
over all the image frames involved. For example, the 
unique closed-form solution can be derived, from three- 
frame line correspondences, for the motion parameters 
between every pair of the three images [32]. W ith corre- 
spondences through four or more image frames, fewer 
features are necessary than in the case of two-view motion 
analysis, provided that the motion over the entire image 
sequence is constant [26] or satisfies a known model [S]. 

This paper deals with two-view motion estimation. The 
results presented in this paper, however, can be extended 
to the approaches that require correspondences through 
three or more frames. The approach to analyzing and es- 
timating errors is applicable to a wide class of problems 
that involve least-squares solution, minimum norm solu- 
tion or pseudoinverse. 

Estimating two-view motion parameters and structure 
of the scene conventionally involves two steps. The first 
step is establishing correspondences. The correspon- 
dences have been commonly obtained either from contin- 
uous approaches or discrete approaches. A continuous ap- 
proach allows only a small interframe motion and 
computes optical flow fields [l6]. [24], [IS], [29], [I], 
[ 151. A discrete approach allows a relatively large inter- 
frame motion. Points (or corners and center of regions) 
(31. [8], [l9]. (371. [26]. edges (or lines) [22]. [6], [ 131. 
[ IO]. [ 321. contours 171, and local intensity patterns 1121. 
[ 171 can be utilized as features. Correspondences between 
features may be established through matching or inter- 
frame tracking. Recently. we have developed a two-view/ 
stereo matcher that computes displacement fields from two 
images 1331. Information in pixel intensity. edges, shape 
of iso-intensity contours. intraregional smoothness and 
field discontinuity is employed in an integrated way to 
compute displacement fields and occlusion maps. The 
matcher has the advantages of both continuous ap- 
proaches and discrete approach. For example, it allows 
an interframe motion which is relatively large compared 
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to the continuous approaches and compute displacement 
fields on a dense pixel grid. For the experiments on real 
images presented in this paper, we use the displacement 
fields given by the above two-view matcher as point cor- 
respondences. 

The second step concerns estimation of motion param- 
eters and the structure of the scene from correspondences. 
Roach and Aggarwal [25] and Mitiche and Aggarwal [23] 
propose algorithms that solve for motion parameters di- 
rectly from nonlinear equations (so, the algorithms of this 
type are called nonlinear algorithms). Nonlinear equa- 
tions generally have to be solved through iterative meth- 
ods with an initial guess or through global search. Itera- 
tive methods may diverge or converge to local minima. 
Searching in the space of motion parameters is computa- 
tionally expensive. Linear algorithms solve linear equa- 
tions and give closed-form solutions. Such algorithms 
using point correspondences have been developed inde- 
pendently by Longuet-Higgins [20], and Tsai and Huang 
[28]. The main advantages of linear algorithms over non- 
linear ones are that they are fast, and uniqueness of so- 
lution is guaranteed except in degenerate cases. 

Longuet-Higgins [2 l] derives a necessary and sufficient 
condition on the spatial configurations that cause the fail- 
ure of the existing linear algorithms. The failure means 
that the algorithm fails to find the unique solution for such 
degenerate spatial configurations. Zhuang, Huang, and 
Haralick [35] give another necessary and sufficient con- 
dition for such a degeneracy. However, the existing linear 
algorithms essentially consider noise-free source data. 
High sensitivity to noise is reported in [9], [28]. To han- 
dle noise, Yasumoto and Medioni [34] include the mag- 
nitude of the rotation vector as a term of the objective 
function which is to be minimized. It is observed that sup- 
pressing rotation leads to no or negligible improvements. 
A consequence of their approach is that the estimated mo- 
tion parameters are biased towards nonrotational interpre- 
tations if the regularization factor is not zero. Further, 
their search for the global minimum of the objective func- 
tion in motion parameter space is computationally expen- 
sive. For estimating motion parameters from optical flow, 
Bruss and Horn [38] followed by Adiv [2], propose a 
method by which the motion parameters are estimated 
such that the discrepancy between the measured flow and 
that predicted from the computed motion parameters is 
minimized. However, their approach still lead to nonlin- 
ear equations and no effective methods are proposed to 
solve them. 

Because the solution of a linear algorithm is generally 
suboptimal due to quantization and other errors, they can 
be further improved through optimization. For example, 
we introduce maximal likelihood estimation for this prob- 
lem in [3 11. Though the computation of optimal estimates 
still uses iterative numerical methods, a closed-form so- 
lution to be discussed in this paper generally serves as a 
very good initial guess. Starting with such a good initial 
guess, a locally optimal solution is generally globally op- 
timal. Robustness of the linear algorithm is crucial since 

a bad initial guess will not lead to a globally optimal so- 
lution [31]. On the other hand, if many point correspon- 
dences are available (e.g., from displacement field [33]) 
and the motion is of stable type (the types of stable motion 
will be discussed in this paper), the solution of a robust 
linear algorithm is very close to the optimal one. As the 
number of point correspondences increases, the degree of 
improvement decreases [31] and the solution of the linear 
algorithm itself could be accepted. 

In the presence of noise, several problems need to be 
solved. First, how can the algorithms make good use of 
the redundancy in the data to combat noise? Second, the 
noise may make a degenerate configuration nondegener- 
ate mathematically. How can we check for the case of 
degeneracy or near-degeneracy? More generally, how can 
we assess the reliability of the solutions? Third, how are 
the errors related to the motion and system parameters? 
Any relative motion between the camera and the scene 
that yields large errors in solution should be avoided or 
treated accordingly in applications. Design of imaging 
systems should use parameters that result in stable esti- 
mation. We address these problems in this paper. 

We first give a new algorithm aimed at simplicity, and 
insensitivity to noise. The algorithm exploits redundancy 
in the available data to improve accuracy of the solution. 
For the algorithm presented, we estimate the errors in the 
computed motion parameters. Large estimated errors in- 
dicate a degenerate or nearly degenerate configuration. 
The errors are estimated in terms of the variance of errors 
in the image coordinates of image points. Finally, the re- 
lationships between the errors and the motion and system 
parameters are investigated through qualitative analysis 
and quantitative experiments. 

The motion estimation algorithm is discussed in the next 
section. Section III deals with error estimation. Section 
IV analyzes the dependency of the errors on motion and 
system parameters. Section V presents the simulation re- 
sults for the algorithm, error analysis and error estima- 
tion. Section VI summarizes the main results. 

II. A TWO-VIEW MOTION ALGORITHM FOR THE 

PRESENCE OF NOISE 

The objective is to reliably estimate the parameters of 
the relative motion between a camera and a rigid scene 
and the structure of the points from the point correspon- 
dences. 

We first present an overview of the algorithm. Inter- 
mediate motion parameters are introduced which is called 
“essential parameters” by Tsai and Huang [28]. The es- 
sential parameters are a 3 by 3 matrix E, defined in terms 
of motion parameters. A set of equations are established 
that relates image coordinates of the feature points and the 
elements of matrix E. Since those equations are linear and 
homogeneous in the elements of E, the essential param- 
eters E can be determined up to a scale factor. Then we 
solve for motion parameters from the essential parame- 
ters. Finally the relative depth (depth scaled by the mag- 
nitude of translation) of each point is determined from 
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motion parameters and the observed projections of the 
point. 

The essential parameter matrix E has 8 degrees of free- 
dom (E is determined up to a scale factor). Each point 
correspondence gives one linear equation for E. This is 
why we need at least 8 point correspondences to solve for 
E. The relative motion between a camera and a rigid scene 
has 6 degrees of freedom (3 for rotation and 3 for trans- 
lation). As we will see soon, the magnitude of the trans- 
lation cannot be determined with one image sensor. 
Therefore the motion parameters to be determined have 5 
degrees of freedom. To determine unknowns with 5 de- 
grees of freedom from the matrix E with 8 degrees of free- 
dom, we have overdeterminations. Those overdetermi- 
nations are fully exploited in the following algorithm to 
combat noise. In addition, there are a series of steps in 
which signs have to be determined. Stable methods are 
presented for determining those signs. In determining rel- 
ative depth of each point, we again have overdetermina- 
tions. A least-squares solution is obtained for relative 
depths. Finally, because of the noise in the observed im- 
age coordinates of the feature points, the structures re- 
constructed directly from those observed points are not 
exactly related by a rigid motion between two images. 
The 3-D structure is corrected based on rigidity con- 
straint . 

We first introduce some notation. Matrices are denoted 
by capital italics. Vectors are denoted by bold fonts either 
capital or small. A three-dimensional column vector is 
specified by (s,, s?, s3) r. A vector is sometimes regarded 
as a column matrix. So vector operations such as cross 
product ( x ) and matrix operations such as matrix multi- 
plication are applied to three-dimensional vectors. Matrix 
operations precede vector operations. 0 denotes a zero 
vector. For a matrix A = [a,,], I/ A]( denotes the Euclidean 
norm of the matrix, i.e., )/ (u,,] I/ = G. We define a 
mapping [ * ] x from a three-dimensional vector to a 3 by 
3 matrix: 

0 --r3 x1 

[(x,, l-2, xj)T] x = 

I I 

l-3 0 -II . (2.1) 

-x2 XI 0 

Using this mapping, we can express cross operation of 
two vectors by the matrix multiplication of a 3 by 3 matrix 
and a column matrix: 

xx Y= [XlxY. (2.2) 
Let the coordinate system be fixed on the camera with 

the origin coinciding with the projection center of the 
camera, and the Z axis coinciding with the optical axis 
and pointing forward (Fig. 1). Without loss of generality, 
we assume that the focal length is unity. Namely image 
plane distance is measured in the units of focal length. 
Thus the image plane is located at : = 1. Visible objects 
are always located in front of the camera, i.e.. z > 0. 

Consider a point P on the object which is visible at two 
time instants. The following notation is used for the spa- 
tial vectors and the image vectors. 

Fig. I. Geometry and camera model of the setup 

x = (x, 4’, z) 
T 

spatial vector of P at time tl 

x’ = (x’, 4”, ;r)T 

spatial vector of P at time r, 

image vector of P at time t, 

X’ = (u’, Z”, 1)’ = (;, 5. If 

image vector of P at time tZ 

where (u, zj) and (u’, 2)‘) are the image coordinates of 
the point. So, the spatial vector and image vector are re- 
lated by 

x = zx, x’ = ,7)X’. (2.3) 
Fig. 1 shows the geometry and the camera model of the 
setup. 

Let R and T be the rotation matrix and the translational 
vector, respectively. The spatial points at the two time 
instants are related by 

x'=Rx+T (2.4) 
or for image vectors: 

:'X' = :RX + T. 

If 11 T (1 # 0, from (2.5) we get 
(2.5) 

AXLR ,’ 
II T II II T  II x+ri (2.6) 

(2.7) 

Given n corresponding image vector pairs at two time in- 
stants, X, and X: , i = 1, 2, . . . , II. the algorithm solves 
for the rotation matrix R. If the translation vector T does 
not vanish, the algorithm solves for the translational di- 
rection represented by a unit vector f and the relative 
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depths q/II T 11 and z,!/ll T 11 for object points Xi and xl, 
respectively. The magnitude of the translational vector 
( II T II ) and the absolute depths of the object points (zi and 
zl) cannot be determined by monocular vision. This is 
easy to see from (2.6), which still holds when )I T 11, zi, 
and zl are multiplied by any positive constant. In other 
words, multiplying the depths and II T II by the same scale 
factor does not change the images. 

We shall first state the algorithm, and then justify each 
of the steps. 

Algorithm 
1) Solve for E: 
Let Xi = (Ui, 2/i, l)r, X/ = (Ul, Ul, l)r, i = 1, 2, 

. . . n, be the corresponding image vectors of n (n 1 
8) points. Let 

A= 

44 u,v; Ul VI4 v,v; VI 4 4 1 

u2 4 u24 u2 v2u; v2v; v2 u; vi 1 
. . . . . . . . . . . . . . . . . . . . . . . . 

u, u,: 11, v:, u, v,u:, v, v:, v, u:, v:, 1 

h = (h,, h2, h,, hq, h,, he, h,, hs> A,)‘. 

I 
(2.8 > 

(2.9) 
We solve for unit vector h such that 

11 Ah 11 = min. (2.10) 

The solution of h is a unit eigenvector of ATA associated 
with the smallest eigenvalue. Then E is determined by 

h, h4 h, 
E = [B, E2 E3] = &’ h2 h5 hs . (2.11) 

i I h3 h6 h, 

2) Determine a Unit Vector T, with p = *T,: 
Solve for unit vector T, such that 

11 ETTsII = min. (2.12) 

3) Determine Rotation Matrix R: 
Without noise we have 

E = [TslxR 
or 

(2.14) 

RT[ -T,] x = ET. (2.15) 

In the presence of noise, we find rotation matrix R such 
that 

IIR’[ -T], - ET11 = min 

subject to: R is a rotation matrix. (2.16) 

Alternatively, we can find R directly. Let 

W= [W, W, W,] = [E, x T, + E2 x E, (2.17) 

E,xT,+E,xE, E3xTs+E,xE2]. 

Without noise we have R = W. In the presence of noise, 
we find rotation matrix R such that 

11 R - WI1 = min subject to: R is a rotation matrix. 

(2.18) 

We can use either (2.16) or (2.18) to find R. They both 
have the form 

IIRC - DII = min subject to: R is a rotation matrix. 

(2.19) 

Where C = [C, C2 C,], D = [D, D2 Ds]. The solution 
of (2.19) is as follows. 

Define a 4 by 4 matrix B by 

B = c B’Bi 
i=l 

(2.20) 

where 
0 

B, = (Cl - DiIT 

’ Di - Cf [D, + Cf] x 1 
(2.21) 

Let q = ( qo, q,, q2, q3) ’ be a unit eigenvector of B as- 
sociated with the smallest eigenvalue. The solution of ro- 
tation matrix R in (2.19) is 

-l 

: 

4: + s: - 4: - 4: 2tw2 - qoq3) 2twI3 + qoq2) 

R  = 2tq,q, + 4043) si - 4: + 4; - s: 2tq2q3 - 9041) 

J 

. (2.22) 

2tq3q1 - qoq2) 2(q3q2 + 40%) 4; - 4: - 625 + s: 

4) Check T = 0. If T z 0, Determine f = T, or f = 
The solution of Z’, is a unit eigenvector of EE T associated - TY’ 
with the smallest eigenvalue. If Let CY be a small threshold ((Y = 0 without noise). If 

C (T, X X:) . (EXi) < 0 (2.13) 
II X,! X RX, 11 /II X,! II 11 Xi \I I (Y for all 1 I i I n, then 

i report T = 0. Otherwise determine the sign for f: If 

then T, + -T,. c  (T, x  X;) * (X,’ x RX;) > 0 (2.23) 
The summation in (2.13) is over several values of i’s i 

to suppress noise (usually three or four values of i will then f = T,. Otherwise f = - rY. Similar to (2.13), sum- 
suffice). mation (2.23) is over several values of i. 
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5) If T Does Not Vanish, Estimate Relative Depths: 
For i, 1  I i I n, find relative depth 

zi = (&, I:)'= (2,, Zi)T (2.24) 

such that 

11  [Xi’ - RXi]Z; - P)I =  min (2.25) 

using standard least-squares method for linear equations. 
A simple method to correct structure based  on  rigidity 

constraint is as  follows (see [31] for more robust meth- 
ods). The  corrected relative 3-D position (scaled by  
II T 11  -‘> of point i at time t2 equals to $  =  (R(ZiXi) +  
f +  2; X/ )/2. Its relative 3-D position (scaled by  )I T )I -' ) 
at time tl equals to 2; =  R-‘(# - f). 

W e  now justify each  step of the algorithm. 
For Step I): Let T, be  a  unit vector that is al igned with 

T, i.e., 

T, x T= 0. (2.26) 

Precrossing both sides of (2.6) by  T, we get [using (2.1), 
(2.2)]: 

L  T, x x' = z [T&RX. 
II T II II T  II 

(2.27) 

Premultiplying both sides of (2.27) by  X’T (inner product 
of between vectors), we get: 

XIT[ T,] xRX = 0  (2.28) 

since XrT( Ts x X’ ) =  0  and  z >  0. Define E to be  

E = [T&R = [T, x R, T, x R2 T, x R3] 

= [E, E2 E31 (2.29) 

where R = [RI R2 R3 1. From the definition of T,, the sign 
of E is arbitrary since the sign of l’Y is arbitrary (as long 
as  the sign of T, and  that of E match such that (2.29) 
holds). Using (2.29), the definition of E, we rewrite (2.28) 
as  

X”EX = 0. (2.30) 

Our objective is to find E from the image vectors X and  
X’. Each point cor respondence gives one  equat ion (2.30) 
which is linear and  homogeneous  in the elements of E. n  
point cor respondences give n  such equations. Let 

el e4  e7  
E = e2  e5  e8  , 

I I 

E = (e, e2 . * * e9)'. (2.31) 

e3  e6  e9 

Rewriting (2.30) in the elements of E using n  point cor- 
respondences,  we have  

AE = 0. (2.32) 

W ith noise we use (2.10). The  solution of h in (2.32) is 
then equal  to E up  to a  scale factor if rank(A) =  8. The  

rank of the n  by  9  matrix A cannot  be  larger than 8  since 
E is a  nonzero solution of (2.32). Longuet-Higgins [21] 
gives a  necessary and  sufficient condit ion for the matrix 
A to have  a  rank less than 8. 

Since the sign of E is arbitrary, we need  only to find 
the Eucl idean norm of E to determine E (equivalently E ) 
from h. Let T, = (s,, s2, s3) T. Noticing T, is a  unit vector 
and  using (2.29), we get 

1) Eli2 = trace { EET} 

= trace {[Cl xR([T,lxR)T) 

=  trace ([Cl $Tl .)‘I 

=  trace 

= 2(s: + s: + s:, = 2. 

So, E = &h. This gives (2.11). 
For Step 2): W e  determine T,. By (2.29), T, is orthog- 

onal to all three columns of E. W e  get ETTs = 0. W ith 
noise, we use (2.12). 

It is easy to prove that the rank of E is always equal  to 
2. In fact, let Q2  and  Q3  be  such that Q  = [ T, Q2 Q3] is 
an  orthonormal 3  by  3  matrix. S = RTQ is also ortho- 
normal. Postmultiplying the two sides of the first equat ion 
of (2.29) by  S, we get 

ES = [T,]$s = [T&Q = [o T, x Q2 T, x Q33. 

W e  see the second and  the third columns of ES are or- 
thonormal from the definition of Q. So rank {E > = rank 
{ES} = 2. 

Since rank {E } =  2, the unit vector T, is uniquely 
determined up  to a  sign by  (2.12). To  determine the sign 
of T, such that (2.29) holds, we rewrite (2.27) using E = 
[Tsl .R: 

L  T, x X’ = -!- EX. 
II T  II II T  II 

(2.33) 

Since z >  0  for all the visible points, from (2.33) we 
know the two vectors T, X X: and  EXi have  the same 
directions. If the sign of ;rl, is wrong, they have  the op-  
posite directions. So if (2.13) holds, the sign of T, should 
be  changed.  

For Step 3): In steps 1) and  2) we found E and  T, that 
satisfy (2.29). R can be  determined directly by  (2.17). W e  
now prove W  in (2.17) is equal  to R without noise: 

R = [R, R2 R3] =  [E, x Z-, + E2 x E, 

E,xTs+E3xE, E3xT,+E,xEz]. 

(2.34) 



456 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. II. NO. 5. MAY 1989 

Using the identity equation (a X b) X c = (a * c)b - 
(b * c)a and (2.29), we get 

E, x T, + E2 x E3 

= (T, x R,) x T, + (Ts x R2) x (T, x R3) 

= (T, . T,)R, - (R, . T,)TJ 

+ (T, * (Ts x h))& - (R2 * (Ts x R,>>K 

= R, - (R, * T,)Ts + (R2 * (R3 x T,>)Ts 

= R, - CR, - T,)T, + ((Rz x R3) * Ts>Ts 

= R, - (R, * Ts)T, + (R, * T,)T, 

= R,. 

This proves that the first column of R is correct. Similarly 
we can prove that the remaining columns of R are correct. 

To solve the problem of (2.19), we represent the rota- 
tion matrix R in terms of a unit quatemion q. R and q are 
related by (2.22) [4], [14]. We have (see Appendix B) 

1) RC - Dll* = q’Bq (2.35) 

where B is defined in (2.20) and (2.21). The solution of 
(2.19) is then reduced to the problem of minimization of 
a quadratic. The solution of the unit vector q in (2.35) is 
then a unit eigenvector of B associated with the smallest 
eigenvalue. 

For Step 4): Precrossing both sides of (2.5) by X’, we 
get 

0 = zX’ x RX + X’ x T. (2.36) 

If T = 0, for any point X’ we have (note z > 0) 

X’ x RX = 0. (2.37) 

If T # 0, X’ x T # 0 holds for all the points X’ (except 
at most one). So (2.37) cannot hold for all points from 
(2.36). In the algorithm, we normalize the image vectors 
in (2.37) and give a tolerance threshold cy in the presence 
of noise. 

From (2.36), if ? = T,, then T, x X’ and X’ x RX 
have the same directions. Otherwise, they have the op- 
posite directions since T = -TV:,. We use the sign of the 
inner product of the two vectors in (2.23) to determine the 
sign of f. 

For Step 5): The equations for the least-squares solu- 
tion (2.24) are directly from (2.6). The idea for correcting 
structure based on rigidity is as follows. Moving the re- 
covered 3-D point at time t, using the estimated rotation 
and translation, its new position should be exactly at the 
recovered position at time t2, if data are noise free. How- 
ever, in the presence of noise, they are not exactly equal. 
Here we choose a simple method: the midpoint between 
those two positions are chosen as the corrected solution 
for the position of the point at time t2. Moving the mid- 
point back gives the corrected 3-D position of the point 
at time t,. A more detailed discussion about correcting 

structure can be found in [3 11, where noise distribution is 
considered to obtain a more robust estimate. 

In summary, we have derived a close-form solution of 
the problem. Given 8 or more point correspondences, the 
algorithm first solves for the essential parameter matrix 
E. Then the motion parameters are obtained from E. Fi- 
nally the spatial structure is derived from the motion pa- 
rameters. All the steps of the algorithm use the redun- 
dancy in the data to combat noise. As the results of 
determining the signs in (2.13) and (2.23), the computa- 
tions of three false solutions required by other existing 
linear algorithms [20], [28], [35] are avoided. These steps 
for determining signs are stable in the presence of noise, 
since the decisions are made based on the signs of the 
inner product of the two vectors which are in the same or 
opposite direction without noise. Summations over sev- 
eral points in (2.13) and (2.23) suppress the cases where 
two noise-corrupted small vectors happen to be used, 
whose inner products are close to zero and the signs are 
unreliable. 

If T # 0 and the spatial configuration is nondegenerate, 
the rank of A is 8. In this case, we can determine the unit 
vector h in (2.10) up to a sign. If T = 0 any unit vector 
T, satisfies (2.27) and so E, and correspondingly, the unit 
vector h have two degrees of freedom (notice rY and h are 
restricted to be unit vectors). Therefore, A in (2.8) has a 
rank less than or equal to 6. If T = 0, relative depths of 
the points cannot be determined. However, the rotation 
parameters are still determined even if T = 0. 

The next section discusses how to estimate the reliabil- 
ity of the computed E and motion parameters. 

III. ERROR ESTIMATION 

One way to do error analysis is determining worst case 
bounds on errors. Such bounds are useful for applications 
with small errors such as computer round off errors. Since 
computer word length is large enough for most applica- 
tions, the worst case bounds are generally tolerable. How- 
ever, in problems where redundancy is utilized to combat 
noise and the errors in the data are not very small, the 
conventional worst case analysis usually renders an overly 
conservative bound. This can be visualized by consider- 
ing the upper bound of a random variable with Gaussian 
distribution. Since the bound is almost never reached, the 
utility of the bound is very limited. In many problems 
with redundant data, however, the error level of the so- 
lution is relatively stable for a fixed level of input noise. 
This stability is due to the redundancy in observations. 
For example, consider a Gaussian random variable with a 
small variance, denoting error in solutions. Motion anal- 
ysis from images is one of such examples. A conventional 
worst case error bound analysis gives a value that is often 
larger than the true value itself. If the least-squares solu- 
tion is derived from a large amount of data, the variance 
of the error distribution of the solution is small. This make 
it possible for us to estimate errors in the solutions. In 
this section we investigate how to estimate errors in the 
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solution instead of deriving a worst case bound which is 
very large and almost never reached. The approach dis- 
cussed in this section is applicable to problems where 
least-squares solution, minimum-norm solution or pseu- 
doinverse is involved. since they essentially reduce to an 
eigenvalue and eigenvector problem. 

The sources of errors in the image coordinates include 
spatial quantization. feature detector errors, point mis- 
matching and camera distortion. In a system that is well 
calibrated so that systematic errors are negligible, errors 
in the image coordinates of a feature can be modeled by 
random variables. These errors result in the errors of the 
estimates of the motion parameters. Some spatial config- 
urations of the points are relatively insensitive to the er- 
rors in the image coordinates of the points. but some are 
very sensitive. For example, if a spatial configuration of 
the points is degenerate mathematically but the errors in 
the measured image coordinates make them nondegener- 
ate. any estimates under such configuration is useless. If 
we move a single point slightly, so that the configuration 
stops being degenerate, such a configuration must be very 
sensitive to noise. 

Formally. let the image coordinates of all the points be 
denoted by I, and the errors in the image coordinates of 
these points be denoted by a random variable E. The error 
r in the estimated motion parameters is a function of I and 
E. Denoting this function by f, informally we can write: 

e =f(I. E). (3.1) 
Our goal is to estimate the error e given the images I. 
However we do not know 6. If we can estimate the stan- 
dard deviation of e (with t as a random variable) given 
the noise-corrupted image I, we can use it to estimate the 
errors of the estimates. The images I corresponding to a 
degenerate or nearly degenerate spatial configuration 
should yield large estimates of e and that corresponding 
to a stable configuration should yield small estimates. 

For the following discussion, we assume that the noise 
in the image coordinates has zero mean and known vari- 
ance. For example. the spatial quantization noise can be 
well modeled by a uniform distribution with the range 
corresponding to the width of the pixels. The variance of 
the feature detector error can also be estimated empiri- 
cally. We also assume the noises at the different points 
are uncorrelated, and the noises in the two components of 
the image coordinates are uncorrelated. This assumption 
of uncorrelatedness is not exactly true in reality. However 
the correlation between them can be regarded negligible 
(in the first order perturbation). We estimate the standard 
deviation of the errors in the motion parameters on the 
basis of first order perturbation, in other words, we esti- 
mate the “linear terms” of the errors. 

For conciseness, we use the following notation: I,,, de- 
notes an tn by tn identity matrix. A matrix A without noise 
is denoted by A itself and its elements denoted by the cor- 
responding small letters ai,, i.e., A = [a,,]. The noise 
matrix of A with the same size is denoted by A4. The 

noise-corrupted A is denoted by A ( E ). We have 

A(E) = A + A,. (3.2) 

Similarly for vectors. we use 6 with corresponding sub- 
script to denote the noise vectors: 

X(e) = x + 6,. (3.3) 

I with the correspondin g subscript is used to denote the 
covariance matrix of the noise vector (considering only 
the first order errors. the means of the errors are zero): 

r.,. = E { s,s;) (3.4) 

where E denotes expectation. A matrix A = [A, A, . . . 
A,,] is associated with a corresponding vector A with 

- - 
AI 
A, 

A= .- 

41 

(3.5) 

Similarly r.4 denotes the corresponding covariance matrix 
of the vector A associated with matrix A. 6, denotes the 
perturbation vector associated with the perturbation ma- 
trix A,4. “=” is used in the equations to define new vari- 
ables when the variable to be defined is obvious. 

Assuming two variables a and b with small errors: 

U(E) = a + 6,,, b(t) = b + 6,, (3.6) 
we have 

a(t) b(e) = ah + 6,,b + as,, + CT,,&, = ab + A(,,,. 

(3.7) 
The error in a(t) b(c) is 

tin,, = 6,,b + a&, + 6,,6,, E 6,,b + di,,. (3.8) 
In the last approximation we keep the linear terms of the 
error and ignore the higher order terms. Later in this paper 
we use the sign ” 3 ” for the equations that are equal in 
the linear terms ( ” = ” for the approximate equality in the 
usual sense). Considering a small perturbation in the 
original data. we analyze the linear terms of the corre- 
sponding perturbation (first order perturbation) of the final 
results to estimate its error. In our problem. the noise or 
errors are from the image coordinates. The final results 
are the motion parameters calculated by the algorithm that 
is presented in the previous section. 

The algorithm presented involves the calculation of the 
eigenvectors of a symmetrical matrix. With small pertur- 
bation in the matrix, we need to known the corresponding 
perturbation in its eigenvectors. We have the following 
theorem. 

Theorem: Let A = [a,,] be an n by n symmetrical ma- 
trix and H be an orthonormal matrix such that 

K’AH = diag { Xl, X2, . . . , X,,} (3.9) 
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(where diag { XI, Xz, * * * , X, > denotes the diagonal ma- 
trix with the corresponding diagonal elements). Let the 
eigenvalues be ordered in nondecreasing order. W ithout 
loss of generality, consider the eigenvalue XI. Assuming 
X, is a simple eigenvalue, we have 

A, < A* I x3 I * ’ * I A,. (3.10) 

Let 

H = [h, h2  . * * h,]. (3.11) 

Let X be an eigenvector of A associated with XI. X is then 
a vector in span { h  I } (the linear space spanned by hI ). 
Let X(E) be the eigenvector of the perturbed matrix A (E) 
= A + AA associated with the perturbed eigenvalue X1( E). 
X(E) can be written as 

X(E) = x + 6., (3.12) 

with 6, E span { hZ, h3, * * * , h, } . Letting E be the max- 
imum absolute value of the elements in AA = [ c?~,,], we have 

AA = EB (3.13) 

where B = [bq], with 6, = Aa,/e. Therefore, lb,1 I 1, 
1 I i 5  12, 1 I j I 12. Then for sufficiently small E, the 
perturbation of hI can be expressed by a convergent series 
in E: 

6x, L  X,(E) - AI =  PIE + p2c2  + p3c3  + * * * (3.14) 

and the perturbation vector 8, can be expressed by a con- 
vergent vector series in the space span { hZ, h3, * * * , 
h,}. Inotherwords, letting H2 = [h2, h3, * * . , h,], then 
for sufficiently small positive e, there exist (n - l)-di- 
mensional vectors g, , g2, g3, * . * such that 

8, =  cH2gI +  E2H2g2 + c3H2g3 + * * - . (3.15) 

The linear term (in E ) in (3.14) is given by 

pie = h;AAh,. (3.16) 

The linear term (in E) in (3.15) is given by 

cH2g, = HAHTAAX (3.17) 

where 

A = diag {O, (XI - X2)-‘, * * * , (XI - AR)-‘}. 

(3.18) 

That is, suppressing the second and higher order terms 
(i.e., considering first order perturbation), for the eigen- 
value we have 

and for the eigenvector: 

6, z HA HTA, X. 

Proof See Appendix A. 

(3.19) 

The above theorem gives the first order perturbation of 
the eigenvector associated with a simple eigenvalue XI. A 
similar result holds for other simple eigenvalues. For ex- 
ample, to give the first order perturbation of the eigen- 

vector X2 associated with a simple eigenvalue h2, we just 
need to modify the matrix A in 6,? G HA H’A,Xl: 

A = diag {(X2 - XI)-‘, 0, 

(X2 - x3)-I, - - * ) (A* - XJ’}. 

From the theorem, if the perturbation matrix AA can be 
estimated, the corresponding perturbation in the eigen- 
vectors of A can be estimated (by first order perturbation). 
The steps l), 2), and 3) in the algorithm need to find ei- 
genvectors of the corresponding matrices. The problem 
now is to estimate the perturbation of the corresponding 
matrices from the perturbation in the image coordinates. 
Again we use the first order approximation to estimate 
these perturbations in the matrices. 

For Step I): Assume the components of the image vec- 
tor X, = (u;, ui, l)‘andX,! = (u,!, vl, 1)‘have errors. 
(The third component 1 in the image vectors is accurate.) 
Let Ui, Vi, u,!, and v,! have additive errors 6,,,, 6,,$, AU; and 
6,,;, respectively, for 1  I i I II. From (2.8) we get: 

A,’ = 

= 

A 
ferent components in the image coordinates are uncorre- 
lated, and they have the same variance a2 (general cases 
with correlation can be formulated in a similar way). W ith 
this assumption we get 

FAT = a2 diag {PI, Pz, . * * , P,} (3.21) 
where Pi, 1 I i I n, is a  9 by 9 submatrix: 

(3.22) 

where 

i 

1  0 o- 

J= 0 10 

0 0 o- 1. (3.23) 
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Consider the error in h in (2.10). From the Theorem 
and (2.9), we have (note that h is an eigenvector of ATA 
instead of A): 

iSh z HAH’A,,,h 

= HAHT[h,19 hzI, . * . h,1,]6,Jr, 

: G,,6*fA. (3.24) 

In the above equations, we have rewritten the matrices 
AArA by 6A,,,, and moved the perturbation to the right. In 
this way, the perturbation of the eigenvector is then the 
linear transformation (by matrix Gh) of the perturbation 
vector 6,r,. We have F,,.,r (= I’:) in (3.21). We need to 
relate 6,4~,q in (3.24) to 6,Ar. Similar to (3.8), using first 
order approximation, we get 

AA,/, z ATA, + A;A. (3.25) 

Let 

AT = [a,,,]’ - [A, A2 . . . A,,] (3.26) 

we write 

6 ArA SE GAi4 6,r (3.27) 

where GAlA can be easily determined from (3.25): 

G  A7A = [F,,l + &I (3.28) 

where [F,,] and [G,,] are matrices with 9 by n submatrices 
F,, and G,,, respectively. FO = a,, 19. G,, is a 9 by 9 matrix 
with the ith column being the column vector A,, (see 3.26) 
and all other columns being zeros. From (3.24) and (3.27) 
we get 

Then 

6/, s G,,64/A z G,,GArA6,4r = DhliA/. (3.29) 

r,, s DJA,D;. (3.30) 

From (2.11) we get the covariance matrix for E: 

I’, = 2I’,, z 2D,,I’,rD;. (3.31) 

Starting from the covariance matrix of the perturbation in 
AT, we get the covariance matrix of the perturbation in the 
eigenvector of ATA. This is done for E in (2.11). For T, 
in (2.12) and for q in (2.19) and (2.35), the approaches 
are similar. For the perturbation vectors of the remaining 
parameters, we get the linear expression in terms of 6[-. 
For example, if we get DT, such that 87, z DT,SE, we 
have rT, E DT,rED;s. 

The solution of step 1) needs the eigenvector of ATA 
associated with the smallest eigenvalue. The smallest ei- 
genvalue is a simple zero eigenvalue when rank {A } = 
8 (nondegenerate configuration), When rank {A} < 8 
(i.e., when degenerate configurations occur), the solution 
h in step 1) is very sensitive to noise. As can be seen from 
(3.18), the second diagonal entry of A is infinite when X, 
= X7. This makes the estimated errors infinite. 

However, in most real applications, we do not know 
the noise-free A. We only know the noise-corrupted A: 

A ( E). We have to use A ( t ) to estimate A. In the presence 
of noise, generally, the rank of A(c) is full mathemati- 
cally and the smallest eigenvalue of A ( E ) T A ( t ) is a small 
positive value. If noise is reasonably small, when rank 
(A) < 8 we have h, = h?. Then large estimates of errors 
are still generated. From a slightly different point of view. 
we can regard A as a “noise-corrupted” matrix by adding 
-AA to the matrix A (t ). Now the error is the deviation 
of the true solution from the noise-corrupted solution. This 
observation justify our use of the noise-corrupted A to es- 
timate errors. 

For Srep 2): T, is the unit eigenvector of EET associ- 
ated with the smallest eigenvalue. As we did earlier we 
need htE~ to use the theorem. From 

AEEr E EA; + AEE T 

it is easy to find DEF’such that 

6 EE’ = DEEF~E. 

In fact, 

(3.32) 

(3.33) 

D EEJ = E,l + E,l (3.34) 

where [F,,] and [ Gji] are matrices with 3 by 3 submatrices 
F,; and G,,, respectively. F, is a 3 by 3 matrix with the ith 
column being E, [see (2.1 l)] and all other columns being 
zeros. G,, = e,,Z3. 

Using the theorem, we have (we use the same letter A 
and H to avoid introducing new letters) 

&, = HAHTAE,,T, = HAHT[s,I, s,I? siZ,]& 

= HAHT[s,I, ~213 s-,I~]DEET~E 2 DT,AE (3.35) 

where T, = (s,, s?, s,) ‘. 6~ is the same as hT, except with 
a proper sign change depending on (2.13). we get 

rT, = rf = &,r&\. (3.36) 

For conciseness, we define a new vector K that combines 
the vector T, with the vector E: 

r i T , 
KS (3.37) 

so, 
&K 3 (3.38) 

For Step 3): From (2.20) and using first order approx- 
imation, we have 

B(E) = B + A, = ,g, (B, + AdT(B, + A,) 

- ,i, 4% + ,$, (8% + A;& > = (3.39) 
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where For the case when (2.16) is used to solve for R, the dis- 

A, E ;$I (BTAB, + AL,Bi). 
cussion of the relationship between 6a and hE [corre- 

(3.40) sponding to (3.43)] is relegated to Appendix C. 
Having now the expression of AB, we are ready to give 

If we use (2.18) to solve for R, using (2.17) we have the covariance matrix of q. Since q is a unit eigenvector 
of B associated with the smallest eigenvalue, using the 

ijw, s  E, X 6, - T, X 6~~ - E3 x &El + E2 x 6E1 theorem, we have 

hw2 = E2 X tjT, - T, X 6~~ - EI X 6E3 + E3 x 6E, 6, z  HAHTA,q = HAHT[q,& qJ, 9214 q&lb 

iTiws G  E3 X tiT, - T, X 6~s - E2 X 6E, + EI X 6El = - HAHT[qoLt qh q24 qJ&& s D,~E. 

(3.41) (3.45) 

^- Using the relation between q and R, and (2.22), we get 
“1 the first order perturbation vector of R: 

ml, -[T51x -[E31x EE21 x 

hv = t&l. v31 x -tWx -PQ SK 
[E31 x - FE221 x ml x -[Tslx 1 

A Gw6K G  GWDKGE A Dw6E. = (3.42) 

Letting W = [ wti], from (3.40) we get 
i3R s 2 

ijB G  GBGw 2 GsD,+& ii DBGE (3.43) 

where 

Gs = 2 (3.44) 

40 41 -q2 -4; 

43 42 41 40 

-cl* q3 -40 41 

-93 42 41 -40 

90 -41 q2 -93 

91 90 93 92 

q2 43 40 41 

-41 -90 q3 q2 

40 -41 -cl2 93 

where 
= A GR6q = DRDqGE A D&. (3.46) 

r- 
WI1 -1 w21 w31 WI2 w22 - 1 w32 wI3 w23 w33-I 

0 0 0 00 -1 0 1 0 

0 0 1 0 0 0 -1 0 0 

0 -1 0 1 0 0 000 
F, = 

0 0 0 00 -1 0 1 0 

I WI1 - 1 W2I w31 WI2 w22 + 1 w32 u’13 w23 W33+I 

0 -1 0 -1 0 0 000 

Fb = 

0 -1 0 0 

-6 0 100 0 -1 0 o- 

0 -1 0 -1 0 0 0 00 

WI1 + 1 w21 w31 WI2 w22 - 1 w32 wI3 w23 w33+1 

0 0 0 00 -1 0 -1 0 

0 -1 0 1 0 0 0 00 

0 0 -1 0 0 0 -1 0 0 

0 0 0 0.0 -1 0 -1 0 

WI1 + 1 w21 w31 WI2 w22 + 1 w32 WI3 w23 w33-I 
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As in step l), in steps 2) and 3) we estimate the errors 
by using the perturbed E and B to substitute the noise-free 
E and B. 

In summary, the perturbation vectors of the parameters 
q and R are expressed in terms of linear transformation of 
perturbation of E [(3.45), (3.46)]. The covariance matrix 
of the perturbation of E is given in (3.3 1). The covariance 
matrix of q and R are then 

r4 = D&D; (3.47) 

I‘, = D&D;. (3.48) 
From the covariance matrix of the perturbation, we can 
estimate the Euclidean norm of the perturbation vector and 
the perturbation matrix by the square root of the trace of 
the corresponding covariance matrix of the perturbations. 

I/&j1 = d&Gqiq (3.49) 

I] &I) = jj 6~11 = q (3.50) 
Similarly we get estimate of perturbation in q. Since the 
Euclidean norm of the orthonormal matrix R is equal to 
&, the relative perturbation in R is defined by 
tiA,II/~. 

The problem of estimating errors in the relative depths 
can be formulated in a similar manner. However, as 
shown by the simulation, the variances of the errors in the 
relative depths are considerably larger than those of the 
motion parameters. This is reasonable, since for each 3- 
D point, we just get two observations. Therefore the es- 
timated mean of the errors in depths based on two images 
is not a good estimate of the actual errors. 

IV. ERRORS VERSUS STRUCTURE, MOTION, AND 
SYSTEM PARAMETERS 

In reality the perspective projections of feature points 
are corrupted by noise. The noise includes the feature de- 
tector errors, matching errors, quantization errors and 
system calibration errors. All those errors result in errors 
in the solution of the motion parameters and 3-D structure 
of the scene. It is observed that computer roundoff errors 
are generally far less significant than those mentioned 
above, provided a double precision (about 64 bits ) is used 
for real numbers. So we assume the noise is introduced 
solely through the perturbations in the image coordinates 
of the projection of feature points. 

However, with the same noise level, the resulting er- 
rors are not always the same for different scene structure, 
different motion, and different system setups. The ques- 
tion is how they are related and to what degree they affect 
the reliability of the estimates. The factors we will discuss 
that affect the reliability of the estimates fall into three 
categories: 

1) structure of the scene, 
2) motion, 
3) parameters of imaging systems. 
Our analysis is mainly based on the algorithm presented 

in this paper. We also provide algorithm-independent per- 
spectives. 

A. Structure of the Scene 

The 9-dimensional unit vector h is determined up to a 
sign if and only if the rank of A in (2.10) is equal to 8. A 
necessary and sufficient condition for the rank of A to 
equal 8 is given by Longuet-Higgins [21]. Assuming the 
relative motion is due to motion of the camera, the con- 
dition is that the feature points do not lie on any quadratic 
surface that passes through the projection center of the 
camera at the two time instants. To satisfy this condition, 
at least 8 points are required. More points are needed for 
yielding overdetermination to combat noise. If a set of 
feature points is such that the rank of corresponding A is 
less than 8, we say that the structure is degenerate. To 
ensure that the structure is far from degenerate, intui- 
tively, the structure of the points should be such that they 
are very irregular. 

In the presence of noise, the rank of A is generally 
mathematically full even if the actual structure is degen- 
erate. If the structure is nearly degenerate, the solution of 
(2.10) is conceivably not reliable. So, in the presence of 
noise, we should consider the numerical condition of the 
matrix A. The previous section presents a method to de- 
termine such a condition and gives an estimate of the er- 
rors. 

Obviously, if the cluster of projections of feature points 
is confined in a small portion of images, only a small por- 
tion of the image resolution is used. This will certainly 
result in less reliable solutions. So, the configuration of 
the feature points should be such that its projection covers 
as much of the images as possible. 

In the discussion of Section IV-B we will see that long 
displacement vectors will result in more reliable solu- 
tions. For the same amount of motion, the scene should 
be close to the camera so that it yields long displacement 
in image plane. This condition is actually related to the 
numerical condition of matrix A. 

Another factor is the number of feature points. It is very 
effective to reduce the error in the solutions by using more 
points in addition to the minimally required 8. Since a 
severely noise-corrupted image vector can pull the solu- 
tion away from the correct one by a large amount, it is 
desirable to use only reliable matches (information given 
by, e.g., a point matcher) for motion parameter estima- 
tion. 

It is clear that the relative depths can be reliably deter- 
mined by (2.25) only if X,’ and RX, are linearly indepen- 
dent. That is, X/ x RX, # 0. When T # 0, all points 
satisfies this except at most one. In fact X,’ x RX, = 0 if 
and only if T X RX, = 0 from (2.5). Let X,, be such that 
T X RX,, = 0. If X,, happens to be the image vector of a 
feature point, the depth of this point can not be deter- 
mined. For those points whose projections are close to X,,, 
the corresponding depths can not be reliably determined 
in the presence of noise. If rotation angle is equal to zero, 
the point X,, corresponds to the focus of expansion or con- 
traction. At this point, the projection is the same before 
and after motion. 
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B. Motion Parameters 

As mentioned earlier, a motion can be represented by a 
rotation followed by a translation. 

Magnitude of Translation: If the magnitude of a trans- 
lation vector is equal to zero, the solution of the transla- 
tion direction is arbitrary (since T, in (2.26) is an arbitrary 
unit vector) and the depths of the feature points cannot be 
determined. When 11 T 11 . is c ose to zero, the direction of 1 
translation, f, cannot be reliably determined and there- 
fore, neither can the depths of feature points [notice f in 
(2.231. 

When T = 0, the rank of A in (2.8) is always no larger 
than 6 (E = [ T,] x R has two degrees of freedom). R can 
still be determined by picking up any h satisfying (2. lo), 
since in the definition of E in E = [T,] x R, T, is just a 
unit vector satisfying (2.26). 

Direction of Translation: This is the most interesting 
factor associated with the reliability of the solutions. From 
(2.28) and the algorithm, it can be seen that the transla- 
tion direction is determined through the fact that T * (X’ 
x RX) = 0, or in other words, T is orthogonal to the 
cross product X’ x RX. Fig. 2(a) illustrates the spatial 
relations between three vectors x’, x, and T. Figs. 2(b) 
and (c) show the cases where the translation vector is or- 
thogonal and parallel, respectively, to the image plane. 
Fig. 2(d) describes a general case. Generally the projec- 
tions of feature points cover considerably large area of the 
image, around the optical axis (Z-axis). In the case of 
Fig. 2(b) it is clear that the vectors X’ x RX spread over 
the area in X-Y plane around the origin (shown by a 
shaded area in the figure). However for the case of Fig. 
2(c) the vectors X’ X RX are confined in a small shaded 
area in the X-Z plane. For the general case Fig. 2(d), the 
area of X’ X RX is shown by the corresponding shaded 
area. The algorithm determines the direction of T through 
T * (X,! X RX,) = 0 (i = 1, 2, * * * , n, a subscript is 
added when it is necessary, otherwise it is dropped), i.e., 
T is orthogonal to n vectors in the shaded area. With per- 
turbation in X and X’, the product X’ x RX will be slightly 
perturbed away from the original position and it may leave 
the plane of the shaded area. This causes the errors in the 
estimated f. Since the shaded area in Fig. 2(b) spreads 
round the origin but that in Fig. 2(c) is confined in a small 
area on one side of origin, statistically the former allows 
a more reliable estimate of f than the latter. 

On the other hand, the perturbation of Fig. 2(b) gen- 
erally will not leave the shaded area as much as that of 
Fig. 2(c). This can be seen in the following. Assume the 
vector X’ is perturbed in the image plane. The area of 
perturbation is illustrated by a small dark disk around X’ 
in the image plane. The corresponding perturbed vector 
X’ X RX is roughly represented by a small dark disk 
around X’ X RX. Since this disk is orthogonal to RX, it 
is nearly parallel to the shaded area if RX is not far away 
from the optical axis. Similarly, the perturbation of X’ x 
RX due to perturbation in RX is orthogonal to X’ and so 
it is nearly parallel to the shaded area if X’ is not far away 

(a) 
J x.YXX 

X (b) 

X%X 

X W  

Fig. 2. Effects of perturbation versus translation direction. 

from the optical axis. In a word, the perturbations of X’ 
X RX due to individual perturbation of either X’ or RX 
are nearly parallel to the shaded area if X’ and RX are not 
far from the optical axis. Hence, such individual pertur- 
bations will not cause large errors in the estimated f. We 
know that perturbation of the product of two vectors is 
approximately the sum of the perturbations due to indi- 
vidual perturbations. In fact, denoting the perturbation of 
a by 6, and that of b by 66, we have 

(a + 6,) x  (b + 6,) - a x b = 6, x  b + a 

x &, + 6, x  6,, z  6, x b + a x &,. (4.1) 

The last two terms in (4.1) are perturbations of a X b due 
to individual perturbation of a and b, respectively. For 
example, (a + S,) x b - a x b = 6, x b. 

In the case of Fig. 2(c), the corresponding perturbation 
of X’ x RX due to individual perturbation of X’ can be 
represented by a dark disk orthogonal to RX around X’ x 
RX as shown in Fig. 2(c). This perturbation disk is nearly 
orthogonal to the shaded area if RX is not far from optical 
axis. The similar conclusion is true for the perturbation 
due to individual perturbation of RX. Therefore statisti- 
cally the perturbations of X’ and RX in the case of Fig. 
2(c) will cause larger errors in the estimated f than those 
in the case of Fig. 2(b). It can be easily seen from Fig. 
2(c) that the major perturbation of the estimated transla- 
tion direction is in the Z component. 

Both the shape of the shaded areas and the orientation 
of the perturbation disks imply that a translation orthog- 
onal to the image plane [Fig. 2(b)] allows more stable 
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estimation of translation direction f than a translation par- 
allel to the image plane [Fig. 2(c)]. 

The relationship can be explained intuitively (algorithm 
independently). A translation in depth will cause less 
changes in the images than a translation parallel to the 
image plane and with the same translational magnitude. 
In other words, 2 component of translation is very sen- 
sitive to the errors in the observed data. Therefore, 2 
component of the translation cannot be reliably deter- 
mined. With a relative large perturbation in 2 component, 
the direction of a translation orthogonal to image plane is 
not as significantly affected as the direction of a transla- 
tion parallel to the image plane. 

Parameters of Rotation: First, it is necessary to discuss 
briefly the error measurement of rotation parameters. 
There exist a variety of ways of representing rotation [4]. 
For example, 1) an axis of rotation and an angle about the 
axis; 2) three rotation angles about three fixed (or mov- 
ing) coordinate axes, respectively; 3) rotation matrix; 4) 
rotation quatemion. We need a measurement for the er- 
rors of rotation that does not very much depend on the 
actual rotation parameters. Consider the relative error of 
rotation axis and rotation angle in 1). The relative error 
of rotation angle 0 is / fi - 0 I/0, where e is the estimated 
0. It is infinity when 0 = 0. If rotation angle is zero or 
nearly zero, the error in rotation axis is not important at 
all. So, the error in terms of parameters of 1) is not de- 
sirable. Similarly, relative error of the parameters in 2) is 
not what we need. The relative error of rotation matrix R, 
/I& - RlI/IIRII ( h w ere l? is the estimated R), and relative 
error of rotation quatemion do not suffer from the prob- 
lems mentioned above. In this paper we use the relative 
error of rotation matrix to indicate the errors in the rota- 
tion parameters unless special attention is needed for ro- 
tation axis and rotation angle. Since RI = R, geometri- 
cally, the relative error of rotation matrix R is the square 
root of the mean squared distance error of the rotated or- 
thonormal frame. 

The correlation between the rotation and translation is 
very complicated. An exhaustive analysis is very tedious. 
We would rather give some perspectives. 

First, we consider how rotation can be separated from 
translation. A rotation about the optical axis is easy to be 
distinguished from translation by the algorithm since no 
translation will give a similar displacement fields in im- 
age. How about a rotation about an axis parallel to the 
image plane, say the X axis? Let us consider two cases. 
In the first case, one rotates head about a vertical axis 
through his body. In the second, he translates head in the 
direction of rotation of the first case. If he is looking at a 
wall parallel to his face, the displacement field on his ret- 
ina is very similar for two cases. This implies that it is 
difficult to tell the translation from rotation. In fact, there 
exist slight differences between rotation and translation in 
terms of projections as shown in Fig. 3. The linear algo- 
rithm employs this kind of differences since the directions 
of image vectors determine the essential parameter E 
(2.30), However, the differences are not very large, es- 

Fig. 3. Rotation and translation generate different displacement fields. 
differences are large near the peripheral areas of images. 

Such 

pecially for short displacement vectors or at the center of 
images. So, the algorithm may easily confuse the trans- 
lation with the rotation in the presence of noise. As a re- 
sult. the solution is more sensitive to noise in the case of 
translation parallel to the image plane than in the case of 
translation orthogonal to the image plane. Similarly, ro- 
tation with a rotation axis parallel to the image plane is 
sensitive to noise than other rotations. However. since the 
displacement is mainly caused by translation in most 
cases, the effects caused by translation is dominant. 

If the translation direction cannot be reliably deter- 
mined, generally rotation cannot either, since R is deter- 
mined using translation. Therefore an unstable case for 
the estimation of translation is also unstable for the esti- 
mation of rotation. 

After the translation is determined, do different rota- 
tions imply different reliabilities of the estimated rota- 
tional parameters? If we consider the relative errors in 
terms of rotation axis and rotation angle, different types 
of rotation do affect the reliability of these two parameters 
in a different way. As shown in Fig. 4, different pertur- 
bations in the image vectors have different amount of ef- 
fects on the rotation axis n and rotation angle 19 for cases 
(a)-(d). Figs. 4(a) and (b) correspond to the case where 
the rotation axis is orthogonal to the image plane. Figs. 
4(c) and (d) correspond to the case where rotation axis is 
parallel to the image plane. The perturbation (represented 
by a two-way arrow) in Fig. 4(a) has smaller effect on 
rotation axis than that in Fig. 4(c) while both cases (a) 
and (c) have little effect on the rotation angle. The per- 
turbation of Fig. 4(b) has larger effect on rotation angle 
than that in Fig. 4(d), while both cases (b) and (d) have 
little effect on rotation axis. Summarizing from Fig. 4: 
comparing the two cases where the rotation axis is or- 
thogonal to the image plane and where the rotation axis 
is parallel to the image plane, the rotation axis can be 
more reliably estimated for the former and the rotation 
angle can be more reliably estimated for the latter. 

The above opposite effects on rotation axis and rotation 
angle make the error in R be less sensitive to the type of 
motion. On the other hand, the rotation is determined after 
translation. The errors in the estimated translation param- 
eters also cause errors in rotation parameters. When the 
errors in translation is the main reason for the errors in 
rotation parameters, the effects caused by different rota- 
tions are not significant. Simulations presented in Section 
4 confirm that the errors in motion parameters are not sen- 
sitive to rotation parameters. 
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Fig. 4. Effects of perturbation versus rotation axis 

From Figs. 2, 3, and 4, it is clear that long displace- 
ment vectors will generally result in more reliable solu- 
tions than short ones in the presence of noise. To yield 
long displacement vectors, the motion should be large and 
the scene should be close to the image sensor. 

C. System Parameters 
Let the resolution and focal length be fixed. The re- 

maining geometrical parameter of the imaging system of 
our model is the image size (equivalently field of view). 

Let the image size is reduced, say by a factor of 2. For 
the image to cover roughly the same scene, the scene has 
to be moved from camera in 2 direction such that it is 
about twice as far as before. This doubles the distance 
from the camera to the scene and reduces the variation in 
depth, which is an unstable factor. If the scene is not 
moved away, the camera will cover a smaller area of the 
scene, which will usually reduce the variation of depth. 
Furthermore, the narrowed field of view makes the por- 
tion of the scene that is visible in both images smaller 
(with the same amount of motion). So, equivalently, the 
resolution is reduced. This can be compensated by allow 
a smaller interframe motion. However, a small translation 
yields unstable estimates as we discussed earlier. In a 
word, a small image size (or a narrow field of view) is 
unstable. Another important effect of narrowing field of 
view is shown in Fig. 3. The field of view is crucial for 
distinguishing a rotation from translation, since the dif- 
ferences are more significant in the peripheral areas of 
images (see Fig. 3). So, a reduction in image size will 
particularly worsen the performance in the cases where 
translation is parallel to the image plane. 

For conventional imaging sensors, the image size is 
fixed. The focal length is the parameter that changes the 

field of view. Reducing image size is equivalent to in- 
creasing focal length and vice versa. 

The following section presents the statistical data 
through simulations to quantitatively show the relation- 
ships analyzed in this section. 

V. EXPERIMENTAL RESULTS 

In this section, we present the results of experiments. 
The first series of simulations is designed to demonstrate 
the performance of the motion estimation algorithm intro- 
duced in Section II, compared to the existing linear meth- 
ods. The second series of simulations is to test the error 
estimation discussed in Section III. The third series is to 
show the dependency of the errors on motion and system 
parameters. Finally, some preliminary results are pre- 
sented for images of real world scenes. 

In the simulations the feature points of the scene are 
generated randomly according to a uniform distribution in 
a cube of s x s x s (s is called object size) the center of 
which is the center of the object before motion. The dis- 
tance between the projection center of the camera and 
center of the object is called object distance. The image 
is a square whose side length is called image size. The 
field of view is determined by the size of the image and 
the focal length. Those points undergo a rotation about an 
axis through the origin (projection center) and then a 
translation. Only visible points are used for the algorithm. 
The image coordinates of the points are quantized accord- 
ing to the resolution of the camera. If the resolution is m 
by m, the horizontal and vertical coordinates each have 
uniformly spaced m levels. The positions of these levels 
correspond to the locations of the pixels. The image co- 
ordinates are rounded off to the nearest levels before they 
are used by the motion estimation algorithm. These 
roundoff errors result in the errors in the motion parame- 
ters and the relative depths computed by the algorithm. 
Simulations showed that reducing the resolution by a fac- 
tor of 2 roughly doubles the errors. Other additional ran- 
dom errors can be simulated by a reduced image resolu- 
tion with the similar variance of quantization noise. All 
the errors shown in this section are relative errors. Rela- 
tive error of a matrix, or a vector, is defined by the norm 
of the error matrix, or vector, divided by the Euclidean 
norm of the correct matrix, or vector, respectively. Since 
no ambiguity can arise, in the remainder of this paper, 
relative errors are often simply referred to as errors. Un- 
less stated otherwise, object size is 10, object distance is 
11 units, image size is 2, image resolution is 256 by 256, 
and the focal length is 1 unit. 

A. Simulations for the Performance Improvement of the 
Algorithm 

First, the errors of the algorithm are compared to an 
algorithm that represents typical existing linear algo- 
rithms. The algorithm by Longuet-Higgins [20] and that 
by Tsai and Huang [28] are two typical existing linear 
algorithms. Since the way to compute the ratios of the 



Fig. 6. Relative errors of L-T algorithm and our new algorithm. (a) Rel- 
ative errors of R. (b) Relative errors of T. Rotation axis: ( -0.2, 1, 0.2). 
Rotation angle: 8”. For horizontal axis from 0 to 20, the projection of 
translation onto the X - Z plane changes from the X to the -Z direction 

(b) 
(with magnitude 3.0, evenly spaced 21 translation directions). The Y 

Fig. 5. Two examples of displacement fields for the data shown in Fig. 6. 
component is always equal to 1. 

(a) Horizontal index: 0. (b) Horizontal index: 20. 

respectively. Fig. 6(a) shows the errors of R and Fig. 6(b) 
components of T from &Q [20, equation (17)] is not spe- shows that of T, averaging through 100 trials (random trial 
cifically given, the unit vector f is determined by the al- in the following always means randomly generated 
gorithm of Tsai and Hunag [28]. Rotation matrix R is de- points). Significant improvement of our new algorithm 
termined by the method in [20], since it is computationally over the L-T algorithm can be seen. Fig. 6 also shows the 
simpler than that in [28]. Such a composite algorithm rep- errors of the C-T algorithm for the same motion parame- 
resents the typical algorithms that are designed primarily ters, but no roundoff is performed for image coordinates 
for noise free data. We call it the L-T algorithm (Longuet- (noise-free). Idealy the error should be almost equal to 
Higgins and Tsai). We compare the performance of our zero. However, this is not so for horizontal indexes 0 and 
new algorithm to the L-T algorithm on arbitrarily chosen 20. The reason for this can be easily seen from [28, equa- 
motion parameters. In Fig. 6 the rotation is about an axis tions (22)-(27)]. In other.words, some special cases are 
( -0.2, 1, 0.2) by an angle 8”. The projection of trans- not considered in [28]. This partially accounts for the dif- 
lation onto the X - Z plane changes from the X to the ferent amount of improvement for different translations. 
-Z direction (with magnitude 3.0, evenly spaced 21 The performance of the algorithm in other cases is dem- 
translation directions from the X to the -Z in X - Z onstrated in the remainder of this section. 
plane, with horizontal index from 0 to 20). The Y com- 
ponent is always equal to 1. Twelve point correspon- B. Simulations for Error Estimation 
dences are used. Fig. 5 shows two examples of displace- For error estimation, we assume the roundoff errors are 
ment fields, corresponding to horizontal indexes 0 and 20, uniformlv distributed between ~1~s half and minus half of ~~ I 

6 
g.25 ^ b ’ \ !l Y \ 
6 .20 ‘\ B \ w .,5\ ’ 

.I0 i\ ‘\Y__-. 
,/; 1 

: I I’ .05 : ‘.____---. .*-.___r-- I : 

I : 
0 “.l”““‘l’l”.l’ 0 2 4 6 6 10 t2 14 16 16 20 

OIRECTION OF TRANSLATION 

- - - - L-T ALGORITHM 
- - L-T ALG. NOISE FREE 
- NW RLGORtTHM 

WENG er al.: MOTION AND STRUCTURE FROM TWO PERSPECTIVE VIEWS 465 

(a) 

L-T RN0 NEW RLGORITHHS FOR 1 

.55 

1 

‘1 
.50 I\ 

- ‘\ 
k.45 , 

- - - - L-T RLGORITHH 
- - L-l RLG. NOISE FREE 
- NEW ALGORtTHl’ I 

1 i 

0 2 4 6 6 10 12 19 I6 I6 20 
DIRECTION OF TRRNSLRTION 

(b) 



466 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. II. NO. 5, MAY 1989 

the pixel size. So the variance of the errors in the image 
coordinates is CJ* = p*/12, where p is the spacing be- 
tween the quantization levels in the images (pixel size). 
This variance is used for error estimation. Different mo- 
tion parameters with different image resolutions were sim- 
ulated. The errors in solution for motion parameters were 
reduced roughly by a factor of two when the image reso- 
lution was doubled. Fig. 7 shows the results of a typical 
sequence of trials with 9 point correspondences. Twenty 
random trials are shown in the order of their generation. 
Fig. 7(a) shows error estimation for relative errors of E. 
As can be seen from the figure, the estimated errors are 
strongly correlated with the actual errors. The estimated 
errors are especially important to detect a nearly degen- 
erate configuration (e.g., trial No. 16 in Fig. 7(a) where 
relatively unreliable results are generated by the algo- 
rithm). Figs. 7(b) and (c) show the relative errors in the 
translation T and the rotation matrix R, respectively. The 
very similar curves of errors in E, T, and R indicate that 
the steps after 1) are stable. The main errors are from the 
estimates of E. In other words, the accuracy of E domi- 
nates the accuracy of the final motion parameters. 

The average performances of the error estimation and 
our motion estimation algorithm are presented in Fig. 8. 
Average relative errors (solid curves) are recorded through 
20 random trials, with the same motion as that in Fig. 7, 
for different numbers of point correspondences used. (the 
sequence with 9 point correspondences is presented in Fig. 
7). In Fig. 8 the long-dashed curves indicate the mean 
absolute difference between the estimated error and the 
actual error (called deviation of error estimation here), 
and the short-dashed curves indicate the bias (difference 
between the mean of the estimated errors and the mean of 
the actual errors) through these 20 trials. As can been seen 
from Fig. 8, the errors decrease very quickly when the 
number of points increases beyond the required minimum 
of 8. This indicates that it is very effective to reduce the 
error by using a few more points in addition to the mini- 
mally required 8. It can also be seen that the mean devia- 
tion between the estimated error and the actual error is 
about a half of the actual error with the exception of the 
cases where the number of points is equal to 8. When the 
number of point correspondences is 8, there is a reason- 
ably high probability for the randomly generated points to 
form a nearly degenerate configuration. When the point 
configuration is degenerate or nearly degenerate, the dif- 
ference between the estimated error and the actual error 
is large. This is one of the reasons for the large deviations 
and bias in the 8-point case. Some individual simulations 
still show a good agreement between the estimated errors 
and the actual errors in the 8-point case. Fig. 9 shows the 
mean relative errors in the relative depths with the same 
motion averaging through 100 trials. 

C. Simulations for Error Depending on Motion and 
System Parameters 

The experiments show significant dependencies of the 
errors in the motion parameters on the values of the mo- 
tion and system parameters. The stability of the structure 
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ORDER OF RANDOM TRIRLS 
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Fig. 7. Actual relative errors and estimated relative errors of (a) E, (b) T, 
and (c) R. Rotation axis: (1, 0.9, 0.8). Rotation angle: 5”. Translation: 
(0.5, -0.5, -3.0). 

can be estimated using the approach introduced in Section 
III. So, the effect of structure is excluded here. For the 
simulations presented in this subsection, 12 feature points 
are used in each image (i.e., 12 point correspondences). 
One hundred trials are recorded for the average relative 
errors. 
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dences. Same motion as in Fig. 8. 
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Fig. 8. Statistical record of error estimation. Actual relative error, devia- 
tion of error estimation, and bias of error estimation for (a) E, (b) T, and 
(c) R versus number of point correspondences. Rotation axis: (1, 0.9, 
0.8). Rotation angle: 5”. Translation: (0.5, -0.5, -3.0). 

1) Motion Parameters: 
Magnitude of Translation: With rotation axis ( 1, 0, 

0) and rotation angle 5”) the translation direction being 
equal to (k, 0, k) where k is such that the length of trans- 
lation vector changes from 0.5 up to 4.5 with 20 evenly 
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Fig. IO. Relative errors versus magnitude of translation. Rotation axis: 
( 1. 0, 0). Rotation angle: 5”. Translation direction direction: (k, 0, k). 
k is such that the length of the translation vector changes from 0.5 up to 
4.5 with 20 evenly spaced values along the horizontal axis. 

spaced values, the average relative errors of the estimates 
are shown in Fig. 10. It is very clear that the errors in 
rotation matrix R is almost unaffected by merely changing 
the magnitude of translation. However the errors in trans- 
lation direction and relative depths drastically decrease as 
the magnitude of translation increases. This is consistent 
with the discussion in Section IV. 

Direction of Translation: In Fig. 11, with the mag- 
nitude of translation fixed to be 3, the direction of the 
translation changes from ( 1, 0,O) to (0, 0, 1) with evenly 
spaced 20 directions. The rotation angle is 5’. Three ro- 
tation axes ( 1, 0, 0), (0, 1, 0) and (0, 0, 1) are used in 
Figs. 11 (a), (b), and (c), respectively. Despite of different 
rotation axes (it has been discussed in Section IV and will 
be shown soon that rotation parameters has no significant 
effects), the errors for rotation matrix, translation direc- 
tion and relative depths all significantly decrease as the 
translation direction changes from being parallel to being 
orthogonal to image plane. The reasons for this relation- 
ship have been discussed earlier. 
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Fig. 11. Relative errors versus direction of translation. Rotation axis: (a) 
(1, 0, 0); (b) (0, 1, 0); (c) (0, 0, 1). Rotation angle: 5”. With hori- 
zontal index from 0 to 20, the direction of the translation changes from 
( I, 0, 0) to (0, 0, 1) with evenly spaced 20 directions. The magnitude 
of translation is fixed to be 3. 

Rotation Parameters: We mentioned earlier that the 
rotation parameters generally do not significantly affect 
the errors in solutions. In Fig. 12, rotation angle changes 
frnm 0” to 30” and with different translation vectors and 
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Fig. 12. Relative errors versus rotation angle. (a) Rotation axis: ( 1, 0, 0). 

Translation: (1.732, 0, -1.732). (b) Rotation axis: (0, 0, 1). Trans- 
lation: ( 1.732. 0, - 1.732). (c) Rotation axis: ( 1, 1, 1). Translation: 
(1.732, 1.732, -1.732). 

rotation axes (see captions of the figures). It can be seen 
from the figures that errors in R, ? and relative depths are 
not significantly affected by the change of rotation angle. 
Similarly, Fig. 13 shows that rotation axis does not sig- 
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Fig. 13. Relative errors versus rotation axis. Translation: (1.732, 0, Fig. 14. Relative errws of rotation axis and relative errors of rotation an- 
- 1.732). With horizontal index from 0 to 20, rotation axis changes from gle versus rotation axis. Translation: ( 1.732. 0, - 1.732). With the hor- 
( 1, 0, 0) to (0, 0, 1) in the X-Z plane at 20 evenly spaced directions. izontal index from 0 to 20, the rotation axis changes from ( 1, 0, 0) to 
Rotation angle: (a) 5”; (b) 15”. (0, 0, 1 ) in X-Z plane at 20 evenly spaced directions. Rotation angle: 

(a) 5”; (b) 15”. 

nificantly influence those errors. However, as discussed 15 increases more drastically as horizontal index de- 
earlier, when the error of rotation axis and rotation angle creases and the corresponding errors are much larger. This 
are considered separately (instead of error in R as a means that the reduction of image size particularly wors- 
whole), the rotation axis has different effects. This can be ens the cases where the translation direction is nearly par- 
seen from Fig. 14, which shows the errors of rotation axis allel to image plane. All of those are again consistent with 
and rotation angle with the same motion parameters as the discussion in Section IV-C. 
those in Fig. 13. The results do show that when the ro- Fig. 16 shows the relations between the errors in the 
tation axis changes from being parallel to the image plane estimates and the image resolution. It can be seen that 
to being orthogonal to image plane, the errors in rotation reducing the resolution by a factor of two roughly doubles 
axis slightly decrease while those in rotation angle slightly the errors, which is expected according to statistics. 
increase. The simulations shown in this subsection have justified 

2) System Parameters: To show the effects of decreas- the qualitative observations discussed in Section IV. The 
ing image size (field of view), the image size is reduced numerical examples of the simulations also give a quan- 
by a factor of 2. To make sure that the same scene is titative evaluation of the effects of the parameters. 
visible and cover roughly the same area of the images as 
earlier, the object is moved away from the camera such D. Results for Images of Real World Scenes 
that object distance is doubled. Other parameters are kept The algorithm has been tested on real world images. 
unchanged. Then with the same motion parameters as in Fig. 17 shows a pair of images of a scene in our labora- 
Fig. 11, the errors become those shown in Fig. 15. Com- tory. A CCD video camera with roughly 5 12 by 512 res- 
paring those in Fig. 11, the corresponding curves in Fig. olution is used as imaging: sensor. The focal length of the ” v 
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Fig. 15. Relative errors versus direction of translation with smaller image 
size (same resolution) than that in Fig. I I. Rotation axis: (a) ( 1, 0. 0); 
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is fixed to be 3. 
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Fig. 16. Relative errors versus image resolution. Translation: (a) (0, 0, 
-3), orthogonal to image plane; (b) (3, 0, 0), parallel to image plane. 
Rotation axis: ( 1, 1, I ); Rotation angle: 5”. Image resolution: 2’” X 2”‘. 

camera is simply calibrated but no nonlinear correction is 
made for the camera. The camera takes two images at 
different positions. A two-view matcher computes image 
displacement field on a dense pixel grid [33]. The sample 
on a 13 by 13 grid of the displacement field computed is 
shown in Fig. 17(c), overlaid on the first image. Those 
13 x 13 = 169 displacement vectors shown in Fig. 17 
are used as point correspondences. The motion parame- 
ters computered are shown in Table I. Since no attempt 
has been made to obtain ground truth, we do not know 
the accuracy of those motion parameters. Instead, we 
measure the discrepancy between the image of the recon- 
structed 3-D structure and the computed point correspon- 
dences (determined by displacement field). Let dj be the 
distance in image between the projection of the recon- 
structed 3-D point i and that given by the displace- 
ment field in the first image, d,! be that of the second 
image. We define (standard) image error as 
Jcy=, (df + (4q2)/2 n, where 12 is the number of point 
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(4 

(b) 

Fig. 17. (a), (b) Two views of a  scene in a  laboratory. (c) Sample of the 
displacement field computed. 

TABLEI 
DATA AND RESULTS FOR IMAGES OF A LABORATORY 

SCENE 

Translation 0.052711 -0.060781 0.996758 
Rotation axis 0.244922 0.644978 -0.723890 
Rotation angle 0.362396” 
Image error 0 .000784 
Pixel width 0.000938 

in an image. Image error indicates the discrepancy be- 
tween the inferred images and the observed images. Since 
a large number of point correspondences are used, the im- 
age error for the pair of images is within a pixel width, 
which is satisfactory. 

VI. CONCLUSIONS 

A new algorithm is presented which gives a closed-form 
solution for the motion parameters and the relative depths 
of the 3-D points. It exploits the redundancy available in 
the data to combat noise. It is simpler and more stable 
than the existing linear algorithms. The error estimation 
for motion parameters is based on first order perturbation. 
The results of simulations show a strong correlation be- 
tween the estimated and the actual errors. The cases of 
degeneracy or near degeneracy are identified and the re- 
liability of the solution in the presence of noise is indi- 
cated. 

Based on the qualitative analysis and the results of sim- 
ulations, the following observations can be made about 
reliable motion estimation. 

1) The focal length of the image sensor should be short 
(or field of view should be large) to obtain more reliable 
estimates. 

2) The magnitude of translation should be large to al- 
low stable estimation of translation direction and structure 
of the scene. 

3) A translation orthogonal to the image plane allows 
more stable estimation. 

4) The scene should be close to the imaging sensor and 
the motion should be large to yield long displacement 
vectors in the image plane. 

5) Rotation parameters are not significant to the reli- 
ability of the solutions (assuming rotation error is repre- 
sented by the error of rotation matrix). However, a  rota- 
tion about an axis orthogonal to the image plane generally 
results in a slightly more reliable estimate for the rotation 
axis and less reliable estimate for rotation angle compared 
with the rotation about an axis parallel to the image plane. 

APPENDIX A 
Theorem: Let A = [aii] be an n by n symmetrical ma- 

trix and H be an orthonormal matrix such that 

H-‘AH = diag { hi, Xz, . * * , A,,}. (A.1) 
Let the eigenvalues be ordered in nondecreasing order. 
W ithout loss of generality, consider the eigenvalue hi. 
Assume Xi is a simple eigenvalue. 

x, < A2 5 x3 I ’ * * I A,. (A.2) 
Let 

H = [h, h2  * * * h,] (A.3) 
and X be an eigenvector of A associated with Xi. Let X(E) 
be the eigenvector of the perturbed matrix A (E > = A + 
AA associated with the perturbed eigenvalue X,(E). X(e) 
can be written as 

X(E) = x + 6, (A.41 
with 6, E span ( h2, h3, * * * , h, }. Letting E be the max- 
imum absolute value of the elements in AA = [S,,,], we 
have 

A/, = .eB (A.51 
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where B = [6,,], with b, = &,,/t. Therefore ( 6,, 1 I 1, Substituting X1( E) using (A.13) and X(E) using (A. 14) 
1 I i %  n, 1 I j 5 n. Then for sufficiently small 6, the we have 
perturbation of Xi can be expressed by a convergent series 
in E: (A + EB)(X + cH,g, + e2H2g2 + e3H2g3 + . * a) 

AA, A X,(E) - h, = p+ + p2e2 + p3E3 + . . - (~.6) = (A, + cpj + Ep2 + * * ‘)X(E). (A.17) 

and the perturbation vector 6, can be expressed by a con- 
vergent vector series in the space span { hz, h3, * * * , 
h, }. In other words, letting H2 = [ h2, h3, * * * , h,], then 
for sufficiently small e, there exist (n - 1 )-dimensional 
vectors g,, g,, g3, * * * such that 

8, = eH,g, + c2H2g2 + e3H2g3 + * . . . (A.7) 

I’he linear term (in E) in (A.6) is given by 

pie = h;AAh,. (A.81 

The linear term (in E) in (A.7) is given by 

eH2g, = HAHTA,X 

where 
(A.9) 

A = diag (0, (Xi - X2)-‘, * * * , (h, - A,)-‘). 

(A.10) 

That is, suppressing the second and higher order terms 
(i.e., considering first order perturbation), for the eigen- 
value we have 

&, z h;A,h, (A.11) 

and for the eigenvector: 

8, G  HAHTA,X. (A.12) 

Proof: Under the assumption of simple eigenvalue 
and the definition of E, there exits a positive 6 such that if 
E < 6, X, is represented by a scalar convergent power 
series in E with constant term being h,: 

X,(E) = A, + EpI + 2p2 + . * * (A.13) 

and the eigenvector of A (E), X(E), associated with h,(c) 
is represented by a convergent (vector) power series in E 
with the constant vector term being X: 

X(t) = x + EZ[ + E2Z2 + . . . 2 x + 6, (A.14) 

(A. 17) holds for all E < 6. Therefore the coefficient vec- 
tors of E on the both sides should be equal: 

AH2g, + BX = h,H2g, + p,X (~.18) 

or, using (A.l): 

H2 diag { h2, h3, * * * , L)g, - h&g, + Bx = P,X 

(A.19) 

Premultiplying both sides by XT and noticing XTH2 = 0, 
we get 

XTBX = p,llxi/2 (A.20) 

pl = h;Bh,. (A.21) 

Then (A.8) follows immediately. Premultiplying both 
sides of (A. 19) by Hl and noticing H is an orthonormal 
matrix, we get 

diag { X, - hz, X, - h3, * * * , h, - X,,}g, = HTBX. 

(A.22) 

We have 

g, = diag {(Xi - h2)-‘, (Xi - h3)-r, 

* - * , (X, - h,)-‘]H;BX. (A.23) 

The linear term in (A.7) is then 

e&g, = EH? diag {(Xi - h2) -‘, ( hi - h3)-‘, 

*. * , (A, - A,)-‘}H;BX 

= HAHTeBX = HAHTAAX. (A.24) 

0 

APPENDIX B 
We need to prove (2.35): 

(see, for example, [36]). 6, can be represented in the ba- \ (RC - Dll2 = qTBq (B.1) 
sis h,, h2, * . . , h,,. The component of 6, on h, can al- 
ways be included into X since X is any vector collinear 

where C = [c, C, . . . c,], D = ]o, D, . . . o,], R is 

with h,. So, 6, E span { h2, h3, . . . , h,). That is, there 
a rotation matrix and B is defined by 

exist (n - 1)-dimensional vectors gl, g,, g,, * . . such 
that (A.7) holds, or 

B = i: B’B; 
i=l (B.2) 

X(e) = X + eH2g, + c2H2g2 + t3H2gj + . . 9 . 

(A.15) 

We have 

0 
Bi = 

(Ci - Dj)’ 

. D; - c; [II; + C,] x  1 (B.3) 

(A + EB)X(E) = X,(E) X(E). (A. 16) Rotation matrix R and unit q are related by (2.22). 
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We first introduce quatemions. A quatemion q consists 
of a scale component q. and a component of a three-di- 
mensional vector Q  = (q, , q2, q3 ) T: 

q = qo + Q. (B.4) 

uct, and letting S = { 1, - 1 }, the factor (or quotient) 
group Q/S and group SO( 3 ) of rotations in Euclidean 
space R3 are isomorphic. Equation (B.7) with S defines 
an isomorphism. 

Two quatemions are equal if and only if the correspond- 
ing components are equal. A vector quatemion is a qua- 
temion with zero scalar component. A scalar quatemion 
is a quatemion with zero vector component. For conve- 
nience, we regard a scalar as a scalar quatemion and a 
three-dimensional vector as vector quatemion. The con- 
jugate of a quatemion q, denoted by 4, is defined by 4 = 
q. - Q. The addition of two quatemions is defined by 

It is convenient to convert quatemion multiplications to 
matrix multiplications and regard a quatemion as a four- 
dimensional column vector when it is operated with mat- 
rices. 

ho + Q> + (PO + f? = (qo + PO) + (Q + P>. 

(B.5) 

The multiplication of two quatemions, denoted by “*“, 
is defined by 

ho + Q) * (PO + P> 

= (qohpo - Q  * f’) + hop + POQ + Q  x P) 

(B.6) 

where [ * ] I is a mapping from a quatemion to a 4 by 4 
matrix ( 1 stands for left multiplication ). Similarly, we de- 
fine the mapping [ * ] r: 

q*p= 

where “a” and “X” are vector dot product and cross 
product operations, respectively. It is easy to prove that 
quatemion multiplication is not commutative (unless a 
quatemion is scalar), but is associative, and is distributive 
over additions. The conjugate of p * q is equal to 4 * 8. 
Define the norm of a quatemion, 11 * 11, by a non- 
negative value such that 1) q )I2 = q * 4. It is easy to prove 
q * 4 = C:=, qf. Therefore, the norm of a quatemion is 
equal to the Euclidean norm of the corresponding four- 
dimensional space. A quatemion with a unit norm is called 
unit quatemion. So, for unit quatemion q we have q * 4 
= 1. 

For a rotation about unit axis it = (n,, n,., n,) by an 

i 
PO -pT 

= P POT - [PI x 
g [pl,q. (B.11) 

Now we are ready to prove (B. 1). In the following, vec- 
tors are augmented to vector quatemions when they are 
operated with quatemions. Using (B.9) we have 

angle 0, letting q be a unit quatemion such that 

q = cos (O/2) + sin (0/2)n (B.7) 
and R be the corresponding rotation matrix, 

(B.12) 

(nf - I)( 1 - cos e> + 1 1z,12,.( 1 - cos e) - n, sin e n,n,( 1 - cos e) + H! sin e 

R = n?,n,(l - cos e) + n, sin 8 ($ - l)(l - c0s e) + 1 n!n,(l - c0s e> - n, sin e (B.8) 
+TZ~(~ - cos e) - nT sin e fl,n,(l - cos e) + n, sin e (HZ - l)( 1 - cos e) + 1 1 

we have (see [4], [141) 

RX=q*X*g (B.9) 

for any three-dimensional vector X. If 0 is incremented by 
since 4 is a unit quatemion and I( p * tj I(’ = p 

360”, the sign of q in (B.7) is changed but the rotation is 
p = p * p = 11 p 112. Using our matrix notation 

not changed. Obviously -q also satisfies (B.9). There- 
fore q and -q represent the same rotation. In fact, letting 

Dl * 4 - 4 * cj = [Dil,q - [ ci] .q 

Q  be the group of unit quatemions under quatemion prod- = ([Ql, - [Gl,.l)q = B;q ’ 

xq*q* 
we have 

(B.13) 
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where Bi is readily determined by our mapping (B. 10) and In the algorithm, we have n = 3. The readers are referred 
(B. 11) and it is presented in (B.3). Finally, from (B. 12) to [4], [ 141, [27], [l l] for related discussions. 
and (B. 13) we have 

APPENDIX C 

1) D - RC((Z = i$, (IDi - RC; (I2 = ;g, I(B;ql/2 
If we use (2.16) to solve R, using (2.21) and (3.40), 

we have 

t& s GBiSK G  GBDKGE ii D,& 
I? / n \ 

= ig, qTB’Biq = qT (z, BiBi) 2 qTBq. where 

(B.12) Gs = 2 

where (note T, = (s,, s2, s~)~) 

2.~2 + e31 - e13 h3 + e12 - e21 ell e21 - s 

e12 e13 0 0 

ell - e33 e23 -s2 tl 

e32 -ell - e22 -s3 0 
F,I = 

e12 e13 0 0 

2~~ + e32 - e23 2~2 + e13 - 3e3, 2s3 + 3e2, - ei2 ell e2, + 3 

L 

e31 

-21 

-e32 e22 - ell -s3 

ell - e33 e23 s2 

e22 e32 - SI e13 - ~2 e23 + SI e33 

-SI 0 s3 0 -s1 

0 0 0 s3 -s2 

-s3 s2 0 0 0 

-s1 0 s3 0 -s1 

e22 e32 + SI e13 + s2 e23 - SI e33 

33 -s2 0 0 0 

0 0 0 s3 -s2 

Fb/ = 

3 

1 

is3 

0 

-s1 

- 
e21 --ell - e33 e23 -s2 JI 

e31 - e32 e22 - eli -s3 0 

2s, + 3e32 - e23 2~2 + e13 - e31 29 + ezl - 3e12 ell ezl + s: 

e33 - e22 e12 -e13 0 0 

e31 e32 -ell - e22 -s3 0 

-21 ell - e33 e23 s2 -SI 

e33 - e22 e12 -cl3 0 0 

2s, + e32 - 3e23 2~2 + 3e13 - e31 2s, + ezl - e12 ell e2l + s3 
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Fbr = 

0 0 0 0 0 S3 -S2 

Sl 0 S3 -S2 0 0 0 

e31 - S2 e12 - 3~3 e22 e32 + 3~1 e13 + S2 e23 - SI e33 

0 S2 -sI 0 -S3 0 SI 

SI 0 -S3 S2 0 0 0 

0 0 0 0 0 S3 -S2 

0 S2 -sI 0 -S3 0 Sl 

e31 - S2 e12 - S3 e22 e32 + SI e13 + 3S2 e23 - 3s, e33 
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