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Correspondence 

Some Properties of the E Matrix in Two-View 
Motion Estimation 

T. S. HUANG AND 0. D. FAUGERAS 

ACstract--In the eight-point linear algorithm for determining 3-D 
motion/structure from two perspective views using point correspon- 
dences, the E matrix occupies a central role. The E matrix is defined 
as a skew-symmetrical matrix (containing the translation components) 
postmultiplied by a rotation matrix. In this correspondence, we show 
that a necessary and sufficient condition for a 3 x 3 matrix to be so 
decomposable is that one of its singular values is zero and the other 
two are equal. Several other forms of this property are also presented. 
Finally, some applications are briefly described. 

Index Terms-Essential 
motion. 

parameters, motion analysis, structure from 

I. INTRODUCTION 

For determining 3-D motion/structure of a rigid body from two 
perspective views, a linear algorithm has been discovered by Lon- 
guet-Higgins [l] and Tsai and Huang [2]. A more robust version 
of the algorithm has been recently developed by Faugeras et al. [3] 
and Weng et al. [4]. 

A central concept of the linear algorithm is the 3 x 3 matrix 

(1) 
L e7 e8 e9 1 

which is defined as 

E = TR (2) 
where R is a rotation matrix, and 

(3) 

is a skew-symmetrical matrix containing the elements of the trans- 
lation vector (t,, t2, ?a). It can readily be shown [2] that the image 
coordinates (x, y) and (x’, y’) of a point correspondence between 
the two views satisfy 

(4) 
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which is linear and homogeneous in the ei’s. The linear algorithm 
consists of solving for the ei’s in (4) from eight or more point cor- 
respondences, and then determine T and R from E [ l]-[4]. 

The purpose of the present paper is to derive some interesting 
and useful properties of the E matrix. Some applications of these 
properties are described in Section VI. 

II. A CONJECTURE PROVED 

We call a 3 x 3 matrix “decomposable” if and only if it can be 
expressed as a skew-symmetrical matrix postmultiplied by a rota- 
tion matrix. Thus, E in (2) is decomposable. In [2], it was shown 
that a necessary condition for a matrix to be decomposable is that 
one of its singular values is zero and the other two singular values 
are equal. Recently, Braccini made the conjecture that this condi- 
tion is also sufficient [5]. We shown that his conjecture is, in fact, 
correct. 

Theorem: A 3 x 3 matrix B is decomposable if and only if one 
of its singular values is zero and the other two are equal. 

Proof: 
Necessity: Assume B is decomposable: 

B = TR 

where T is skew symmetrical and R is a rotation. Then we can find 
an orthonormal matrix Q  such that 

040 
T= Q ’ 

i i 

-4 0 0 Q (5) 
0 0 0 

where 4 is a real constant. Thus, 

$2 0 0 

B’B = R’T’TR = (QR)’ 0 ti2 0 (QR). 

[ I 

(6) 
0 0 0 

The singular values of B are therefore 0, 42, $2. 
Sujiciency: Assume one of the singular values of B is zero 

and the other two are equal. Then 

where P is orthonormal and can be chosen as a rotation. 
From (7), 

where 

Let 

A = PB. 

(7) 

(8) 

(9) 

(10) 
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where a,, u2, a3 are the row vectors of A. Then from (8), III. FIRST SET OF POLYNOMIAL CONDITIONS 

whence 

aI . a, = +2 a, . a2 = 0 

a2 * a2 = ~$2 a2 . a3 = 0 

a3 . a3 = 0 a3 * a, = 0 

Let 

where 

Let 

a1 . a, = qb2 = a2 . a2 

al . a2 = 0. 

where 

a$ = a, X a2/+. 

Then Al/q5 is a rotation (we assume 4 > 0). Note that 

rjJ2 0 0 

A(A’)’ = AA’= 0 4’ 0 

i I 0 0 0 

whence 

A=[%; -; aj[-! ; !jA’. 

Finally, from (9), 

B=PrA=Pf -E; !j[-6 ; ;jA’ 

=Pr[f -f !jPP’[-; ; ;jA’ 

= TR 

where 

is skew-symmetrical and 

is a rotation. 

where bl, b2, b3 are the row vectors of B. Then, it is obvious that 
the condition <‘one of the singular values of B is zero” is equiva- 

(16) 

lent to 

b, . b2 x  b3 = 0. (17) 
It is less obvious, but nonetheless verifiable after a lengthy deri- 
vation, that the condition “the other two singular values of B are 
equal” is equivalent to 

l(b, x  b2 (I2 + I(h x  b3 11’ + 1) b, x  bd2 

(11) 
= t(llb,1/2 + 1(b2ii2 + l16,112)2. (18) 

IV. SECOND SET OF POLYNOMIAL CONDITIONS 

It has been discovered by Longuet-Higgins [6] that if B is de- 
composable, then 

(12) bl b, b3 
62 + b3 . bl + b, = ” (19) 

which gives three scalar equations. 
This result can be derived by using the fact that: if 

B = TR, 

then, 

[t,, t2, t3]B = 0 (20) 
(13) and 

BB’ = -T2. (21) 

V. THIRD SET OF POLYNOMIAL CONDITIONS 

(14) Huang and Shim [7] showed that if B is decomposable, then 

b, . b2 x  b, = (22) 
(l(b3112 + I(hIl* - Ihl12)@z . h) + (h * b2)(bl . b3) = 0 

(23) 
and 

Ilb3))4 = (lb,)j2 - 11hl12)2 + 4th . bzt (24) 

VI. RESOLUTION OF AN APPARENT CONTRADICTION 

The singular value result in Section II gives two conditions, 
which can be written as two polynomial equations in the compo- 

(15) 
nents of B, e.g., (17) and (18). On the other hand, the result in 
Sections IV or V gives three equations. How do we resolve this 
apparent contradiction? 

Prof. Longuet-Higgins pointed out [S] that generally for a sym- 
metrical matrix to have equal eigenvalues, two or more conditions 
have to hold among its elements. In the 2 x 2 case, it can be easily 
verified that the matrix [“,!I will have equal eigenvalues iff u = c  
and b = 0. In our case, we have a 3 x 3 symmetrical matrix BB’. 
However, one of the eigenvalues is zero. Therefore, by a proper 
rotation of the coordinate system, we can reduce the situation of 
the 2 x 2 case. The condition of equal eigenvalues then becomes 
two conditions. 

We note that recently it has been proven [9] that whereas the 
equation set (17) and (18) is necessary and sufficient for the decom- 
posability of B, the equation sets (19) and (22)-(24) are necessary, 
but not sufficient. 



VII. APPLICATIONS given set of parameters. In structured matching, the knowledge and 
Because of noise in the image coordinates, the E matrix deter- control for making a decision are integrated within a hierarchical 

mined from (4) will not be exactly decomposable. This may intro- structure. Each node in the hierarchy corresponds to a different aspect 
duce large errors in the estimation of R and T. Braccini et al. [lo] of the decision and contains knowledge for directly mapping the results 
have shown experimentally that better estimation accuracy can be of its children nodes (or selected parameters) into a choice on the sub- 

achieved if one imposes the decomposability conditions while solv- decision. The root node selects the final choice for the decision. We 
ing for E from (4). formally characterize the task and strategy of structured matching and 

The linear algorithm for motion estimation described briefly in analyze its computational complexity. Structured matching, we be- 

Section I fails in certain degenerate cases. In particular, it fails if lieve, captures the essence of what makes a range of decision-making 
the number of point correspondences given is less than eight. Huang problems computationally feasible to solve. 
and Shim [7] showed that by imposing the decomposability con- 
ditions of E, the linear algorithm can be resurrected. Index Terms-Artificial intelligence, computational complexity, de- 
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