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Modeling the image as a piecewise linear gray-value function of the pixel coordinates 
considerably improved a change detection test based previously on a piecewise constant 
gray-value function. These results encouraged investigations into modeling the picture as a 
mosaic of patches where the gray-value function within each patch is described as a second-order 
bivariate polynomial of the pixel coordinates. Such a more appropriate model allowed the 
assumption to be made that the remaining gray-value variation within each patch can be 
attributed to noise related to the sensing and digitizing devices, independent of the individual 
image frames in a sequence. This assumption made it possible to relate the likelihood test for 
change detection to well-known statistical tests (t test, F test), facilitating the determination of 
threshold values related to a priori confidence limits. 

1. INTRODUCTION 

Image sequences offer the possibility of sensing, storing, and analyzing informa- 
tion about dynamic developments in a scene. A recent book by Huang [7] provides a 
convenient introduction to this area. 

An algorithmic analysis of digital image sequences attempts to interpret changes 
between consecutive image frames. An important starting point for such interpreta- 
tion attempts is the hypothesis that observable interframe differences should be 
attributed to relative motion between the image sensor and objects in the scene. 
Various approaches toward this goal as well as the relations among them have been 
discussed in a recent condensed survey by Nagel [15]. Here, we will concentrate on 
the subproblem of how to detect and combine interframe differences as a kind of 
preprocessing for more involved interpretation algorithms. 

The next section delineates the subproblem to be discussed here and outlines a 
technique previously used. The third section describes an improved technique based 
on a more appropriate model of the picture function. Various results obtained by 
this approach are shown. 

These results encouraged investigations of modeling the picture function as 
consisting of patches within which the gray values vary as a second-order bivariate 
polynomial in the pixel coordinates. The improvements resulting from this extension 
will be discussed in Section 4. 

This model of the local gray-value distribution appears to capture the significant 
structural variation. As a consequence, it is assumed that any remaining variation 
can be attributed to noise related to the sensing and digitizing devices. The 
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remaining variation should, therefore. be independent of the individual image 
content. Once this assumption appears justified. it becomes possible to derive the 
probability distribution for the likelihood ratio by relating it to those encountered in 
well-known statistical tests. This will be developed for a constant picture function in 
Section 5, for a linear picture function in Section 6. and for a quadratic picture 
function in Section 7. Results will be discussed in Section 8. 

2. DETECTION OF CHANGES 

A good TV camera with a signal-to-noise ratio in excess of about 4.5 db warrants 
quantization of the gray-value signal into 256 gray levels (S-bit representation), if 
the gray levels obtained at the same image coordinates in two consecutive frames 
differ by more than two or three levels, such a change is usually considered to be 
significant, e.g., in the context of interframe coding for bandwidth compression. 
Difficulties may be encountered in textured areas with high spatial frequency 
components or in slowly displaced subimages with low contrast. If the threshold for 
gray-value differences is too high, significant changes might be suppressed, whereas 
too low a threshold overcrowds the difference image with noise. This dilemma 
becomes especially important if the signal-to-noise ratio is reduced, for example. due 
to real-time buffering on an analog video disk or tape. 

Since noise is assumed to be spatially uncorrelated, one may discriminate a 
significant change area by postulating a minimum number of spatially adjacent 
pixels with interframe gray-value differences above the threshold. Alternatively, one 
may check the compatibility of gray-value distributions from entire test areas rather 
than by comparing the gray values of individual pixels. A likelihood test originally 
developed by Yakimovsky for the segmentation of gray-value images [23.13] has 
been adapted for interframe compatibility tests [14]. 

Yakimovsky designed the test in order to decide between two hypotheses, namely, 
that the gray values observed in two spatially adjacent test areas are compatible 
(He) or not (H,) [23]. He assumed that the gray values have been drawn indepen- 
dently from one out of three normal distributions: one for the left or upper test area 
1, one for the right or lower test area 2, or one normal distribution common to the 
joint area 0. The mean p and variance a2 characterizing each of these three normal 
distributions are determined from the gray values observed in the respective test 
area, based on the maximum likelihood estimate. If both test areas 1 and 2 comprise 
the same number n of pixels, the likelihood ratio derived by Yakimovsky [23] may be 
written in the form 

likelihood (Hi) ui” 
likelihood ( H,, ) = - al”a2” 

or 

likelihood (Hi) 1 *” = [ ($2 + (122)/2 + ((I-Q - Pr)/2)2]2 
likelihood ( H,, ) +2” 

(2) 

Exponentiation by 2/n has been used in order to avoid unnecessary comprrtations. 
The numerator on the right-hand side of E!q. (2) represents the squared variance of 
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the combined area 0, using mean values and variances for the two constituent test 
areas 1 and 2. If this expression exceeds a threshold T we decide in favor of 
hypothesis Hi, i.e. the two test areas have incompatible gray-value distributions. 
Therefore, an edge element has to be placed between these two spatially adjacent test 
areas. If, however, the expression of equation (2) is less or equal to the threshold T, 
the observed gray values are considered to be drawn from a single normal distribu- 
tion, i.e. we decide in favor of hypothesis H,, that the gray-value distributions in the 
two test areas are compatible. In this case, no edge element will be placed between 
the two spatially adjacent test areas. 

Nagel instead used test areas comprising the same pixel locations, but in different 
frames [14]. A decision in favor of hypothesis 1 implied incompatible gray-value 
distributions at these test areas from different frames, i.e. a temporal change. This 
approach has been employed in other investigations at our laboratory [9, lo]. 

Figure 1 shows three consecutive frames (BILDlO, BILDll, BILD12) from a street 
scene sequence recorded in real time by a TV camera on an analog video disk. Each 
frame has been subsequently digitized into 574 lines of 512 pixels with &bit gray 
values. The mean and variance were estimated for a test area comprising four 
consecutive pixels in three consecutive lines from the first half-frame of each TV 
image. Such a test area corresponds to a square on the image sensor. One half-frame 
is therefore represented by an array of 96 lines each of which comprises 128 
consecutive test areas. 

FIG. 1. Facsimile writer output of digitized data from three consecutive frames of a street scene image 
sequence recorded at 40-msec time intervals: (a) BILDIO, (b) BILDll, (c) BILD12. 
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FIG. 1. --Continued 
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FIG. 2. A binary image of 96 lines with 128 columns each, representing the test areas used for the 
interframe comparison between frames BILDlO and BILDll (see Fig. 1). An asterisk marks the position 
of test areas with incompatible gray-value distributions according to Eq. (2), based on a threshold T = 4. 

Figure 2 shows a binary image where each asterisk indicates that the gray-value 
distributions of frames BILDlO and BILDll were incompatible in the correspond- 
ing test areas, based on a threshold value of T = 4. 

Figure 3 gives the corresponding results for the interframe comparison between 
BILDll and BILD12. Apart from isolated changes, indications for three moving 
objects can be recognized: the bright taxicab in the center, a dark car entering the 
field of view from the left, and a van just entering from the right. 

The important point to note is the fact that despite a heavy clustering of changes, 
for example, around the bright taxicab, the incompatible test areas nevertheless 

FIG. 3. Analogous to Fig. 2, but comparing BILDll with BILD12. 



FIG. 4. Analogous to Figs. 2 and 3, but an asterisk is printed if either or both of the interframe pairs 
presented in Figs, 2 and 3 resulted in incompatible test areas. It is seen that this accumulation of change 
indicators yields a mask for a substantial part of the moving object although more or less homogeneous 
regions are still not covered. Results are given for three different threshold values: (a) T = 2.5. (b) 
T = 4.0, (c) T = 10.0. 
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cannot be simply joined by requiring four-connection or eight-connection. This 
becomes even more obvious if the threshold is raised from 2.5 to 4 or 10 in order to 
suppress change indications due to noise. This problem has been circumvented 
currently by comparing a series of consecutive frames with a reference frame, usually 
the first one, using additive combination of change indications 19, lo]; see, for 
example, Fig. 4. 

Such an approach can only be employed if the accumulated change indications are 
caused by the same object. This will not be the case, for example, if the distance 
between two moving objects is so small that their change areas merge before 
sufficiently complete masks for the individual object images could have been 
generated. Moreover, the mask derived in this manner will cover considerable area 
belonging to the background if it is applied to extract an image of the moving object 
from any particular frame contributing to its generation. 

Various means have been studied to employ such accumulated masks in order to 
extract an object image [8,9,11]. 

An even more sensitive but nevertheless robust test appears to be desirable. The 
following section describes a refinement of the likelihood test considered so far, 
resulting in a rather robust technique. 

3. PIECEWISE LINEAR GRAY-VALUE VARIATIONS AS A MODEL FOR THE 
PICTURE FUNCTION 

Equation (2) has been derived based on the assumption that the gray-value 
distribution within a test area is adequately described by a normal distribution 
centered on a constant mean gray value. Any deviations from the mean gray value 
have to be attributed to noise. This is equivalent to assuming that the image can be 
adequately modeled as a mosaic of areas each of which has a constant gray value 
and some area-specific variance. 

In general, such a model of the picture function is inadequate. A somewhat better 
approximation allows at least for a linear slope of gray values with the pixel 
coordinates in the area. Approaches in this direction have recently been reviewed by 
Haralick [4], who did not mention, however, the work by Holdermann and 
Kazmierczak [6] or by Radig [20,21]; see also Haralick and Watson [5] as well as 
Pong et al. [19]. Yakimovsky, too, generalized the likelihood ratio according to Eq. 
(2) for the situation of a linearly sloping gray-value distribution [23]: 

likelihood (Hi) 

I 

2’n ( c$)~ =- 
likelihood ( Ho ) afai 

with 

a,‘= (l/n) C [&I + &2X + rSi3.Y - AX, Y)12 

(3) 

where g(x, y) denotes the gray value at pixel location (x, y) within the test area Aj. 
Here, & + fii2x + &y describes the linear gray-value function with coefficients 
obtained by a least-squares error fit to the gray values measured within the test area 
A,. Since a linearly sloping gray-value distribution will be approximated by a more 
adequate image model, the variance ai will be smaller. This should facilitate a 



FIG. 5. Analogous to Fig. 2, but using a linearly sloping picture function model rather than a constant 
one as in Fig. 2. Note that the changed test areas cover the taxicab in the center of the image frame much 
more completely. Thresholds T used for the expression of E@ (3) based on Eq. (4) are (a) T = 2.5, (b) 
T = 4.0, (c) T = 10.0. X0 



FIG. 6. Analogous to Fig. 5, but comparing BILDll with BILD12; see Fig. 3 to notice the difference 
between constant and linearly sloping picture functions within a test area. (a) T = 2.5, (b) T = 4.0, (c) 
T = 10.0. 
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FIG. 7. Analogous to Fig. 4, i.e., the accumulated changes between BILDlO and BILDll as weIl as 
between BILDII and BILD12, but for a linearly sloping picture function: (a) T = 2.5, (b) T = 4.0, (c) 
T = 10.0. 
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FIG. 8. Like Fig. 5b, but with suppression of isolated changes. 

distinction between a systematic gray-value slope and large gray-value fluctuations 
caused, for example, by high spatial frequency texture. 

In analogy to the approach reported in the preceding section [14] we investigated 
Eqs. (3) and (4) in order to test the compatibility of gray-value distributions from 
test areas at the same position in two different frames. Initial experiments were 
hampered by the absence of suitable visualization aids and gave inconclusive results 
[12]. Once a raster display had become available, however, experimental problems 
could be studied in more detail. Due to the vagaries of random sampling it may 
happen that the estimated variance is much smaller than the true variance-possibly 
even zero. In order to avoid unreasonable results, the estimated variances are 
replaced by a standard value of 1.0 whenever they turn out to be smaller. 

h 0 20 1; *i 4 IO  .k a: so 10; . , :  , I /  

FIG. 9. Like Fig. 6b, but with suppression of isolated changes. 
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FIG. 10. Like Fig. 7, but with suppression of isolated changes, i.e., disjunctive combination of Figs. 8 
and 9, representing changes between BILDll and the preceding BILDlO as well as the subsequent 
BILD12. The remaining changes around line 20 in Fig. 10a (7’ = 2.5) have been caused by a walking 
pedestrian who changes his/her location only very little between three frames, i.e.. in less than one-tenth 
of a second. Therefore, these changes are not so strong and disappear at higher thresholds of T = 4 (Fig. 
lob) or T = 10.0 (Fig. 10~). 
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FIG. 11. Mask for the taxicab, obtained by interactive selection of this change region from Fig. lob and 
subsequent expansion by 1 pixel. The result is overlayed on the second frame (b) from Fig. 1. 

Figures 5 through 7 represent the analog to Figs. 2 through 4, but for a linearly 
sloping picture function rather than the constant one previously used. One easily 
recognizes that the test has become more sensitive. Already the accumulation of 
changes from two successive interframe comparisons represents a fairly complete 
mask of the moving object in this example. Isolated noise changes have increased, 
too. They are, however, easily suppressed by the requirement that only regions with 
more than N (= 10) four-connected changed test areas are retained; see Figs. 8 
through 11 [18]. 

4. EXPERIMENTAL INVESTIGATIONS WITH PIECEWISE QUADRATIC 
PICTURE FUNCTIONS 

The results reported in the preceding section warranted closer investigation. It 
turned out that for images with much detail like those of Fig. 1, a linear picture 
function is not sufficient to model the actual gray-value distribution within the image 
subareas employed here, namely three consecutive rows with four pixels each from 
one half-frame [22]. As a consequence, the variance estimated according to Eq. (4) is 
biased by contributions from gray-value transition areas inadequately described by a 
linear picture function. 

We repeated the experiments using a quadratic picture function to model the 
gray-value distribution within each test area, i.e., replacing Eq. (4) by 

0.2 = - I i x IlA [ PiI + Pi2 x + PiJY + Bjdx2 + 13i5Y2 + rSifjxY - gtx, VI] t5) 
) , 

Figure 12 shows which test areas changed in this case from BILDlO to BILDll and 
Fig. 13 is analogous for BILDll and BILDlZ Figure 14 presents the disjunctive 



FIG. 12. Analogous to Figs. 2 and 5, but using the quadratic picture function (5): (a) T = 2,s. (b) 
T = 4.0, (c) T = 10.0. 

X6 



FIG. 13. Analogous to Fig. 12, but comparing BILDll with BILD12; see also Figs. 3 and 6. (a) 
T = 2.5, (b) T = 4.0, (c) T = 10.0. 
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FIG. 14. Disjunctive combination of changes from BILDll to the preceding frame as well as to the 
subsequent one using the quadratic picture function to model the gray-value distribution within each test 
area with suppression of isoiated changes; compare Fig. 10: (a) T = 2.5, (b) 7’ = 4.0, (c) T = 10.R 
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combination of changes from BILDll to the preceding one as well as to the 
subsequent one with suppression of isolated changes. In all experiments reported so 
far, the threshold T to be compared to the expression obtained from Eq. (3) 
combined with Eq. (4) or (5) has been chosen interactively. Although the exact value 
appeared to be uncritical for various image sequences, in principle it has to be 
adjusted for each sequence. Moreover, such a procedure does not allow us to 
quantify the confidence level at which the decisions about change versus no change 
are made. 

Nevertheless, these experiments support the hypothesis that a quadratic picture 
function model captures enough of the systematic gray-value variation within each 
test area to yield a reliable change detection result. Parallel investigations aiming at 
the determination of interframe displacement vectors in [l-3,16,17] provide addi- 
tional evidence that the gray-value distribution in local test areas can be adequately 
approximated by a second-order bivariate polynomial of the two image plane 
coordinates. 

A consequence of accepting this hypothesis is the assumption that the variance 
determined according to Eq. (5) no longer comprises contributions by inadequately 
modeled gray-value structures. It should be entirely due to noise. We assume that the 
measured gray values are corrupted by additive noise due to the digitizing hardware. 
It therefore appears reasonable to consider the noise in measurements from both test 
areas to be compared as being identically distributed provided we record the TV 
frame series under constant conditions. Under this assumption we derive the 
probability distribution of the maximum likelihood ratio for piecewise constant, 
piecewise linear, and piecewise quadratic gray-value variations. In these situations 
we can employ the t test (for constant) or the F test (for linear and quadratic 
variations) as a change detection test. We therefore arrive at a common algorithm 
which can be used without interactive threshold adjustment by selecting an adequate 
threshold according to some a priori confidence limit. 

5. THRESHOLD SELECTION FOR A PIECEWISE CONSTANT 
PICTURE FUNCTION 

Let g!” (i = 1 ,...,m), g(2) (j = 1 , . . . , n) be observed values from the two test 
areas iv;, N2, respectively. +hey correspond to gray values corrupted by normally 
distributed noise with mean 0 and variance a*. The joint probability distribution for 
the observation of these measurements in the case of n sample values is given by the 
likelihood function 

L = f(g, FL, 0) = (+-J2exp( -+-&g. - r)‘) t (6) 

where p represents the mean of the distribution of sample values. 
The hypothesis to be tested now is denoted by: 

H,,: g(l) and g(*) come from the same distribution N&, uO). 
Hi: g(l) and g(*) come from different distributions N( pi, a) and N( p2, a). 

The optimal estimators for mean and variance maximize the likelihood function. 
The resulting expressions for these estimators differ according to which hypothesis is 
selected. 
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When HI is true, the maximum likelihood function will be 

Calculating the partial derivatives with respect to u2, pl, pL2 and equating them to 
zero yield 

-2 = -2 = -2 
u *I 02 =& $+ 

I 

PJ2 + ,gl ($’ - PJ 

1 

. (fk) 

When H,, is true, then 

and 

If we use these estimates, the maximum likelihood ratio can be written in the form 

2s 
[ 

e (gj” - ji,)’ + i (g;” - pJ2 

*exp{ - !!r+-! ! 
2. I 

I==1 ,=I Ii = 

1 

,m t 0, ‘2 

mtn 

I 

* exp 
m I- n \ 

2 (gj” - b,)’ + i (g;” --. jiJ + (mn/( m + n))(fL, .~ $$ 
II 

i----i 2 
2-n 

r-1 ,=I 

1 I 

,,,I i ri,;2 
= 1+ m (4(m + n))(b, - Fd2 

c (g?’ - Pl)’ + ,il (Ay - iQ)2 
t-1 

00) 
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We know that @, and fi2 possess independent normal distributions N(p,, a2/m) 
and N( p2, u 2/n), respectively, and u = fir - j& is a normal variable with mean 
p1 - pz and variance a*(l/m + l/n). Under the assumption ZZ, the variable u has 
mean 0, i.e., 

w= 
Pl - P2 

a(l/m + l/n)l’* 

is a normal variable with mean 0 and variance 1. If ZZ,, is true, then CyJr( gj” - 

(11) 

ji1)2/02 and C,“=r(gy) - p2)2/u2 possess independent xz distributions with m - 1 
and n - 1 degrees of freedom, respectively. Hence their sum V = Cy!r( g!” - 
jQ2/u2 + C;=r(gj2) - ,&*)/a* is a x2 variable with m + n - 2 degrees of freedom. 

Then the variable 

t= 
(V/(m +I - 2))“’ 

(mn/(m + 4>“‘(Pl - P2) = 

[ 
El (id” - Pl)‘/( m+n-2)+ i(gy)--fi*)*/(m+n-2) 

l/2 (12) 

j=l 1 
obeys the student t distribution with m + n - 2 degrees of freedom provided ZZ, is 
true. The maximum likelihood ratio now is 

A= 1+ 
[ 

t2 (m+n)/2 

m+n-2 1 (13) 

As h is a monotonic function of t2, we can test t* instead of h. We can select a 
threshold t, according to a confidence (Y. For example, if m = n = 12, for confidence 
N = 5%, then to,,, = 1.717 and ti.,, = 2.948; for confidence (Y = l%, one obtains 
to.01 = 2.508 and ti.,, = 6.29. When the value of t2 is less than t& choose hypothesis 
Ho. Otherwise, ZZi will be accepted. 

6. THRESHOLD SELECTION FOR A PIECEWISE LINEAR PICTURE FUNCTION 

Let g!k’ (k = 1 2; i = 1 , . . . , n) be n gray values observed in two test areas from 
two adjacent frames, and let 

g!“’ = P/d + Pk2Xi + Pk3Yt + e; (k = 1,2; i = 1,. . .,n) 04) 

where e, (i = 1,. . . , n) are normal noise variables with mean 0 and covariance la 2; 
x!‘) = x!*), y,(l) = yi2) (i = 1,. . . , I n) are two sets of observed coordinates in both test 
windows. 

The maximum likelihood function here is 

i (8, - Pl - P?X, - P3YJ2 
i=l 

2u2 
i 

. (15) 
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The hypothesis to be tested is similar to that for a piecewise constant picture 
function: 

HO: g(l) and gC2’ come from the same distribution with parameters PC,,. ,!IOz~ &, 
and 00’. 

HI : g(l) and gC2) come from distributions with different parameters pkl, Bk?, ,61k 3 
(k = 1,2), and UT. 
When HI is true, the maximum likelihood function will be 

L= 1 
i 1 

n/2 

21ns2 

X exp - 

i 

,cl Ml - 41 - &2x, - 8*3YJ2 + ,$ (gj” - a* - p22x,i - p23yi}2 \ 

2a2 
- /. 

i 

The optimal estimators for the parameters under the hypothesis H, are 

If H, is true, then 

(17a) 

(174 

&!x.j - &iYj)2 

I 
. 

(174 

i=l 1-l 
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(20) 

+ i (g(*’ - All - wzx, - Bo3Y,)2 
/=I 1 

= & igl {g!” - B,, - &2x, - &Y, + 4011 - B2d 

I 

+ t(Bl* - B22>xi + +<Sl3 - b*Ii)Yi}* 

+ t (gj” - b21 - b22’J - b2, Y, 
j=l 

+ +@,, - b,,) + f(B22 - &2)x, + t<W, - iL)Y,)* 
I 

= $ igl (g!” - s,, - &2x, - 143YJ2 
L 

+ k (g;*’ - P2, - i322-5 - P23Y,)* 
j=l 

+i i (Bll - B2l +(812 - b2*)xj +(B13 - b23)Yj}* . 
J=l 1 (21) 

If we center the coordinate system within the test area and select x,, y, (i = 1,. . . , n) 
so that the sums satisfy 

i ‘i = ,fIIY* = ,ijl xiYt = O (22) 
i=l 

then (21) becomes 

6; = 6: + & ;(B,, - i?*,>’ 
i +f(P12-jj22)2~.Z+f(~,,-~*s)2~Y~ . 

i=l 1=1 1 

123) 



94 HSU, NAGEL. AND REKERS 

The maximum likelihood ratio is now 

It can be easily proven that all the following variables are normally distributed 
with zero mean and unit variance provided H, is true: 

- 

a 

Pll - r&l 
a[2/n]“* 

8*2 - 822 

[ 1 2/ i x;? 
l/2 

r=l 

(25a) 

(25b) 

b13 - A23 
u 2/ i J2 i 1 

l/2 . 

r=l 

It follows from (25) that the variable 

(25c) 

possesses a x2 distribution with 3 degrees of freedom. The variable 

i (g!” - s,, - &*x, - B1iYJ2 + i (g;” - lszl - i&x, - 8234)L 

F2 = ‘=’ 
J=l 

-II~_ 

(T2 

(27) 

is a x2 variable with n - 3 + n - 3 = 2n - 6 degrees of freedom. The maximum 
likelihood ratio-provided He is true-is given by 

l ’ 3 Fl/3 
” 3 n 

= 2n - 6 F,/(2n - 6) 1 [ 1 + 2n - 6 F 1 (28) 

where F = (F,/3)/( F,/(2n - 6)) is an F variable with 3 and 2n - 6 degrees of 
freedom. 

If n = 12 and the confidence limit is taken as LY = 5%, then Fo,,5 = 3.16. If the 
confidence limit (11 = 1% is selected, then F&i = 5.09. Since X is a monotonic 
function of F, we can accept H, when F < F, and choose Hi when F > F,. This 
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procedure for change detection between frames is analogous to the one described in 
[4] for edge detection within one frame. 

7. THRESHOLD SELECTION FOR A PIECEWISE QUADRATIC 
PICTURE FUNCTION 

It is assumed that 

G=Xj?+e (29) 

where G is a set of uncorrelated observed gray values; /3 is an unknown 6-dimen- 
sional parameter vector; e is an uncorrelated n-normal variable vector with mean 0 
and covariance Ia*; X is a n X 6 matrix, and every row vector xi = (xii, xi2,. . . ,x16) 
denotes a set of observed coordinate functions. These functions are x,t = 1, xi2 = xi, 
xi3 = Yi, xi4 = x;, xi5 = yi*, Xi6 = xiy,. The formula (29) can be written as follows: 

x12 

x22 

X n2 

x13 

x23 

X n3 

. . . 

Let G(l), G(*) be observed gray values from two test windows: 

G(1) = . 

(30) 

(31) 

The hypothesis to be tested is denoted by 

I$,,: G(l) and G(*) come from the same gray-value distribution N(j3, la). 
H,: G(” and G(*) come from different gray-value distributions N(PC1), la) 

and N(/F2), la). 

The likelihood function is now 

exp{ -(G - Xp)‘(G - Xp)/2u2}. (34 

Using the logarithm, calculating the partial derivatives with respect to u2 and pi, and 
equating them to 0 will yield the normal equations 

log I, = - Tlog(2r) - ;1og u2 - +-$G - X4)% - XP)] (334 

ai0gL -= 
ap 

--$XT(G-X/3)=0 

ai0gL ___ = - 5 5 + -$[(G - Xa)T(G - X/3)] = 0. 
au2 

( 33b) 

(334 
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From these we obtain the optimal estimators of p and u’ 

p =- (XTX) ‘x7i; 1 ;‘$I 

($2 z: ; [(G _- Xb)7(G - Xj?,]. - <is’, 

When HI is true, then 

/j, = (XTX)-‘XTG”’ i .%a) 

and 

jj2 = ( XTX)-‘XTG’2’ (36b) 

i$;=&(G’“-X~l)T(G(l)-Xjl) +(G(*b-X~2)T(G”1-X~2)/. (37) 

When H, is true, then 

& = (X:X,)--‘X,7G (38) 

6; = &-(G - T&,)T(G - A,%> (39) 

where 

From (40) we have 

x,T = [ xTxT]; 

Hence 

x:x() = [ XTXT][ “x] = xTx + xTx = 2X7,X. 

& = (X:X,)-‘X,7G 

= +( XTX)- ‘( XTG@’ + XTG”‘) 

= Ml f M. 

Using (40) and (41), Eq. (39) can be written in the form 

1 =- 
2n 

1 =- 
2n 

G(l) - $X(& + /3,) -I- G'l' - $X(/I+ + b2) 
Gc2) - )X(/j1 + B2) Ii (32) - +x@, + B,) I 
G(l) - Xbl + 1X(& - ,d,) ’ G’l’ - xfl, + tX(& - &) 

Gc2) - Xb2 + $X(& - 8,) I[ Gc2) - X,& + fx(j3, - B,) I 

[G”) - X& + fX(& - b,)] ‘[G(l) - x& + 3x(& - ,a,)] 

+[@)- Xs, + +X(fi2 - j,)]T[G’2’- xb, + +X(82 - &>I 1. 
(43) 

(40) 

(42) 
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Execution of the matrix multiplications in Eq. (43) will result in terms containing 

(G(k)-X~k)TX= [xT(G(k)-XBk)]T=o fOrk=1,2 
(4) 

which vanish due to Eq. (33b). 
Using (44), (43) can be written directly as 

6; = 2n ’ ((G”‘- x&)~(G(~) - xj,) + $(& - &)‘x’x@1 - &> 

+(Gt2’- Xb2)7G (2) - xb2) + +<b2 - B,)‘x’x(b2 - la,,} 

= s; + -&s, - fi2)TxTx(& - 82). (45) 

The maximum likelihood ratio h can therefore be written 

$(j, - rs2)TxTx@1 - b2) 

I 

n 

(G(~)-x~,)~(G(‘)-X~~)+(G(~)-X~~)~(G(~)-~~~) ’ (46) 

It is obvious that ek are normally distributed according to N(j3, a2(XTX)-l) 
(k = 1,2) and & - /3, are also normal N(0,2a2(XTX)-‘) when Ha is true. There- 
fore 

Fl = f@l - s2wm1 - P2) 

u2 (47) 

is a X2 variable with 6 degrees of freedom, and 

F = (G(l) - @I)‘( ($1) - xjjl) + ( Gc2) - xb2) 7 Gc2) - xv42 > 

2 cl= 
(48) 

follows a X2 distribution with 2n - 12 degrees of freedom. Finally, the maximum 
likelihood ratio now is (with n = 12 as in our experimental situation) 

(49) 

where 

416 (/!I, - a2)‘XTX(~1 - 12) 

F=F,/12= (G(I)-x~~)~(G(~)-X~~)+(G(~)-X~~)~(G(~)-~~~)’ (50) 

is an F-variable with degrees of freedom (6,12) when H,, is true. We can restrict 
ourselves to test F because X is a monotonic function of F. If we choose a confidence 
level ~1, hypothesis Hi should be accepted if F > F,. Otherwise H, should be 
accepted. 
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FIG. 15. Positions of sample values in the local test area made up of four consecutive pixels in three 
consecutive rows from one digitized half-frame. 

8. RESULTS AND DISCUSSION 

The interframe compatibility tests derived in the preceding sections have been 
applied to the sequence of three frames depicted in Fig. 1. The coordinates of sample 
values in each test area are indicated in Fig. 15. 
The transpose of the matrix X in Eq. (29) is then given by 

1 111 1 111 11 
-+ 3 -+ f T -+ -! -I -1 _ i 2 f ; 7 

XT= 1 111 0 0 0 0 -1 -1 
y 
4 

$ a 
f 

Y 1 1 
4 ;i x 

2 
4 $ t 

1 111 0 000 1 1 
-$ -$ z 1 4 0 0 0 0 1 7 i I _ _ 

from which it follows that 

- 

Figures 16 through 21 compare the results of compatibihty tests between frames 
BILDlO and BILDll as well as between BILDll and BILD12 depicted in Fig. 1 for 
the constant, linear, and quadratic picture function models according to Eqs. (13), 



b 

FIG. 16. Results of compatibility tests between frames BILDlO and BILDll for the constant picture 
function model according to Eq. (13). The confidence level has been chosen as (a) a = 0.05, T = 2.948; 
Cb) a = 0.01, T = 6.29; (c) a = 0.005, T = 7.95. 
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FIG. 17. Analogous results of compatibility tests between frames BlLDll and BILD12: (a) OL = 0.05, 
T = 2.948: (b) a = 0.01, T = 6.29: (c) a = 0.005, T = 7.95. 
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FIG. 18. Results of compatibility tests between BILDlO and BILDll using the linear picture function 
model according to Eq. (28): (a) n = 0.05, F = 3.16; (b) (Y = 0.01, F = 5.14; (c) a = 0.005, F = 6.08. 

101 



0 v /” 

,<, . 

.: 
!!h 

,, 

.’ 

:::.** + 
:x.x:::..* 
:“.::::::::, 
#$E!;;iiii, ’ 
,*..;;:::::::.::. , 

11...*.*.,. 
I::::::::::::’ . . . . . . . . . .: . ..*:. . . (  

b’ 

. ,  

FIG. 19. Analogous to Fig. 18, but comparing BILDll and BILD12: (a) a = 0.05, F= 3.16: (h) 
a = 0.01, F = 5.14; (c) a = 0.005. F = 6.08. 
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FIG. 20. Results of compatibility tests based on the quadratic picture function model according to E!q. 
149) for BILDlO and BILDll: (a) a = 0.05, F = 3.00; (b) a = 0.01, F = 4.82; (c) a = 0.005, F = 5.76. 
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FIG. 21. Analogous to Fig. 20, but comparing BILDll and BILD12: (a) a = 0.05, F = 3.00; (b) 
a = 0.01, F = 4.82; (c) a = 0.005, F = 5.76. 
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(28), and (49), respectively. Three different confidence levels have been chosen, for 
example, a = 0.005; i.e., the probability is only 0.5% that corresponding test areas 
from these two half-frames have been marked by an asterisk as being incompatible 
although the original images projected onto the target of the TV camera did not 
change. Only the accumulation of random errors caused the associated likelihood 
ratio to exceed the threshold specified by the chosen confidence level. It is obvious 
that the compatibility test becomes more sensitive as we improve the picture 
function model from a constant gray-value distribution to a quadratic dependence of 
gray values on the pixel coordinates. 

Figures 18 through 21 present results for tests based on linear and quadratic 
picture function models with different values of a = 0.05, a = 0.01, and a = 0.005, 
i.e., increasing confidence that test areas marked as being incompatible are indeed 
due to image changes rather than to statistical fluctuations in the digitized data. For 
the combination of images and test area size employed in these experiments, the 
transition from a linear to a quadratic picture function does not produce as striking 
an improvement as the transition between constant and linear picture functions; 
compare Figs. 16 and 18. Nevertheless, the use of a quadratic picture function 
increases our confidence in the compatibility test decisions although it does not seem 
necessary to use an even more complex third-order picture function model. 

Comparison with the results of the likelihood test according to Rq. (2) or (3)-the 
latter combined with Eq. (4) or (5) for a linear or quadratic picture function-shows 
that the statistical tests (13), (28), and (49) derived upon the assumption of common 
variance for both test areas facilitate a more sensitive discrimination between 
compatible and truly incompatible areas. For a given model of the picture function 
in the test area, the statistical tests derived in Sections 5 through 7 yield about the 
same sensitivity as the ones discussed in Sections 2 through 4-but at a lower 
threshold value. In other words, the tests derived in Sections 5 through 7 yield the 
same sensitivity with higher confidence. These results, therefore, support the assump- 
tion that the variance of sampled gray values computed on the basis of a quadratic 
picture function model is indeed due to random noise. This observation justifies the 
selection of decision thresholds based on a priori confidence limits rather than 
interactive adjustment for each individual image sequence. 
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