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otion is a prominent source of temporal variations in image
sequences. In order to model and compute motion, we need
to understand how images (and, therefore, image motion)
are formed. Motion in image sequences acquired by a video
camera is induced by the movements of objects in a 3D scene and by cam-
era motion. Thus, a camnera’s paramerers, such as irs 3D motion {rotation,
translation)) or focal length, play an important role in image motion model-
ing, If we know these parameters precisely, only object motion needs to be
recovered. However, this scenario is rather rare, and both object and cam-
era motion usually need to be compured. The 3D motion of objects and
cameras induces 2D motion on the image plane via a suitable projection
system. It is this 2D motion, also called apparent motion or optical flow”, that
needs to be recovered from intensity and color information of a video se-

|EEE SIGMAL PROCESSING MAGAZINE JULY 1999
1053-5888/98/510.00 ©1998TEEE



quence. 2D motion finds diverse applications in video
processing and compression as well as in compurer vi-
ston, primarily because the remporal correlation of inten-
sities (and color) in an image sequence is very high in the
direction of motion.

In video compression, the knowledge of motion helps
remove temporal data redundancy and therefore, atrain
high compression ratios. Motion estimation became a
fundamental component of such standards as H.261,
H.263, and the MPEG family [46], [45], [49]. Although
motion models used by the older standards are very sim-
ple (one 2D vector per block), the new MPEG-4 stanr
dard’ offers an alternative (region-based) model that al-
lows increased efficiency and flexibility [47], [75]. In
video processing, motion information is used for stan-
dards conversion {motion-compensated 3D sampling
structure conversion}, noise suppression (motion-
compensated filcering) [11], or deblurring (motion-
compensated restoration) [86]. In computer vision, 2D
motion usually serves as an intermediary in the recovery
of camera motion or scenc structure [42].

To compute motion trajectories, three basic elements
need to be specified. First, underlying models must be
selected, e.g., the motion modei (representation, region
of support), motion and image daga relationship model
(observation model), motion boundary model, and oc-
clusion madel. The choice of models and their parame-
ters is application-dependent., For example, the
occlusion model may not be relevant for a block-based
compression, whercas it would be essential in image
analysis. Second, an estimation criterion must be identi-
fied. Such a criterion may take different forms, such as a
simple mean-squared error over a block, a robust crite-
rion (e.g., with saturation for large crrors), or a complex
rate-distortion or Bayesian criterion involving multiple
terms. Third, a search strategy must be implemented to
determine the motion parameters that optimize the se-
lected criterion. In general, by a suitable selection of
search stravegy, one can trade, to a large extent, optimi-
zation performance against computational load. The
strategy may be deterministic or stochastic in nature, Ex-
haustive and simplified search methods as well as deter-
ministic relaxation belong to the most popular schemes
and include, as special cases, block matching and gradi-
ent-based methods. Among the best-known determinis-
tic relaxation methods arc Itevated Conditional Modes
and Highest Confidence Fivst. Mean-tield techniques
stemming from statistical mechanics are important de-
terministic optimization techniques based on the ap-
proximation of a partition function. Stochastic
rclaxation techniques, including simulated annealing,
arc dominant among the stochastic approaches. An im-
portant element of the optimization strategy is its hierar-
chical implementation in order to avoid the violation of
some underlying assumptions {e.g., local intensity lin-
carity} and/or reduce the computational complexity of
the algorithm.
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Models

Motion Representation
Consider a point on an object moving in 3 space. Let its
position at time ¢ be

X =X (£) = (X(2),Y(1), Z(t))* eR3

cxpressed in camera coordinates. (X (),t) defines a
curve in 3D space over time which we refer to as the
world motion trajectory. For any two time Instants £ and 1,
the world motion trajectory identifies a 3D displace-
ment in position

D, (X)=X(1)- X(r).

For a review of 31D motion and its relationship to the ap-
parent 2D motion of interest here, the reader is referred
to [1], [63].

An image acquisition system projects the 3D world
onto a 2D image plane wirth image coordinates
x=(x,9)" € A, where A is asampling grid, usually an or-
thogonal lattice. Upon this projection, world motion tra-
jectories result in (21} motion trajectorics (x(r), 7). We
adopt the definition of a 2ID motion trajectory proposed
in [24]: a trajectory is defined only in the time interval in
which the assoctated point is visible in the image. Thus,
assuming that we are dealing with non-transparent ob-
jects, each spatio-temporal position (x,7) belongs to a
motion trajectory of onty one visible point. As depicted in
Fig. 1, the 2D displacement can be expressed, similarly to
the 3D displacement, as follows

d, (%)= x(1) - x(t). (1)

A 1. Motion trafectory x(f) and associated displacement vaector
(%)
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For simplicity of notation, either the second or both sub-
scripts will be omitted whenever it is clear from the contexe.

In general, a motion field is a vector-valued function of
continuous spatial coordinates. In practical applications,
this firnetion is often deseribed in a parametric form using
a finite, usually small, number of paramerers.

Singe 2D motion results from the projection of mov-
ing 3D objects onto the image plane, a model for 2D mo-
tion flelds can be derived from models describing 3D
motion, 3D surface function, and camera projection ge-
ometry. If these models are parametric, the resulting 2D
motion model will be parametric as well. As a simple ex-
ample, consider a 3D planar patch undergoing 3D affine
motion under orrhographic projection. The 31 affine
motion can be written as follows
DX)=(R~DX +s. (2)
In general, the 3x3 matrix R = (v, ) has nine degrees of
freedom, and the translational motion vector
s=(s,5,,5,)7 has another three degrees of freedom.
Equation (2) includes rigid motion as a special case.
Then, R is a rotation matrix, i.c., its columns (rows) are
orthonormal, thus allowing only three degrees of free-
dom corresponding to the three rotation axes.

Let the planar patch be specified by three parameters o,
{3, v, as follows,
X +BY +yZ2 =1 (3)
The camera model provides two additional scalar equa-
tions mapping 3D world coordinates onto 2D coordi-
nates of the image plane. For an orthographic projection,
the following relationship holds:
x=cX, y=cT; cel. (4)
Substituting equations for the camera mode] (4) and for
the 3D surface (3) into (2), we readily obtain a model for

2D motion which, for the given example, becomes the
2D affine model

dx)=(A-Dx+b,

with

E’ﬁs 37’13 + 5,
¥ , b=
)

Y

Vs +CSZ

This model has been used extensively in the literatare for
2D motion representation [4], [61]. Clearly, a 2D mo-
tion model does not uniquely correspond to one 3D
model; identical 2D motion models may result from dif-
ferent assumptions about 3D motion, surface and camera
projection models.

Table 1 summarizes some parametric models for 2D
motion and provides possible underlying assumptions.
The first four models are illustrated in Fig. 2; for each
model, an example of a motion vector field is shown
along with the corresponding motion-compensated
square. The simplest (translational) moded for 2D motion
is used in the existing coding standards [45], [46], [49].
It accounts for a rigid mranslational 3D motion under or-
thographic projection, resulting in a spatially constant 2D
motion. Cleatly, motion compensation with such fields
preserves any 2D shape. With affine motion, parallel lines
remain parallel in the motion-compensated image. The 3D
affine motion of planar patches under a perspective camera
model leads to an eight-parameter model that is linear in
projective coordinates [90]. We can ecasily see that this
model inchudes the 2D affine model as a special case; lines
remain lines after motion compensation. A quadratic
maodel was proposed in [22] to describe 3D affine motion
of parabolic surfaces under orthographic projection. It -
cludes as special cases the 2D affine model and a close Tay-

lor approximation of the
~ 4 eight-parameter model. As can be seen
T Pl A IS ey . . . . .
e . e ic, ti e
s A A \\\;_1\_,4.‘., A e o S aFg f’{lnzlo on comp nsatllci)nmth
Virir rmm e M A s, :‘\s—)—»—“H //} S s mode oes'notpreserve nes.
B (s o e e ?/ , . Allmodels discussed so far are para-
Al (e s \ e //’ ) metric and involve a fixed number of
el efialatel ’///z/z””"-'\ T e / - -7 parameters. Such models can be used
At o A R T LN T Ty e . . . .
g g i efficiently for the cstimation, interpre-

tation, and transmission of certain
classes of motion fields. These models,
however, are not capable of describing
arbitrary 21> motion fields.

A different description of motion
fields can be provided by vector fields

(@ ) ©)

represented on a rectangular Jattice or

(@ amesh. In this way, the number of pa-

& 2. Exarnples of parametric motion vector fields (sampled) and corresponding mo-
tion-compensated predictions of a centered square: (a) transiational, (b) affine, (¢} pro-
jective finear, and (d) quadratic. See Table 1 for model descriptions.
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rameters varies with the number of
considered pixels. Off-lattice vectors
of the motion field can be approxi-
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mated by suitable interpolation of the sampled field [66].
In general, the interpolation kernel H (Tqblc 1) has a
srmll support, such that a motion vector is usually inter-
polated from, at most, four samples. The frequently used
bilinear interpolation kernel is a tensor product of hori-
zontal and vertical 113 triangular kernels. Recently, an in-
teresting generalization of this model has been presented
[65], where H is a complete multiresolution basis imple-
mented using a perfect-reconscruction, non-separable
subband scheme. When the motion sampling lattice in-
volves at least one site per image pixel, the motion fields
are calted dense. Obviously, dense motion fields provide a
fairly general description of motion, bur estimation, in-
terpretation, and transmission thereof involve large
amounts of data,

Another frequently used model employs a triangular
mesh; motion vectors of a dense field are interpolared
from three motion vectors at the corners of each triangle.
When the motion is sampled on a predetermined mesh,
the interpolation will be, in general, imprecise at disconti-
nuities in the moton field. Therefore, adaptive meshes
have been proposed [86], {92] that select the sampling
pointt; in such a way that the interpolated area of the mo-
tion field contains pixels from only one moving object.
Typically, those points lie on intensity edges of the image.

As with image intensity patterns, motion fields are
highly corrclated spatially. Therefore, it can be expected
that such fields can be efficiently represented using lincar
transtorms followed by zeroing of high-frequency com-
ponents. For example, the polynomial transform given in
the last row of Table 1 includes most of the parametric
maodels as special cases for relatively few coefficients. For
K ={00),0,1),1,0}, the polynomial description re-
duces to a 2D affine description, while the quadratic
model is obtained for
K = {003, (0,13, (10), 0.2), (L1}, 2.0y},

The number of coefficients can be adapted to the actual
complexity of the scene, c.g., such that the error of mo-
tion-compensated prediction is sufficiently small [517],
[82]. Clearly, for a sufficiently large sct of parameters, the
polynomial descriprion allows representation of arbitrary
motion fields.

By its definidon, the displacement (1) can only capture
the first-order dynamics of a moving point (con-
stant-velocity motion). However, it has been shown that
second-order temporal models capturing both velocity
and acceleration can substantially improve the perfor-
mance of motion-compensated predictive coding [29]
and standards conversion [71]. To capture these sec-
ond-order effects, each motion trajectory must be mod-
cled explicitly. For example, it may be represented by two
vectors: instantancous velocity & and acceleration £[13]:
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Motion estimation is a key
techinique in image sequence
cornpression and g}?ﬁ@%ﬁﬁﬁg
and in computer vision.

Such a temporal modeling can be applied in addition to
the spatial modeling described thus far in Table 1. Al-
though represeniation of motion trajectory fields rather
than displacement ficlds is advantageous in certain appli-
cations, larger amounts of motion information must be
processed and/or transmitted [13].

In the remainder of this article,

V(%) = &(t) = (u, (%), v, (%))7

denotes the velocity of an image point at (x,¢); #, and »,
are horizontal and vertical velocity components, respec-
tively. We shall omit the subscript or the argument when-
ever 1t 1s clear from the conrext.

Region of Support for Motion Representation

As discussed in the preceding section, 2D motdon in an
image can be described spatially by a model from Table 1.
Models from this teble differ i terms of the number of
paramezers and in terms of the functiopal dependence of
A(x) on those parameters. In gencral, the higher the num-
ber of parameters, and thus the higher the function order,
the more precise the description of the motion field. At
the same tune, however, an excessive number of parame-
ters may result in motion “overmodeling” (excessive
number of degrees of freedom—important in video pro-
cessing and computer vision}, and increased coding cost
(important in video coding}. In this case, the motion esti-
mation accuracy may actually decrease. This is due to
ill-posedness of motion estimation; for example, no
unique solution may exist, The precision of the motion
field also depends on the region of support R < A for the
model, i.e., the set of image points to which the model ap-
plics. Since the zrue mortion field d is rarely purely
translational or divergent or cxhibits other rcgulant} L the
smaller the region of support &, the better the approxi-
mation. The quality of approximation for a given motion
field 4 can be measured, for example, by the
mean-squared error

g2 =L

P S d(x)\f

(6)

Thus, for a given number of parameters the precision of a
motion field can be adjusted by choosing a suitable region
of support R. Unfortunately, the error £2 can be mea-
sured only if & is known, i.e., for computer-generated
(synthetic) 1mages. In the following sections, we discuss

(1) = %) + (1) (T — £) + = ( ) Lir-)2. different support regions proposed in the literature, with
(5)  both fixed and variable sizes.
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Global Motion

The most constrained, yet simplest case is global motion,
i.e., motion such that all image points are displaced in a
uniform manner. The region of support for such models
consists of the whole image (Fig. 3a)

() (d)

A 3. Various regions of support for a motion model: (a) global,
(b} dense, (c) block-based, and (d) region-based. The implicit
underlying scene is of “head-and-shoulders” type as captured
by the region-based model in (d).

R=A, 7)
where it is assumed that the sampling grid A is an or-
thogonal lattice: A={L,..., K} =x{1,...,L}, with K, L
being the numbers of columns and lines in the image. The
global motion is usually camera-induced, as is the case ofa
camera pan or zoom. It is the simplest case because the
motion of all the image points can be described by a small
set of parameters (e.g., affine; Table 1] related to camera
parameters [30], [69], [93]. Ar the same time, this is the
most constrained case, because very few parameters de-
scribe the motion of all image points; only simple motion
fields can be represented in this manner, The global mo-
tion model has been extensively used in computer vision,
but has only recentdy found applications in video coding.
It has recently been adopred in phase 11 of the MPEG-4
standard [48], [60], [79]; in sequences with clear camera
pan/zoom, substantial rate savings have been achieved
compared to standard methods based solely on local
block motion estimation.

Motion of Individual Image Points

At the other extreme of the spectrum, the region of sup-
port may consist of a single image point (Fig. 3b) [2],
[43], [59], [68]:

R, ={x}, xeA

Then, motion of each image point can be described by a
set of parameters, such as displacement in the case of lin-

Table 1. Motion
2D Model 3DModel:
ROy I : Camera Model:
Nusiber of Motion field 3D surface 1 gy 1otion Lo
parameters | function G
Tratslational 2 () = (. b7 Adbitrary | NELED | orihographic
' # a # . : ' e
6 d(x){b‘ bjw(bj Planar | “3Dvaffine | Orthographic
G+ 0,5+, :
ER T+ax+h R
5 =] G | Pavar | 8Dt
. Ni+ax+by (S oAt
4 él+a2x-}?'a3_y+u6x2+u5xy+ﬂ4jz2_ b Sp e
R ) = by + bt by v b + by + byt | Parabolic | -s_fD?“;f_‘ﬁr’.‘?i _
2 p‘_er.AZ-' 2. _. A=Y ﬂ"f._ H(x ~Ai y-A “.Smoo_th”'as_ s'p:ec'iﬁg:d:by'
prxels. ~\&;) . interpolation kerriel A
St e ZIIq i : : &y o - )
: Polyromial. Motion= | A(x) = 2 p ¥ “Smooth” as specified by X
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ear motion, or velocity/acceleration in the case of qua-
dratic trajecrories in (5). This pixel-based or dense motion
representation is the least constrained one since at least
two parameters describe movement of each image point,
and thus, at least 2 x K x L parameters are used to repre-
sent motion in an image. Consequently, a very large num-
ber of motion fields can be represented by all possible
combinations of parameter values. At the same time, the
method is the most complex due to the number of param-
eters involved. Although, from a purely computational
point of view, it may not be the most demanding tech-
nique, pixel-based motion estimation is definitely one of
the most demanding approaches. Dense motion repre-
sentation has found applications in computer vision, e.g.,
for the recovery of 3D structure, and in video processing
(standards conversion, deblurrmg, noise reduction). Its
direct use in video compression has only shown reason-
able success in the form of pel-recursive motion estima-
tion. In this approach, first, a motion vecror for each
image point is causally predicted from previously esti-
mated and transmitted motion vectors. Then, an update
to this prediction is computed while minimizing the mo-
tion-compensated prediction error [73]. Clearly, there is
no physical reason for causal spatial prediction of motion
or for the choice of any particular direction in this predic-
tion. However, noncausal estimation and transmission of
pixel-based moton fields has not proved successful to
date; the potential gains from a more precise morion de-
scription are usually ourweighed by the need to transmit
thousands of motion parameters. Current work contin-
ues in the direction of parametric approximations of
densc motion, such as those given in Table 1.

Motion of Regions

Between the two extremes above, one can find methods
that apply motion models from Table 1 to image re-
gions. The motivation is to ensure a more accurate
modeling [smaller approximation error {6}] of motion
fields than in the global motion case and a reduced
number of parameters in comparison with the dense
motion. The simplest image partitioning is into
nonoverlapping rectangular regions R, of fixed size
B, x B, referred to as blocks, whose union covers the
whole image (Fig, 3¢):

R, =1x=0N7T eA:(m-1)B, <ismB_,
{(n—11B, <j=<uB,};
KB n=1 ..,

m=1,... L/B

L-

Block partitioning with simple translational motion is
uscd today in all digital video compression standards, i.¢.,
H.261, H.263, MPEG-1 and MPEG-2 [45], [46], |49].
Although very successful in bardware implementations
due to its simplicity, this model is very imprecise if used
on images with general morion, e.g., roration, zoom, and
deformation. To increase the number of degrees of free-
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n video mmpr% ion, knowledge
of motion helps remove temporal

data redundancy and, therefore,

attain high compression ratios.

R R R

dom, affine motion models have been proposed in con-
junction with the same rectangular partitioning [ 4], [61].
Such models permit a reduction of the approximation er-
ror (6) within cach rectangular block, and, at the same
time, assure a better match of intensities along motion
trajectories.

Affine motion of rectangular blocks of image points is
hardly a precise model for arbitrary motion in image se-
quences; objects in natural 3D scenes rarely result in rect-
angular projections onto the image plane. Thus, a more
general image partidioning is necessary. The reasoning is
that for objects with sufficiently smooth 3D surface and
3D motion, the induced 2D motion fields in the image
plane can be suitably described by models from Table 1 if
applied to the area of object projection. A natural image
partitioning can be provided by the image acquisition
process itself. Because several 3D objects typically move
in front of a camera, it is straightforward to group all pix-
els arising from one surface of a 3D object into one re-
gion. Not all 3D objects, however, move independently
{e.g., car and its driver). Therefore, it is more interesting
to find image partitioning such that all image points in a
region arise from objects that undergo ore motion. Then,
motion parameters can be estimated from alf the image
points in a moving region. In both cases, however, a re-
gion is described as follows (Fig. 3d)

R, =, CA,

where all arbitrarily shaped regions %, are
non-overlapping and their union covers the complete im-
age. To find a motion-induced partition, certain knowl-
edge about motion is necessary, and conversely, to find
motion parameters a partition is needed. The problem is
often solved by first applying a segmentation followed by
motion estimation [94], or by first estimating motion pa-
rameters and then following with segmentation [25].
Since the two processes are not independent, a more ap-
propriate solution is to carry out joint motion estimation
and motion-based image segmentation. This can be done
in an interleaved fashion, where estimation and segmenta-
tion steps alternate [22], or by a simultaneous estimation
of segmentation labels and motion parameters at each loca-
tion [15], [84]. Although the problem is quite difficult,
some interesting results have been achieved to date.

It is important to realize that in the case of arbi-
trarily-shaped regions, motion representation for each re-
gion consists of a set of motion parameters and of 2 region
boundary description. Compared to models based on
rectangular blocks (block-based models), a region-based
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4 4. Typical videoconferencing images at QCIF (1 76 x 144) resolution:
(@) “Carphone” (frame 171}, and (b) “Miss America” (frame 6).

model has the capacity to perform better image matching
at the cost of a more complex representation. This
trade-off is well-known in video compression, since both
intensity/color residual (image matching error) and mo-
tion .information must be transmitted over a lim-
ited-capacity channel. The difficulty lies in finding a
compromise between a precise, but rate-costly, motion
representarion that gives a small intensity/color residual
and coarse motion information that results in an in-
creased residual [25], [35], [85]. This is a very active area
of research today. The resulting region-based image de-
scription is similar to the description language of com-
puter graphics, thus somewhat merging worlds that, for a
long time, have been considered unrelated. This enriches
both worlds; for example, objects from natural imagery
can be added to computer graphics, while functionalities,

so far reserved for computer graphics, can be applied to
natural imagery {object-based image manipulation).

In general, image partitioning based on fixed rectangu-
far blocks under translations is ourperformed, in terms of
intensity/color residual, by region-based affine motion
models [20]. While the former is simple to implement in
bardware, the latter requires fajtly sophisticated image
analysis. As a compromise, partitioning methods based on
rectangular variable-size blocks have been investigated
[14], [26], [70]. In such an approach, block size is reduced
locally wherever a smaller block size improves motion
compensation, i.e., reduces the intensity/color residual.
Certainly, this increases the complexity of the image parti-
tion, but for simple tree-based schemes, such as quad-tree
block splitting, the overhead is small [70]. Motion estima-
tion with variable-size blocks has been shown to give sub-
stantial gains in practice, and is presently used in the T.263
video compression standard [49]; 16 x 16 blocks can be
individually split into four 8 x 8 blocks.

Motion compensation using arbitrarily shaped regions
has been adopted in the MPEG-4 standard [47]. Al-
though only local translational motion of (partial) blocks
1s exploited, rather than higher-order parametric motion
of complete regions, the approach results in substantial
compression gains. Consequently, the visual quality of
images is significantly improved around object bound-
aries (reduced “mosquito effects™).

T'o demonstrate the impact of various regions of sup-
port on the motion estimates, Fig. 5 shows results for

block-, pixel-, and region-based

motion models computed for
typical videoconferencing ma-
terial (Fig. 4). Note the lack of
detail due to the low resolution
(16 x16 Dblocks) of the
block-based approach, bur the
approximately correct motion
of objects. The pixel-based
model results in a smooth esti-
mate with more spatial derail,

{a) Block-Based Motion

{¢) Region-Based Motion

(d) Regions‘ for (c)

bur at the cost of reduced preci-
sion, especially within the win-
dow of the car. As can be seen,
the region-based model assures
both accuracy and detail. Al-
though the associated segmen-
tation does not correspond
exactly to the objects as per-
ceived by humans, it neverthe-
less closely delineates object
boundaries. The impact of vari-
ous regions of support on mo-
tion-compensated prediction
and prediction error is shown in

A 5. Typical motion fields computed from sequence “Carphone” (Fig. 4a) for different regions of sup-
port: {a) block-based (16x16 blocks), (b) pixel-based [globally-smooth as in (17)], and (c.d) re-
gion-based with affine mation model {Table 1). For details of the region-based algorithm, see [20].
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Fig. 6. Note the blocking arri-
facts for the block-based mo-
tion model and the associated
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(a) Block-Based Prediction (b) Block-Based

Prediction Error (1.8 dB)

t 5
(c) Pixel-Based Prediction (d} Pixel-Based Prediction

Error (35.9 dB)

(e) Region-Based Prediction

(f) Region-Based
Prediction Error (35.4 dB)

A 6. Typical motion-compensated prediction and prediction error
(x2) for different regions of support (Fig. 5). The numetical
measure shown is a peak prediction gain expressed in dB.

4-dB penalty in the peak prediction error as compared with
the pixcl-based model. The 0.5-dB penalty of the re-
gion-based model is small enough to make the region- and
pixel-based prediction images virtually identical. This may
be mmportant in video processing, since the region-based
model would allow object manipulation without signifi-
cant quality penalty (assuming that semantically meaning-
ful segmentations are available). The region-based model
shows a 3.6-dB prediction gain compared to the block mo-
tion, however, this is offset to a large extent by the in-
creased amount of data needed for model description
{motlon parameters and shape of regions). Presentdy, vari-
ous approaches to joint motion segmentation and estima-
tion are being developed worldwide. This seems to be a
very promising framework both for video compression
and video processing.

Hierarchical Motion Models

The practical concept of a variable-size block for motion
models [14], [26], [70] can be regarded as a special case of
hieyavchical representation that has often been exploited in
computer vision applications {281, [76]. In such a represen-
tation, the estimate (in this case motion) can be modeled ac
multiple levels of detail, making it possible to extract coarse
characteristics first and add finer details later [37].
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In Fig. 7, we show a multiresoiution representation of a
motion field in dual form. On the left, a motion field is rep-
resented at multiple resolutions and scales at the same time.
Note that we follow the definidons of resoiution and scale
proposed in [91]. Onthe right, is shown an equivalent rep-
resentation that can be obtained from the left representa-
tion by upsampling and interpolation. This representation
is at multiple resolutions, but at a single scale.

The multiresolurion/multiscale representatdon from
Fig. 7 (left) captures coarse motion properties at the higher
levels of the pyramid while allowing for progressively
more detail when descending in the pyramid. Due to scale
change, motion vectors located two pixels apart at the low-
est resolution are eight pixels apart at full resolution for a
three-level pyramid with dvadic subsampling. Conse-
quently, for madels imposing spatial interaction between
neighboring motion vectors (e.g., smoothness), lon-
ger-range interactions are enforced at lower resolution
{higher scale) levels while shorter-range anes are recovered
at higher resolution (lower scale) levels of the pyramid.

As mentioned above, the two representations in Fig. 7
are equivalent. The multiscale representation (left) is used
in practical estimation algorithms due to its computa-
tional efficiency, whereas the single-scale representation
(right) is more transparent for certain theoretical consid-
erations, for example, to assure consistency of motion
models between different resolutions [40]. This will be
discussed further in “Hierarchical Optimization”.

The single-scale representation can be alse thoughr of
as a motion model with an adjustable region of support.
An early example of such a model, where motion parame-
ters are confined to large blocks first and then fine-tuned
using smaller blocks, is shown in [3]. This allows early
capture of macroscopic motion properties and their sub-
sequent refinement. This approach can be taken further
by allowing a spatially nonuniform adjustment of the size
of the region of support as 18 done, for example, in

quad-tree splitting [26], {70].

Interdependence of Motion and Image Data

At the very essence of every motion-estimation algorithm
lic assumptions about the relationship berween motion pa-
rameters and umage intensity. Let g, (%) be the image in-

& 7. Dual representation of a motion field at multiple resolu-
tions: at multiple scales (left) and at a single scale (right).
The representations are equivalent since one can be ob-
tained from the other by filtering/downsampling or
upsampling/interpolation operators [971].
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in video processing, motion
analysis is used for standards
conversion, noise suppression,
and deblurring.

tensity at position {x,#). The usual, and reasonable,
assumption made is that image intensity remains constant
along the motion trajectory. This assumption implies,
amonyg others, that any intensity change is due to motion,
that scene illumination is constant, and that object surfaces
are opaque (Lambertian surfaces). Although these con-
straints are almost never satisfied exactly, the con-
stant-intensity assumption approximately describes the
dominant properties of natural image sequences, and mo-
tion estimation methods based on it usually work well.

Let s be a variable along a motion wajectory. Then, the
constant-intensity assumption translates jnto the follow-
ing constraint equation

Yy
s ®)

By applying the chain rule, the above equation can be
written as the well-known smetion constraint equation [43]

&ﬁu_ir-@

% &
= (VT v + -2 =)
w Ty TN

9

where

a aY
2
ax gy

denotes the spatial gradient and v = (# , ») T is the velocity.
The above constraint equation, whether in the continuous
form or as a discrete approximation, has recently served as
the basis for many algorithms estimating linear motion
[8], [39], [58]. The same assumption has been used to es-
timate nonlinear motion trajectories based on multiple im-
ages; in [17] the constraint (8) was expressed in the
frequency domain, while in [13] it was applied directly to
intensities. Note that equarion (9) applied at one position
{x,¢) is underconstrained, since it only determunes the
component of velocity v in the direction of image gradient.
Due to this so-called apermure problem, additional con-
straints must be used to uniquely solve for v [417, [43].

Since color is a very important actribute of images, a
possible extension of the above model would be to include
chromatic image components into the constraint equa-
tion. The motivation is thar in areas of uniform intensity,
but substantial color detail, the inclusion of a color-based
constraint could prove beneficial. Let g = (g7, ..., §5)7
be a vector of attributes associated with an image; for ex-
ample, its luminance and two chrominances as defined in
the ITU-R 601 recommendation. Then, the con-
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stant-intensity and constant-color  constraints can be
written jointly in a vector form as follows:

G,.Y,,.9 5

ox oy of (10}
In general, estimates obtained using this constraint are
more reliable than those calculated using (9) due to the
additonal information exploited. Tlowever, aithough
(10) is a vector equation, different components of g may
be closely related and therefore additional constraints
may be needed. We will return to these constraints in the
next section,

The assumption about intensity constancy is usually
only approximately satisfied, but it is particularly violated
when scene illumination changes. As an alternative, a
constraint based on the spatial gradient’s constancy in the
direction of motion has been proposed [5], [88]

LAV
i (11)

This equation can be rewritten as follows:

92 g/ x> 92 g/ dxdy oaVg) =
r+—=-=0

{azg/ Ay 823/ ay? :| ot (12)
It relaxes the constant-intensity assumption, but requires
that the amount of dilation and rotation in the image be
negligible, a limitation often satisfied in practice®. Note that
although both (I1) and (12) are linear vector equarions
with two unknowns (# and »}, in practice they do not lend
themselves to the direct computation of motion, but need to
be supported by an appropriate motion model. The primary
reason for this is that, in practice, the constraints are not sat-
isfied exactly. Furthermore, the constraint (12} 1s based on
second-order image derivatives. They are difficult to com-
pute reliably due to the high-pass nature of the opera-
tor—usually data smoothing must be performed firsc [21],
[88]. To assure smoothness of the resulting motion fields,
post-filtering is often applied as well [21]. In order to allevi-
ate problems associated with noise, vanishing gradients,
etc., that may lead to ill-posedness, an alternative approach
based on the minimization of a norm of AV / ds under a
smoothness constraint has been developed [89]. The ap-
proach has been demonstrated to be very robust in the pres-
ence of time-varying illumination.

A different approach to handling nonconstant inten-
sity in the direction of motion is through explicit model-
ing of the llumination [34], [64]. The approach is
promising, although it requires complex minimization
since, in addition to the motion field, illumination fields
must also be estimated.

The constraints discussed above find different applica-
tions in practice. A discrete version of the con-
stant-intensity conseraint (9) is often applied in video
compression since it resulrs in small motion-compensated
prediction error. Although motion can also be computed
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based on color using the veetor constraine (10}, experience
shows that the small gains achieved do not jusdfy the substan-
tial increase in complexity. However, motion estimarion
from color data is useful in video processing tasks (e.g., mo-
ton-compensatcd filtering, resampling), where any motion
error may result in visible distortion. Moreover, the vector
constraint is Interesting for estimating motion from multiple
data sources {e.g., range/intensity data). Finally, the gradi-
ent-based constraint (11) is often emploved in computer vi-
sion to find the true motion despite varying lamination.

Estimation Criteria

Various motion representations as well as the relation-
ship between motion and images discussed in the previ-
ous section can be used now to formulate an estimation
criterion. There is no unique criterion for motion estima-
tion, however. The difficulty in esrablishing a good crite-
rion is primarily caused by the fact that motion in images
is not directly observable® and that particular dynamics of
intensity in an image sequence may be induced by more
than one motion {nonuniqueness). Another problem is
that most of the models discussed above are far from
ideal. For example, the constant-intensity model ex-
pressed through the motion-constraint equation (9) is
underconstrained and, at the same time, is often violated
due to factors such as noise, nonopaque surface reflec-
tions, occlusions, or spatio-temporally varying illumina-
tion. Therefore, all attempts to establish suitable criteria
for motion estimadon require further implicit or explicit
modeling of the image sequence.

DFD-Based Criteria
An important class of criteria arising from the con-
stant-intensity assumption (8) aims at the minimization
of the following error

St,t(x)z‘gr(x)_jrx(x)’ VMER (13)
where

J,. @)= g (x+d, (x))

is called a motion-compensated prediction of g, (x). If R
is a complete image (R = A), this error is called a displaced
frame difference (DED). However, when Risa block or an
arbitrarily shaped region, the corresponding error is
called a displaced block difference or a displaced vegion differ-
ence. As before, subscripts may be omitted when the nota-
tion is clear from the context. Since, in general, &, (%) is
real-valued, intensities at positions outside of the sam-
pling lattice A must be recovered by a suitable interpola-
ton method. For estimation methods not requiring
intensity gradients, C'¢ interpolators that assure continu-
ous interpolated inrensiry are usually sufficient. The case
of methods employing intensity gradients will be dis-
cussed in the “Regularization” section.
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While too small a number of
motion parameters may lead to
poor motion description, an
excessive number may result in
motion “overmodeling” and
increased coding cost.

Motion fields caleulated solely by minimization of the
magnitude of the prediction error {13) are, in general,
highly sensitive to noise if the number of pixels in the re-
gion of support R is not large compared to the number of
motion parameters estimated, or if the region is poorly tex-
tured {38, Chapter 16]. However, such a minimization
may yield good estimates for parametric motion models
with few parameters and a reasonable region size.

To measure the magnitude of the prediction error e
(13), a common choice is an L, norm. For the L, norm,
this corresponds to the mean-squared mo-
tion-compensated prediction error:

Jo ) =3 (g,(%) — g (% +d(x)))2.
forr} (14)

This criterion, although very often used, is unreliable in
the presence of outliers; even for a single large error £(x),
2 (x)is very large and by overcontributing to J, it biases
the estimate of 4. Therefore, a more robust mean absolute
error criterion

@)= Y1y, (%) - g, (0 d{x)
J,d) ;lﬂ (%)= 1 (2 +d(x)} ] (15)

1s the criterion of choice in practical video coders today.
This criterion is less sensitive to bias due to the piecewise
linear dependence of [, one, and, at the same time, is less
involved compurationaliy. Also, the median-squared er-
ror criterion

j%(d) :mCdxeR (ﬂy(x) - ﬂr(x+d(x)))23

due ro the use of a median operator, and 2 criterion based
on the (differentiable) Lorentzian function

J.dy=3 logl+{g,(x) - g.(x+d(x)))> [ 262),

2eR
due to the saturation of the error function for outliers (G is a
scale parameter), perform well but require more compura-
tions. An interesting discussion of robust estimarion criteria
in the context of motion estimation can be found in [8].

Frequency-Domain Criteria

Another class of criteria for motion estimation uses trans-
forms, such as the Fourier rransform 7. For example, due
to its shift property, the 2D Fourier transform of an im-
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A region- based ‘motion made!
reflects the physical nature of
the world better than a model
based on rectangular blocks,
yielding a more accurate motion
description at the cost of added
complexity.

age undergoing spatially-constant motion, i.e.,

4,x)= g, (x +b), satisfics
Fla, 0} _ o .
Tl exp(j2n f1&)

where f'=(f,,f,)T denotes 2D spatial frequency.
Hence, & can be directly estimated from the phase, but all
standard precautions need to be taken to remove phase
ambiguiry (phase wrapping with the period of 2x}. This
idea can be extended for constant-velocity motion with
&=v{1— ) (1> ¢} by notng that for 1=0,

J.(%) = g1, (%) * 8w — vt) (16)
where 8(x) is the Dirac delta function and “*” denctes the
convolution. Taking the 3D Fourier transform of (16) we
can easily see [50] that

Fla. @) S(fTr+ f)

Flg, &)t

with f, being the temporal frequency. Clearly, in the case
of a uniformly translating image under the con-
stant-intensiry assumption, the Fourier specrrum is zero
everywhere in the 3D spatio-temporal frequency space
(fesfys[,), except in a plane with an orienration
uniquely defined by the velocity v =(u, 77 (Fig. 8).
Then, the estimation of 7 is reduced to the search for max-
imum-occupancy planes in the 3D spectrum. This can be

& 8. Nonzero plane in the 3D Fourier spectrum of an image
sequence without motion (darker plane) and with a
spatially-constant mation v (brighter plane).
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done using, e.g., Wigner distribution [50]. Unfortu-
nately, due to the lack of suitable theorems, the above
spectra] techniques cannot be applied to arbitrary motion
models from Table 1.

Regularization

Instead of dealing with the underconstrained nature of
(9) by restricting the motion model to a few parameters,
another approach is to explicitly model addirional con-
straints. This can be done by a weak constraint on the esti-
mate itself, reflecting the empirical observation that
typical motion fields are spatially smooth. In a pivortal
contribution, Horn and Schunck [43] have penalized the
squared error resulting from the motion constraint (9) by
a smoothness term, thus yielding for conrinuous %

a 2z
7= (VTg(x)v(x) . %}

+ A Valw)|” + || V(x| .

(17)

In practice, when dealing with discrete (sampled) images,
the integral is replaced by a summation while the deriva-
tives are replaced by their discrete approximations. In
[43], for example, an average of first-order differences
computed over a 2x2x2 cube was used. Since
first-order differences are poor derivative approxima-
tions, they can severely bias solutions to (17). Using
higher-order differences does not necessarily solve the
problem. One solution is to use C'interpolarors that pro-
duce continuous intensity and a contimious first deriva-
tive of the intensity [55]; the derivative can be found by
convolving the intensity with the derivative of the inter-
polating kernel. In general, small-kerne] operators are
preferable because the operation must be applied to all
pixels. Good results for a discrete variant of {17) [58]
have been obtained with a bi-cubic Cinterpolator devel-
oped in [53]. Another interesting solution {and discus-
sion of the problem) can be found in [77], where a joint
optimization of derivative and blurring fileers in the fre-
quency domain is described.

The smoothness term in {17) regularizes the ill-posed
problem of motion estimation (aperture effect), thus
turning it into a well-posed problem® [87]. Then, the sca-
lar A balancing the constant-intensity assumption against
motion smoocthness is termed a regularization constant.
For practical reasons, (17) is often expressed in a discrete
form, where the first term is replaced by J, () (13) and
the second term becomes a discrete version of the
Laplacian operator [59]. This formulation is often re-
ferred to as regularized, although formally it is not be-
cause the first term is no loager quadratic, but highly
irregular in 4. This rregularity is due to the dependence
of J, on 4 through the image data g, (% + Z(x}). Hence,
the overall criterion may have multiple minima, keeping
the problem ill-posed. This is unlike the formulation in
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(17) where both terms are directly quadratic in 4, thus as-
suring a unique minimum.

Duc to the smoothness term, (17) is often referred to
as the weak membrane model [9]. In physics, J describes
the energy of a membrane extended by v and reaching its
minimuun in the steady state. The darta term accounts for
external forces while the smoothness term accounts for
clastic forces, with A being the clasticity constant.

An undesired property of the smoothness term in
(173 1s that it entorces smooth motion across the
whole image, while realistic motion fields exhibit dis-
continuities at object boundaries. In order to avoid
smoothing across object boundaries, intensiry edges
may be extracted, and the smoothness term may only
be 1ppllcd along thoqc edges [41]. This ploccdurc 13
motivated by the observation that object boundaries
often coincide with intensity edges. For the same rea-
SO, an oriented smoothness constraint has been pro-
posed [67], [68] that applies smoothing only along
the direction of a locally constant intensity. Investi-
gations in [78] show that the oriented-smoothness
constraint is the only plausible one among all separa-
ble constraints of the same order. It was also pro-
posed to preserve boundaries in motion ticlds by
nonstationary autorcgressive modeling [27] or by a
line process representing motion discontinuities
(smoothness suspended across line elements
switched on) [441, [57]. An example of such an adap-
tively smooth motion field and its associated line
process is shown in Fig. 9. Note the improved mo-
tion discontinwities at object boundaries. However,
since the line process model (discontinuity} is very
local, a berter object delincation is usually achicved
by the region-based approach (Fig. 5¢ and 5d).

Bayesian Criteria

A general framework for motion-fieid estimation is
provided by Bayesian methods [59]. Let motion field 4
be a realizarion of a random ficld Dwith given a posteri-
ort probability distribution. An estimate is computed
as a special realization of this a posterion distribution,
such as the mean or the mode. When a motion ficld is to
be estimated given the image g, | (realization of G, )
and the previcus image g, , the a posteriori probability
distribution can be formally written, using the Bayes
rule, as follows

P(Dzdlct—el :ﬁHl;ﬂr)
PG, =8.,|P=d;g,) PD=d:g,)
P((;H] :ﬂifl;sgt)

>

(18

where P 1s a probability measure. In this notation, the
semicolon indicates that subsequent variables are only de-
terminisric parameters. For a given pair of images, the de-
nominator is a normalizing constant. The two factors in
the numerator are modeled separately based on the obser-
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numercus criteria for
thomn.

BO0

There are
motion estima

vation model and a priori model, respectively. To be
more specitic, let us consider the maximum a posteriori
(MAP) estimatc of D. Then, we have

=‘g2+1 Mgr)
=g,,u|D=d4,)-FD

d =arg max P(D =d\G,,
=argmax PG, =dig,)
L= daD=d;4.)]

—log[P(D=d;4,)]}.

=arg n}tin{—log{P(G
(19)

The first term denotes the likelihood of an image given a
motion field and the previous image. With the givend and
4, one can compute the motion-compensated prediction
of G,_,. A common observation model is to assume that
the likelihood is completely specified by a random field &
that models the displaced frame difference (13)

PG, =g,.,|D=d,5.)=PE=¢)

Various distributions have been proposed for P(E =€),
e.g., zero-mean whitc Gaussian [56],

(20)

“2en )
P(E=g)= (2152 ) IR12 exp 27’ — 21
G2

Laplacian, and segment-wise stationary generalized
Gaussian [84]. Additionally, special )n%lderam(m has
been given to violations of the constant-intensity assump-
ton; robust estimation via suppression of outliers [8],
modclmg of varying illumination [64], and of occlusions
[23], [84] are just a few examples.

With the displaced frame difference model {20), the
last formulation in (19) can be related to mingmum de-
scription lemgth (MDL) estimation [72]. It is well-known
from the coding theory that an optimal encoder attains
the code length of —log{P(¥})for coding the sample yofa
random variable 7. The code length is also referred to as
the deseription length or self-infovmarion [19]. In hybrid
video-coding schemes, motion is transmirced to the re-
ceiver along with the displaced frame difference signal.

T
sy 1

(a) Pixel-Based Motion
{Adaptive Smoothness)

(b) Line Process for (@)

A 9. Typical motion field computed from sequence “Carphone”
(Fig. 4a} for a dense adaptively-smooth (line process) motion
model (for example, @ combination of (21), (26) and (27)).
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To achieve high compression, lossy transmission can be
applied to both or to cither one, however at the cost of re-
ducing image quality. Hence, the first term under
minimization in (19) denotes the description length for
the displaced frame difference, while the second term de-
notes the description length for the motion field. There-
fore, from a data-compression point of view, the MAP
estimate 4 is the motion field that minimizes the overall
theoretical code length for lossless encoding of a video se-
quence. This relarionship has been used in
rate-consirained motion estimation [35], [85], where the
coding gain resulting from the transmission of a motion
vector is related to its cost {description length).

It is worthwhile to note that for a motion field with a
uniform a priori distribution, the a posteriori distribution
(18) depends on the displaced frame difference only. In
other words, from a statistical point of view, methods
that minimize the displaced frame difference only per-
torm maximum likelihood estimation. .

To incorporate prior knowledge into the estimate A
(19), an a priori distribution P(D =4; 4, for disphce-
ments must be selected. Numerous forms for this distribu-
tion have been proposed in the literature. In order to
exploit correlation of displacements at adjacent sites, the a
priori distribution may favor displacements close to some
expected displacement d(x) (deterministic, but un-
known):

dix) - d )
TP B Ll

F 20}

The expected displacement 4 (x) may be compured via
causal prediction from displacement estimates at adjacent
sites and from previous frames. The scalar L =1/ 262 may
be viewed as a regularization constant balancing a small dis-
placed frame difference and high correlation of motion fields.

Although a spatially causal model is advantageous
computationally, spatial causality cannot be justified in
displacement fields, unlike for time-dependent signals
such as speech. Elegant noncausal models capturing
properties such as “smoothness™ are provided by
Gibbs/Markov random fields [33]. Those random fields
require specification of a neighborhood system G, i.e.,
neighborhood G, — A for each site & € A. Neighbor-
hood systems satisfy the following conditions:

4 No site is its own neighbor; x 28, Ve e A,

;) yBee
| [ Neichborsod

@ f ®)

4 10. Neighborhoods and cligues for (a) first-order and (b) sec-
ond-order neighborhood systems.
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A general framework for
motion-field estimation is
provided by Bayesian methods.

& Neighborhood membership is symmetric;x €@,
o yel, ,Vx, yeA

Fig. 10 depicts first- and second-order neighborhood
structures, often used in image processing, that consist of
the four and eight nearest sites, respectively. Another im-
portant element of Gibbs random field definition is a
chigne. A clique ¢ is a subset of A, such that any ewo differ-
ent elements from ¢ are neighbors (Fig. 10). The set of all
cliques will be denoted by C, and & . will denote a vector
of elements of 4 associated with the sites in ¢.

A (discrete-valued) Gibbs/Markov random field D,
with respect to a neighborhood system G, can be defined
by the Gibbs distribution

oo loo
P =d)=—oxp( H(&)) -

where the Hamiltoninn H and the partition sum Z are de-
fined as follows

H@d)=YV.d,),

cel

7= ; exp{-H{d)).

In these definitions, ¥, may be any real function of vari-
ables 4, , that is the variables at sites within the clique .
The only, although nontrivial, condition on P to be a
well-defined distribution is that Z e R must be finite,
Continuous-valued Gibbs distributions are defined in the
same way except for the partition sum, which is replaced
by an integral called the partition function.

Animportant fearure of Gibbs/Markov fields is the fol-
lowing Markov property:

(23)

(24)

P(D(x)=d(x)| D(y}=d(y),Vy £ x) = P(D(x) = d(x) |
D{y)=d(y),VyeG,).

The conditional distribution of a single variable D{x) is
completely specified by the variables D{y) within the
neighborhood of &, For this reason, the conditional dis-
tribution is often referred to as the local characteristic.

As mentioned above, smoothness constraints can be
easily modeled by Gibbs/Markov random fields, for ex-
ample by a first- or second-order Gibbs/Markov random
field with the following pair potential

Vo (@), d(3) = M) —d )", Fiw, yheC (25)

and a vanishing potential for all cliques comprising other
number of elements than two. This model yields a
discretized version of the weak membrane model (17) for
the Euclidean norm and # = 2.
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A 11, Line field lattice with neighborhood system and some asso-
ciated cliques.

By constructing the a priori distribution P(D =45 4,)
= P(D difrom (22) and (25), and by combining it with
any of the discussed observation mod.els, the MAP crite-
rion {19) becomes well-defined.

Gibbs/Markov random fields also allow explicit mod-
eling of discontinuities. A straightforward way is to
model the discontinuities by a binary-valued line field on
a dual lartice (Fig. 11). A line field & can be incorporared
into the Bayesian formulation by replacing D and d in
(19) by (D, B) and {d,4), respectively. The line process
does not intluence the observation model, while the a pri-
ori model for {D,B) is now defined by the following
Gibbs/Markov random field:

V( EA%2 (d(x) ) d(y): b(z))

=) - ) (- bia), Viw yzk e C g
Vi, @(z))=A, Kz), V{z}eC. (273
The motion smoothness constraint in Vo 18 sus-

pended whenever the line process is sw1tched ‘on”
(b(z)=1). At the same time, V,_,, defined for single-
element cliques, penalizes the introduction of
discontinuities. This model can be improved by extend-
ing the peighborhood of line elements and considering

cliques as depicred in Fig. 11 in order to favor continuity
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and smoothness of the line process [32], [55]. An ex-
tended line process that models discontinuities between
motion vectors within two-element motion vector
cliques of the second-order ncighborhood model has
been proposed in [10]. The resulting line process includes
four line elements per pixel.

Another way to model discontinuities explicitly is by
the introduction of segmentation [16], [82], [83]. The
segmentation can be represented by a generic label field
s(x), where all pixels of the same region possess the same
[abel. Then, the region of support for the smoaothness
constraint can be limited to the same-label sites and the a
priori distribution of the label field can be modeled by a
first- or second-order Gibbs/Markov random field:

{x,v}(d(x ( )vs(x)a-"(y))

=, A %) - d(y)| 8(s(x) — s(¥))
+ 4, (L=-8(s{xy—s(3)), Yix,y} el

The delta finction in the first term suspends the smoothness
constraint across region boundaries. The second term favors
compact regions with short boundaries. Although it is for-
mally similar to the line process, the segmentation offers the
advantage that the images are partitioned meaningfully and
individual segments tend to undergo continucus motion.
Because segments correspond to continuous surfaces of ob-
jects in the real world, the segmentation may be considered
not only as ateol to estimate discontnuous motion, but also
as a valuable information in itself.

Tt is worthwhile to note thar the motion smoothness con-
straint can be also extended in the temporal direction [77,
[8], [74], or in the direction of motion trajectories [83]. An
even further extension of this idea is explicit modeling of
motion trajectories and estimation of the associated param-
erers. For exarple, in [13] moiion trajecrories are modeled
by second-order curves (5) and their parameters (velocity
and acceleration) are estimated from several frames using
deterministic relaxation. As shown in Fig. 12, such a model
can give unquestionable gains in motion-compensated
video sequence interpolation; reducton of the reconstruc-
tion error due to the inclusion of acceleration is evident both
visually (around mouth and eyes) and numerically. Possible
applications for this approach are in video standards conver-
siont and in very-Jowbit-rate video coding in order to recon-
struct missing frames at the receiver (transmission is usually
at Jower temporal rates}.

Search Strategies

With models expressing our knowledge abour motion and
images specified, and an cstimation criterion selected,
what remains is to identify an estimation procedure. This
procedure involves an optimization of the sclected crite-
rion with respect to the parameters of the chosen model.
For densc motion fields, both the number of unknowns
and the state spacc tor each of them may be large as their
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(b} Error: Linear (30.26 dB)

(e} Error: Quadratic (36.91 dB)

(i} Velacity for Quadratic Model

) ) (gj’ Interpolation Image: Linear {h) Error: Linear (30.71 ¢B)

(k) Error: Quadratic {37.27 dB)

(i} Interpolation: Quadratic '

R

{c) Valocity for Quadratic Model

(f) Acceleration tor Quadratic Model

(1) Acceferation for Quadratic Model

i | optimal estimate. For small state
| spaces, as is the case in block-constant
motion maodels used in today’s video
coding standards, the full state space of
¢ | each motion vector can be examined.
| This leads to exhaustive-search block
' | matching.

Assuming that the estimation cri-
terion J(4) varies slowly within the
state space near the motion estimate
sought, hierarchical search strategies
can be applied to reduce the computa-
t | tional complexity. These strategies
‘ aim at successive improvement of the
| estimate over subsequent levels of the
hierarchy. At each level, only a small
number of motion candidates is ex-
amined. Fig. 13 illustrates a hierarchi-
cal search in the case of three-step
block matching—the higher the level
of hierarchy, the lower the seareh res-
olution. A coarse estimate is com-
i | puted at the highest level as the best
i | match among all motion vector can-
didates. The state space at this level
.| can be considered as a subsampled
‘ version of the motion vector’s state

space at full resolution. At lower lev-
els, the estimate is successively refined
by testing a set of nearby vector candi-
dates. Clearly, hierarchical techniques
. | do not guarantee finding the global
‘ optimum. They may be trapped in a
| local optium of the estimation crite-
rion, i.e., the reduction in the compu-
tational load compromises the quality
of motion esumates. Note that in the
example of Fig. 13, the motion model
is not hierarchical—neither multiscale
nor multiresolution (as discussed in

—

— d

4 12. Interpolated and error images as welfl as velocity and acceleration fields for motion-com-
pensated interpolation of sequence “Miss America” (Fig. 4b) using linear and quadratic tra-
Jjectories [equation (5)] under global smoothness constraint (17} (a-f) frame 6; and (g-)
frame 14. In each case, five images were used in the estimation; for details of the algorithm,
see [13], The numerical measure shown is an interpolation error expressed in decibels.

state spaces; an cxhaustive search over the complete state
space is, with rare exception, compurarionally prohibitive.
Below, we discuss faster search strategies,

Matching

For a small number of motion parameters and a small state
space, the most common search strategy, when minimiz-
ing a prediction error, is matching. In this approach, mo-
tion-compensated predictions for various motion
candidates are compared with the original image within
the region of support of the motion model. The candidare
yielding the best match for a given criterion becomes the
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“Hierarchical Monion Models™); it is
the search strategy that is hierarchical.
Other hierarchical search strategies
will be discussed in the “Hierarchical
Optimization” section.

Relaxation

For dense motion fields based on a noncausal model, si-
multaneous optimization of all parameters (often hun-
dreds of rhousands) may be computationally
prohibitive®. To alleviate the problem, relaxation tech-
niques construct a sequence of estimartes such that consec-
utive estimates differ in onc variable at most. Let’s
consider the estimation of a dense motion field 4. A series
of motion fleldsdco , 4 .., is constructed such that any
two consecutive estimates A4 di# -differ at most at a
single site &,, which is cither predetermined by some
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® Search Posilions at Highest Lave!
* Search Positions at Intermedizte Level
* Search Positions at Lowest Level
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& 13. Three-step search strategy for block matching.

site-visiting order, e.g., line scanning, or selected ran-
domly. Hence, at each step of the relaxation procedure
only the motion vector of a single site needs to be com-
puted while vectors at ail other sites remain unchanged.
In a deterministic relaxation, each motion vector is se-
lected from its respective state space with 100% certainty.
For example, a new local estimate is computed by mini-
mizing the given criterion. Variables are updated one after
another and the criterion is monotonically improved step
by step. A well-known deterministic relaxation technique
15 the method of ferated conditional moedes (1CM) [6]. For
the Bayesian estimation criterion (19), the optimal motion
vector is sclected from its full state space as follows:

diry(x,) =arg ;n:mP(D(xﬁ,,) =d(x,),
LX)
Dixy=dv-(x) Ve zx |G, = 4.4, )
For a Gibbs/Markov field, the above expression is signifi-
cantly simplified since the conditional probability distri-

bution of a single variable D{x, ) is completely specified
by its neighborhood. Then,

Ao (%) = arg max n(d(x, ))
LTy

where
wdix,)) = P(D(x) = d(x,)| D(x) =dtD (x),

Vx e gxb 3(;1.‘+] = cqwl 36?7:)
This makes relaxarion techniques particularly suitable for
the estimation of Gibbs/Markov fields, Computational
complexity can be further reduced by sclecting 4 (x,)

from a limited set of motion vector candidates, as pro-
>as p
posed in Bayesian block matching [80]. Deterministic re-
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laxation techniques are capable of correcting spurious
motion vectots in the initial state 4497, Their major draw-
back, however, is that they often get trapped in a local op-
timum near the initial state. Therefore, the availability of
a good initial state that may include large-scale informa-
tion abour the optimum is crucial.

The dependence on a good initial state is reduced in
stochastic relaxation. In contrast to deterministic tech-
nigues, the motion vector under consideration is selected
randomly, thus allowing (with a small probability) a mo-
mentary deterioration of the criterion. One of the carliest
stochastic relaxation techniques was the Metropolis algo-
rithm [62]. In its adaptation to the estimation of motion
vectors [55] only two candidate vectors are considered
during each relaxation step: the vector from the previous
iterarion A¢+-1 (x, yand a new candidate vecror d{x, ) ran-
domly selected from a single-site state space. Moreover,
the site &, 1s selected randomly as well. It the new candi-
date has a larger probability than the previous one, this
new vector is accepted; otherwise, the new candidare is
accepted with probabilicy

Q(k} — M

A (%))

and the previous estimate 441 (x, ) is kept with probabil-
ity 1 — Qb Clearly, the lower the probability of the new
candidate d(x, ), the lower the likelihood of its acceprance.

Another important stochastic relaxation tech-
nique for Gibbs/Markov random ficlds is the Gibbs
sampler [33] that sclects di#(x,) randomly with
probability m{d(,)). It can be shown that the esti-
mates 40 of both the Metropolis algorithm and the
Gibbs sampler become independent of che initial
state d9and maximize the & posteriori distribution
when kapproaches infinity.

In order to find the MAD cstimate, these algorithms
can be combined with simulated annealing [33], [54].
This optimization technique simulates physical systems
of a large number of particles. In equilibrium, such sys-
tems follow a Boltzmann distribution

)

PD=d}=——cxp YT
B

1
Z(T)

i

(28)

where &, denotes the Boltzmann constant, 7 is the abso-
lute temperature, and H is the Hamiltonian of the system.
By writing the a posteriori distribution for Din the form of
equation (28) and selecring realizations of D for a
monotonically decreasing anncaling scheduleT,
(£=0,1,...), annealing of a physical system is simulated.
Clearly, for T, approaching zero, P{-) converges to a Dirac
impulse at the MAP estimate. For a sufficiently large T,
and a sufficiently slow annealing schedule, simulated an-
nealing with either the Metropolis algorithm or the Gibbs
sampler can be shown to converge to the MAP cstimare.
However, the required annealing schedule is extremely
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Elegant noncausal models
capturing properties such as
“smoothness” are provided by
Gibbs/Markov random fields.

slow. In practice, simuated annealing is applied with a
taster annealing schedule, thus yielding suboptimal results.

HCF Method

Another deterministic optimization technique for
Markov random fields that update a single site in cach
step is the bighest confidence first {(HICF) algorithm [18].
In contrast to relaxation schemes, its site visiting schedule
is not fixed, but is driven by the input data. Initially, all the
sites are marked as “uncomimitted”. A new a priori proba-
bility is defined based on the original one by modifying
the clique potentials V, of equation (23) as follows:

V=

£

V. ifallsitesin ¢ are committed
0 otherwise.

Hence, a site does not influence its neighbors undi it is
committed. The site-visiting order is controlled by the
non-positive stability field

H(d
Sa! (N) = {H(d

where

Hd_ )
H(d)

oprl) if % is uncommitted

opit )~ otherwise,

d =argm_inH(n§)Wirh pi(y)=d(y)Vy¢x
i

optl
and
A, =arg min H{dywith d(y)=d{yy#x

opr2
r dzd g

denote two fields with the best and second-best vectors, re-
spectively, at site x given the vectors at all other sites. At
cach step, a site with the minimum stability S, (x} is up-
dated and marked as committed. The procedure stops
when the complete field is committed and the complete
stability field is zero. At the beginning, the HCF algorithm
selects sites with a “peaked” fikelihood function, which is
rypically the case for highly structured regions. Tater, the
algorithm includes more and more sites that may not pos-
sess such an ideal likelihood function, and thus builds on
the neighborhood informarion of already estimated sires.
Since only variables at committed sites influence the opti-
mization, and initiaily all the sites are uncornmitted, the es-
timated field is independent of the mnitial state.

Gradient-Based Optimization

such as in (14), it is usually approximated by a Taylor
expansion with respect to motion parameters. Then, the
differentiation of the Taylor-approximated criterion in-
volves differentiation and interpolation of image intensi-
ties, already discussed in “Regularization.” Due to the
Taylor approximation, the model i8 applicable only in a
small vicinity of the desired motion estimate. Therefore,
it comes as no surprise that gradient-based estimation is
reported to yield accurate estimates only in regions of
small motion; the approach fails if motion is large. This
can be parrially compensated for by low-pass filtering of
image sequences. Due to the loss of image detail, how-
ever, the accuracy of the estimates suffers. A solution to
this problem is to use this less-accurate estimate as an ini-
tial state for estimation based on nonfiltered images. This
approach is discussed in “Hierarchical Optimization.”

Mean-Field Techniques

Much work on the theoretical analysis of Gibbs/Markov
random fields has been performed in equilibrium statistical
mechanics. Mean-field approaches have proven a powerful
tool for the approximation of the mean of such fields.

As outlined in “Relaxation,” the MAP estimate of a
tield governed by a distribution, such as in (28), can be
found asits mean for T — 0. A fundamental difference be-
tween mean-field annealing and stochastic annealing is
that the former is a deterministic procedure and has been
demonstrated in practice to converge quickly. Moreover,
mean-field optimization does not pecessitate annealing,
but can be performed at zero or any other temperature
right from the start, In many experiments, however, it
was found that higher temperatures prove beneficial dur-
ing the beginning of optimization due to the improved
smoothness of the objective function.

The motivaton for mean-field techniques is based on the
important resule from statistical mechanics stating that
mean values of a Gibbs/Markov random field can be ob-
tained from its partition function. For this purpose, the par-
titiont function 7 is considered to be a function of the dara.
Therefore, mean-field approaches first formulate the desired
mean field through the partiion function and then approxi-
mate the partition function by assuming that this sum is
governed by realizations near the equilibrium state. Then,
one can benefit from the property that typical optimization
criteria exhibit fewer local optima at higher emperatures.
Hence, one can design deterministic optimization proce-
dures that find initial estimates at high temperatures, and
improve them by decreasing the temperamire (annealing).

Ler us concisely illustrate the above ideas for the fol-
lowing example [see (17} and (25)]

(g, @M, () + g,x)d, (%) + Ag(x))?

Hd)=3,

Gradient-based techniques require an estimation crite- x 20?
rion J{d)that is differentiable. Because this eriterion de- + 5 Z () — i ”Hz
. . . . 2
pends on motion parameters via the image function g, (5p7eC
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where (g, , #,)7 = Vg denotes the spatial image deriva-
tives, Ag= g, ~ g, , 1s the frame difference and
d(x)= (4, (x),4,(xN7. Based on the prior distribution
(28), the mean field of the horizontal displacement at
temperature T is defined by

- 1 Hd)
d.(x)=Y d (%)= exp(-—),
(%) ; e iy

where 4 denotes the expectation of # . This can be re-
written in terms of the partition funcdon as

ok, T 22 H@)
Z L imm CXP{ % ]

_ o2k, T 02 Z
Z gy (%)

Ex(x}z

(29}

The mean field of the vertical component &, can be found
inthe same way. Expression of the mean field through the
partmon function Z above does not directly prowde an
optimization procedure, since exact computation of the
partition function is, in general, a prohibitive task. In-
stcad, mean-field optimization is based upon the approxi-
mation of the partition function, e.g., by saddie-point
approximation [31] or mecan-field approximation [95].
The latrer is based upon the assumprion that the influence
of the ncighboring motion vectors A{y), ¥ €G, onasin-
gle motion vector d(x} can be approximated by the mnflu-
ence of the mean of the neighbors £(y). Then, we can
approximate the Hamiltonian H by H __ as follows:

H(d)= Z (VTﬂ(x)d;:): Aglx))?
+* > e - Al
)"Q\
Hmf(d):z_wyéz_yw
+f 3, ity - Ay
1eg
=Y H,.

The above approgimation is separable with respect to x,
sothat A (d(x))depends on the motion vector at site
only, Hence, the partition function Z_ defined by H
through (24) is also separable in & and can be used in the
computation of the mean field via (29):

s (VT glxjd(x) + Ag(x))?

Z=Z =
PP Ve
+—2Hd(x) d(y u .
ye0s
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It is worth noting that the mean-field calculation ar site &
depends on the mean-tield values at the neighboring sites.
Hence, iterative schemes, often similar to relaxation pro-
cedures, are used in optimization. Becawse mean-field an-
ncaling starts at higher temperatures, where local optima
are less distinctive, it tends to avoid some of them. How-
ever, in contrast to simulated annealing, it cannot guaran-
tee being able to reach the global optimum.

Hierarchical Optimization

The search strategies presented in the preceding sections
are often compurationally expensive. To lower this com-
putational burden, the hierarchical motion representa-
tions discussed in “Hierarchical Motion Models” are
often exploited as shown below.

In the multresolution/multiscale approach (Fig. 7,
left), the motion field is represented over a multiresolution
pyramid. Usually a dvadic scucture is employed. As-
suming, for simplicity, that A is an orthogonal sampling
grid, the grid at level v can be defined as follows:

AV ={xlxeA2-vxecN2}

where [¥is the set of all integer numbers. The morion fietd
represented on grid At 13 denoted by dovs . Clearly, the
grid at the lowest level (v =0) is the original image grid,
A0 = A, and the motion field at that level 1 ® s the de-
sired estimate, Likewise, the image sequence may be rep-
resented ar mulriple resolurions by successive low-pass
filtering and subsampling.

In a multiresolution/multiscale motion estimation,
motion parameters are computed at the lowest resolution
first {36]. The compurational load of this task is low as
compared to the cstimation at full resolution because the
dimension of the state space of motion vector felds is re-
duced by 22v and the amplitude of motion is reduced by
2+, Also, due to the scale change berween levels of the
motion pyramid, as discussed in “Hierarchical Motion
Models,” mcthods based on a spatial smoothness con-
straint [e.g., (17}] converge much faster than their
nonhierarchical counterparts. Consequently, a coarse es-
timate is found very rapidly at the highest level, especially
by fast schemes such as the deterministic relaxation. By a
suitable projection, this estimarte 15 decreased 1n scale to
serve as an initial state for the motion estimate ar the next
lower level of the pyramid. More dertailed information is
added at this level by the same or anothey optimization
scheme. This procedure is repeated until an estimare ar
the lowest level of the pyramid is found.

While the estimation criterion H (@)= H 0 {49} has
been formulated for motion ficlds on the original image
grid AL0) | appropriate criteria H (v (d(v) ) for motion at
all other levels need to be defined for multiresolution op-
timization. This has often been performed through heu-
ristic modifications of FH (9. However, a more consistent
way can be derived by recalling the equivalence between
multiresolution representations at multiple scales and ata
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In the above equation, the same esti-
mation criterion H is applied to all
fields ¢t v) (A () ) In the single scale pyr-
amid [40]. For several forms of the
Hamiltonian H, reformulations have

@ . (&)

been derived for (v using single
scale [407 or multiscale represenrations
of the image sequence [81]. These
reformulations do not require explicit
scale reduction, and hence, further im-
prove computational efficiency.

& 14. (a) Synthetic image pair at multiple resolutions, and (b) multiresolution/multiscale
motion estimate (left) and the underlying true motion (right). The frue motion field of
the inner rectangle is an example of affine motion similar to that shown in Fig. 2b. For

more details see [83].

& 15. Results for region-based multiresolution motion estimation
applied to the sequence “Salesman”: (a} original frame 121,
(b) original frame 125, (¢) subsampled motion field estimate
and segmentation boundaries superimposed over frame 121,
{d) acclusion areas, (e) horizontal and (f) vertical motion
shown as intensity.

single scale as illustrated in Fig. 7. A field at any level v of
the left pyramid in Fig. 7 can be reduced in scale by a suit-
able projection ¢(+}, and thus be transterred into the
equivalent field in the right pyramid. Since all ficlds are
now represented at a single scale, the estimation criterion
is naturally formulated at all levels.

Hon(dony = H(gow (din))
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Fig. 14 illustrates the results of a
multiresolution/multiscale motion es-
timaticn for a synthetic image pair.
Note that the smooth increase in vector
amplitude {affine motion) in the true
field is progressively recovered
throughout the estimated motion pyramid. On the other
hand, Fig. 15 shows results of region-based
multresolution/multiscale motion estimation for a natural
image. The underlying estimation criterion is based on
Gibbs/Markov random fields; details can be found in [83].
The estimated ficlds are, in general, consistent with human
perception. Nevertheless, the estimates reveal some phe-
nomena frequently observed in motion estimation. Local
problems persist in areas of nonunique motion, such as the
moving reflections on the table. Furthermore, the segmen-
tation shows a certain degree of inaccuracy n low-texture
areas and berween segments of similar motion. The latter
effect is due to low “motion contrast,” a phenomenon sim-
ilar to low image contrast in intensity-based segmentation.
Note that the resulting estimate of uncovered background
regions is close to reality. Instead of transferring motion
information strictly from the top to the bottom in the esti-
mation pyramid, methods have also been developed that
transfer the information in both directions within the pyra-
mid [28], [52]. This approach, unlike the top-to-bottom
approach, implements a feedback from higher-resolution
estimates to lower-resolution levels, thus facilitating recov-
ery of motion errors ar lower resolutions. However, the
control strategy in such a bi-directional flow algorithm is
not trivial.

Summary and Conclusions

We have reviewed the estimarion of 2D moton from
time-varying images, paying particular atrention to the
underlying models, estimation criteria, and optimization
stratcgies. Several parametric and nonparametric models
for the representation of motion vector fields and motion
trajectory fields have been discussed. For a given region
of support, these models determine the dimensionality of
the estimation problem as well as the amount of data that
has to be interpreted or transmitted thereafter. Also, the
interdependence of motion and image data has been ad-
dressed. We have shown that even ideal constraints may
not provide a well-defined estimation criterion. There-
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forc, the data term of an estimation criterion is usually
supplemented with a smoothness term that may be ex-
pressed explicitly or implicitly via a constraining motion
model. We have paid a particular attention to the statisti-
cal crireria based on Markov random fields. Because the
optimization of an estimation criterion typically involves
a large number of unknowns, we have presented several
fast search strategies.

We did not cover all possible aspects of 2D motion ¢s-
timation, but we believe that this article should be helpful
to researchers and practitioners working in the fields of
video compression and processing, as well as in computer
vision. Although the understanding of issues involved in
the computation of motion has significandy increascd
over the last decade, we are still far from generic, robust,
real-time motion-estimation algonthms, The selection of
the best motion estimator is still highly dependent on the
application. Nevertheless, a broad variety of estimation
models, criteria, and optimization schemes can be treated
ina unified framework presented here, thus aliowing a di-
rect comparison and leading to a deeper understanding of
the propertics of the resulting estimators.
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Endnotes

'Although in computer vision literature a distinetion is
often made between 2D motion and optical flow [42],
here we will use the term 2D motion to denote either ap-
parent motion or optical flow. This is consistent with
video compression terminology where the description of
variations in an image is of direct interest regardless of its
compliance with the physical cause of that variation.
Detailed informartion about MPEG standards can be ob-
tained from MPEG home page at www.cselt.it/mpeg.
It is worthwhile noting that even when the con-
stant-intensity assumprion is valid, the intensity gradient
changes its amplitude under dilation and its direction un-
der rotation,

*We can only sce the result of motion, not the motion it-
sclf; we cannot measure motion directly, but have to use
indirect measurements, such as an intensity change.
According to Hadamard’s definition, a problem is called
well-posed if it has a unique solution that continuously de-
pends on the data.

*Although pel-recursive methods that are based on a causal
model for dense motion are computationally inexpensive,
their accuracy is usually lower than thar of methods based
on noncausal motion models.

IEEE SIGNAL PROCESSING MAGAZINE 91



