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Bayesian Estima tion of Mo tion Vector F ields 
Janusz Konrad and  Eric Dubois, Senior Member,  IEEE 

Abstract-This paper presents a new approach to the esti- 
mation of 2-D motion vector fields from time-varying images. 
The approach is stochastic both in its formulation and in the 
solution method. The formulation involves the specification of a 
deterministic structural model along ivith stochastic observation 
and motion field models. Two motion models are proposed: a 
globally smooth model based on vector Markov random fields and 
a piecewise smooth model derived from coupled vector-binary 
Markov random fields. Two estimation criteria are studied. In 
the max imum a posteriori probability (MAP) estimation, the a 
posteriori probability of motion given data is maximized, whereas 
in the min imum expected cost (MEC) estimation, the expectation 
of a certain cost function is minimized. The MAP estimation is 
performed via simulated annealing, whereas the MEC algorithm 
performs iteration-wise averaging. Both algorithms generate sam- 
ple fields by means of stochustic relaxation implemented via the 
Gibbs sampler. Two versions are developed: one for a discrete 
state space and the other for a continuous state space. The 
MAP estimation is incorporated into a hierarchical environment 
to deal efficiently with large displacements. Numerous experi- 
mental results of application of these algorithms to natural and 
computer-generated images with natural and synthetic motion 
are shown. 

Index Terms- Bayesian estimation, Markov random fields, 
motion estimation, motion modeling, optical flow, simulated an- 
nealing, stochastic relaxation, 2-D motion. 

I. INTRODUCTION 

M OTION computat ion has  long been  known as one  of the 
fundamental  and  difficult problems in computer  vision. 

It has  been  tackled from various angles with variable success. 
This paper  introduces a  stochastic approach to the computat ion 
of motion. The  approach stems from well-known concepts 
used  in stochastic model ing and  reconstruction of images such 
as  Bayesian estimation criteria [lo], [27], Markov random field 
(MRF) models for images [35], [lo], [7], simulated annealing, 
and  iterated conditional modes  (ICM) as  solution methods 
[20], [lo], [4]. In this paper,  we extend these criteria, models, 
and  solution methods to cont inuous and  discrete motion vector 
fields, we discuss similarities and  differences with existing 
algorithms, and  we present numerous motion estimates for 
synthetic and  natural motion. 

There are two main aspects to motion estimation: computa-  
tion of 3-D motion in space and  computat ion of 2-D motion 
in the image plane, which is also called optical flow. In this 
paper,  we are concerned with the latter problem. Knowledge of 

Manuscript received March 13,199O; revised February 21, 1992. This work 
was supported by the Natural Sciences and Engineering Research Council of 
Canada under Strategic Grant STROO40524.  Recommended for acceptance by 
Associate Editor N. Ahuja. 

The authors are with the Institut National de  la Recherche Scientifique 
INRS-T&communications, Verdun Quebec, Canada,  H3E lH6. 

IEEE Log Number 9201771.  

2-D motion in a  t ime-varying image can be  used to infer 3-D 
motion, e.g., of a  camera with respect to the environment, or to 
compute structure from motion; however,  it can  also be  used 
directly in mot ion-compensated processing (e.g., interpolation, 
noise reduction) or compression of image sequences.  

The  existing approaches to estimating 2-D motion from dy- 
namic images can be  classified as  either low-level or high-level 
computer  vision algorithms. The  class of algorithms presented 
here belongs to the former group, a long with such methods 
as  block matching, spatio-temporal gradient, or Fourier tech- 
niques, and  is character ized by  computat ion of motion based  
only on  simple low-level image descriptors like intensity. The  
high-level methods, which are not considered here, rely on  
image analysis to extract high-level features of the data, such 
as  edges,  object boundaries,  or complete objects, and  use  them 
to solve the cor respondence problem. 

The  problem of motion computat ion has  proved to be  
difficult due  to two factors: ill posedness  and  complexity. 
The  problem is ill posed  since many  different vector fields 
can explain the same data (images). The  complexity of the 
problem is dependent  on  its dimensionality, which is high since 
typically, several thousand unknowns have  to be  computed 
simultaneously. 

Simple estimation algorithms like block matching frequently 
fail to produce good  results because they rely on  the data 
only and  do  not attempt to explicitly model  motion fields. 
Consequent ly,  every motion vector is computed from lo- 
cal intensity values, disregarding the motion of neighbor ing 
picture elements. To  overcome this deficiency, instead of 
minimizing a  local objective function, global formulations over 
the complete motion field have  been  used.  Horn and  Schunck 
[17] p roposed a  global criterion as  a  compromise between 
an  error der ived from the motion constraint equat ion and  a  
motion smoothness error. Hildreth [16] used  the difference 
between the measured and  the estimated velocity component  
orthogonal to an  intensity contour and  al lowed smoothing only 
a long such a  contour. Nagel  and  Enkelmann [31] ex tended 
the Horn-Schunck method by  using image structure in the 
smoothness term, thus allowing space-variant smoothing. 

All three approaches can be  classified as  regularization 
(of the original i l l-posed cor respondence problem), where 
the smoothness term expresses a priori assumptions about  
the propert ies of motion. The  major drawback of the Horn- 
Schunck and  Nagel-Enkelmann methods is that the motion 
vectors are conf ined to fixed spatio-temporal positions; hence,  
to perform sampling structure conversion through motion- 
compensated interpolation, motion fields have  to be  interpo- 
lated as  well. In addition, the formulation using the motion 
constraint equat ion requires evaluation of image derivatives, 
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which is an  il l-posed problem itself. Horn and  Schunck have  
used a  space-invariant smoothing operator, but it causes sub- 
stantial oversmoothing at motion boundaries.  This problem has  
been  partially solved by  the Nagel  and  Enkelmann“‘oriented 
smoothness” operator. Both methods have  been  extended to 
handle large displacements via a  hierarchical approach [12], 
[9]. The  major drawback of Hildreth’s approach is the need  to 
know intensity contours, e.g., edges,  before performing motion 
estimation, which is especially cumbersome if the method is to 
be  appl ied to a  wide class of images (e.g., video). In addition, 
it is not clear how the boundary,  estimates are propagated,  
especially if the contours are not closed. 

Most motion estimation techniques to date, including the 
three examples above,  have  been  exclusively deterministic. 
There are a  few notable exceptions, however.  Schunck [33] 
and  Martinez [28] p roposed maximum likelihood estimation of 
motion based  on  a  statistical model  relating observat ions and  
unknowns.  Murray and  Buxton [30] used  a  Markov random 
field model  for optical flow segmentat ion and  solved it using 
simulated annealing. More recently, Bouthemy and  Lalande 
[5] and  Heitz and  Bouthemy [ 141,  [15] appl ied Markov random 
field models to motion detection and  segmentat ion and  solved 
the problem using Besag’s ICM method [4]. 

In that which follows, a  Bayesian approach to motion 
estimation derived from the Bayesian reconstruction of images 
as  proposed by Geman  and  Geman  [lo] and  Marroquin [27] 
is proposed.  In Section II, estimation criteria are formulated, 
suitable models are proposed,  and  the resulting a posteriori 
probability is derived. In Section III, solutions to the stochastic 
formulations are proposed via stochastic relaxation. Section 
IV covers hierarchical extension of the maximum a posteriori 
(MAP) probability estimation, whereas Section IV presents nu-  
merous experimental results for natural images with synthetic 
and  natural motion. 

II. FORMULATION 

A. Terminology 

Let u  denote the true underlying time-varying image under-  
stood as  an  i l luminance pattern in some image plane obtained 
from the observed scene via an  ideal optical system. The  
observed image g, which is related to the underlying image IL 
via some random transformation, is considered to be  a  sample 
of a  random field G. The  image g  is assumed to be  quant ized 
in ampli tude and  sampled on  lattice A, in R3 (horizontal, 
vertical, and  temporal directions). Such a  lattice is a  collection 
of sites (s,t) E R3 [8], where z and  t denote spatial and  
temporal positions, respectively. 

Let u  at t imes t = t- and  t = t+ be  called the preceding and  
the following images, respectively. Disregarding the occlusion 
and  newly exposed areas, for every point in the preceding 
image, there exists a  corresponding point in the following 
image such that both arise from the projection of the same 
scene point. Every such pair of points can be  connected by  a  
straight line. Since u  is def ined over cont inuous (z, t), these 
lines will intersect a  p lane located at t (t- < t < t+) over a  
dense  set of locations. In other words, for each  (z, t), there 
exists a  line joining corresponding image points at t imes t- 

and  t+. Note that these lines coincide with the true motion 
trajectory at the end  points and  not necessari ly between them. 
The  true motion trajectory will intersect (in general)  the plane 
at time t at a  location different from (z, t). It is also possible 
that more than one  such linear trajectory will pass through 
(x, t). 

Let the 2-D projections of line segments between t- and  
t+ on  the plane at time t be  referred to as  the unknown 
(true) displacement field d  associated with the underlying 
image U. It is not feasible to compute displacement vectors 
on  a  cont inuum of spatial positions; hence,  d  is assumed 
to be  an  array of vectors def ined over the lattice Ad in 
R3. In the literature, the cases where Ad is a  sublattice of 
A, : Ad C A,, or Ad is identical to A, : Ad = A,, 
have  been  most frequently considered. In this paper,  a  more 
general  situation, where Ad and  A, are arbitrary, will be  
investigated. Consequent ly,  a  displacement vector may be  
def ined at a  spatio-temporal position that does  not belong to 
A9. For Ad = A, (e.g., for mot ion-compensated prediction), 
the linear trajectories introduce no  errors because only the 
endpoints are of interest. In the case where Ad #  A, (e.g., for 
mot ion-compensated interpolation), however,  there are three 
points of interest, and  consequent ly,  there will be  an  error 
introduced due  to a  departure of the motion trajectory from 
linearity in the interval (t-, t+). If this interval is small, such 
an  error is expected to be  minor. 

The  investigations that follow are valid for any  lattices 
A9 and  Ad, but for simplicity, it is assumed that they are 
rectangular lattices with horizontal, vertical, and  temporal 
sampling periods (T! , T; , Tg ) and  ( Th , T; , Td) , respectively. 
Consequent ly,  consecut ive image fie ds  4 are spaced by Tg 
seconds,  whereas motion fields are spaced by Td  seconds.  
Each field of the image sequence contains Mg  picture elements 
(pixels), and  each  motion field consists of A’fd vectors. Let the 
horizontal and  vertical dimensions of motion fields be  A$ 
and  Mi, respectively (A$ = i’&‘$  x A!$). W ith the above  
assumptions, a  site si =  [kT,h, 1T;, mT,] E A, (for some 
integer i, Ic, 1, m) is an  image pixel in the mth field with spatial 
coordinate (Ic, 1). 

The  true displacement field 2  is assumed-to be  a  sample 
(realization) from random field (RF) D. Let d  be  an  estimate 
of d, and  let d denote any  sample field from D. Assuming 
a  linear motion trajectory between two images, as  discussed 
above,  the definition of the displacement field is given below 
and  is illustrated in Fig. 1. 

Definition: The  displacement field a  def ined over Ad is a  
set of 2-D vectors such that for all (zi, t) E Ad, the preceding 
image point (xi - At. &xi, t), t-) has moved to the following 
point (xi +  (1.0 - At) . d(xi, t), t+), where t- = t - At. T,, 
t+ = t + (1.0 - At) . T,,-and At =  t/T, - [t/Tg]. 

The displacement field d may not be  def ined at all points in 
Ad, for example, due  to occlusions and  may not be  unique, as  
in the case of a  rotating uniform disk. Note that this definition 
places a  displacement vector at any  spatio-temporal position. 
The  limiting cases when  At=O.O and  At=l.O correspond to 
forward and  backward predictive-type estimation, respectively. 

Since we impose no  constraints on  images, it can  be  



912 IEEE TRANSACTIONS ON PA’ITERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 9, SEPTEMBER 1992 

At. T, 
I 

Fig. 1. Definition of the displacement field dt for motion estimation from two image fields (only one  vector is displayed). Sites of lattice i\d (0) 
are pivoting points for the displacement vectors, and  thus, every vector d(z,. t) crosses site (z,, t), whereas its ends are “free” to move and do  not 
necessarily belong to lattice -is. 

expected that motion fields associated with such images will 
contain discontinuities at the boundar ies of objects with differ- 
ent motion. To  model  sudden  changes  in motion vector length 
and/or orientation, we use the concept  of motion discontinuity. 
The  true motion discontinuities are curves in the image plane 
def ined over cont inuous spatio-temporal coordinates (z, t) and  
are unobservable like the true motion fields. They are just a  
means  of describing motion in an  image and  can be  understood 
as  indicator functions (e.g., binary) for each  (x, t). Let the true 
(unknown) field of such discontinuities be  denoted by  i. Since 
the computat ion of i over a  cont inuum of spatial posit ions is 
not feasible, i will be  represented by  a  discrete discontinuity 
field over a  union of cosets (shifted lattices) [8] Qr =T+!J~U&, 
where $~h  and  $v  are orthogonal cosets def ined as  follows 
(superscript T denotes a  transposition): 

$‘I, =  Ad + [o! T;/2, olT, +v = Ad + [Ti/2,0, OIT. 

Cosets ?/& and  ?,L+, identify posit ions at which Ml= M$x(M~ 
1)+(&Q-l)xMi motion discontinuities or line elements are 
estimated. The  line elements are located midway between sites 
of Ad and  take on  the value 1  if a  motion boundary  intersects 
the line joining the neighbor ing displacement vector sites and  
0  otherwise. 

W e  assume that i is a  sample field from RF L. Let rbe an  
estimate of i. In addition, let 1  be  any  sample field drawn from 
L. The RF L will be  called a  line process, and  its sample 1  
will be  called a  line field. 

Let the subscript t denote restriction of a  random field or of 
its realization to time t. Thus, dt will s tand for a  realization 
of random field Dt (D at time t). 

It is assumed that the random field Gt is def ined over the 
discrete state space S, =  (Si)“., where Si is the single 
pixel state space corresponding to quant ized image intensities, 
and  (.)M denotes an  M-fold Cartesian product. Similarly, the 
random field Dt is def ined over the state space Sd = (Si)“d, 
where Sk is the single vector state space.  Two cases are 
considered: 

1. Sb is a  discrete state space,  i.e., a  square 2-D grid over 
the range [-d,,,, d,,,] with Nd possible levels in each  
direction. 

2. Sb = R2 is a  cont inuous state space.  
It is also assumed that the random field L is def ined over 
the discrete state space Sl =  (Sf)*[l, where Sf is the single 
line element state space.  For the purpose of this work, it is 
assumed that RF L is binary and  that S,l consists of two states: 
0  (no motion discontinuity) and  1  (motion discontinuity “on”). 
Possible extensions of this state space to nonbinary spaces 
(e.g., incorporating the directionality of line elements) are not 
considered in this paper  but can  be  found in [lo] in the context 
of image modeling. 

B. Estimation Criteria 

The objective is to jointly estimate the pair (&i) of true 
displacement and  line fields at time t corresponding to an  
underlying image u  on  the basis of observat ions g. 

I) MAP EstimatioE* The “best” or “most likely” displace- 
ment field estimate dt E Sd and  line field estimate 2  E Sz 
given the observat ions gt- , gt+ must satisfy the relationship: 

P(Dt =;it+,Lt =ht-,gt+) 2  

P(-Dt=&,Lt=illgt-,gt+) ~&E$&E& 

where P is the conditional discrete probability distribution of 
the motion and  line fields given the observations. Applying the 
Bayes rule for discrete random variables, the above  posterior 
distribution can be  factored as  follows: 

P(Dt =  4, Lt =  Llgt-, gt+ > = 
Wt, =gt+ldt,zt,gt-)P(Dt=dt,Lt =ltjgt-). (1) 

Wt, =  gt+ Ia- >  

Note that since P(Gt+ = gt+ ]gt- ) is not a  function of 
(ot, L,), it can  be  ignored w_hen-maximizing P(Dt = 2, Lt = 
Ztlgt- , St+_) with respect to (4, It). Thus, the MAP estimate of 
the pair (4, 2,) is the solution to the following optimization 
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problem: 

ma  P(Gt+ 
&,x, [ =  gt+ I&,;, gt- )P(Dt =  2, Lt =  i&m)]. 

If displacement vectors are def ined over the cont inuous state 
space s, =  R2, then by  using the Bayes rule for mixed 
random variables, the discrete probability distribution P(Dt = 
&,Lt =z I St-) is replaced by  the mixed continuous/discrete 
probability distribution p(&, Lt = zjg,-). 

2) Min imum Expected Cost (MEC) Estimation: Another ap-  
proach to the estimation of motion is based  on  Bayesian 
criteria developed by  Marroquin for reconstruction of images 
[27]. The  goal is to minimize the ensemble average with re- 
spect to Dt , Gt- , Gt, of some positive definite cost functional 
measur ing the error between the true and  estimated motion 
fields (minimum expected cost (MEC) estimation). Here, we 
will only discuss the MEC estimation for the globally smooth 
motion model, i.e., without discontinuity process Lt. Let the 
cost functional have  the following form: 

Md  
O(d;, d;) =  c O(d’(x;, t), d”(x;, t)) 

i=l 

where 0  is a  positive definite function, and  6, 6’ are two 
motion vector fields. The  cost asso$ated with_ approximating 
the true motion field & by  estimate 4  is O(&, 4). The  optimal 
Bayesian estimate 21  E sd is def ined as  follows: 

E ~t,Gt- Gt+ P(dt,~~)l = m inED,,ct-,~,+ [@(A,&)] (2) 
2, 

where EDt ,G*- ,Gt+ 1.1 stands for the ensemble expectat ion 
over all configurations of Dt , Gt- and  Gt,. Note that the 
estimates & and  ;it’ are functions of gt- and  gt+ and  can be  
thought of as  mappings from R2Mg to R2Md. Expressing the 
expectat ion as  a  sum and  using the positive definiteness of 8, 
it can  be  shown [24] that (2) is equivalent to 

I c W t = dtlg t- , a+)] Vi. (3) 
d,:d(x,,t)=r 

This means  that the minimization with respect to 2  can be  
achieved by  minimizing the individual marginal expected costs 
at each  position (xi, t). 

Further simplification of (3) requires explicit knowledge of 
the function 0. This function must reflect “goodness” of an  
estimate, i.e., a  worse estimate should increase the value of 8, 
and  a  better one  should reduce it. W e  use the following 8: 

e(ii(xi, t),^d(xi, t)) = Ild(Xiy t) - ^d(Xi, t)ll’ (4) 

where II . I( is the L2  norm for mathematical tractability. 
The  solution to minimization (3) with r9 def ined in (4) is 
the minimum mean  squared error (MMSE) estimate expressed 

through the marginal conditional expectat ion of D(xi, t): 

;i*(x;,t) = c r[ c P(Dt =dtlgt-,gt+)] Vi. 
l-es; d, :d(x, ,t)=r 

(5) 

The  cont inuous state space case is identical except  for 
integrals replacing the summations and  probability density 
replacing the discrete probability distribution. To  compute 
the conditional expectat ion from (5), the a posteriori discrete 
probability distribution P(Dt = dt I gt- ,gt+) or density 
~(4 I gt- ,gt+> is needed.  

C. Models 

In order to solve the MAP and  MEC estimation problems, 
the posterior distribution from (1) must be  known explicitly. 
In this section, we determine the constituent probabilit ies from 
(1) by  formulating appropriate models. First, from a  structural 
model  relating motion to the underlying image and  from a  
model  for the observat ion process, we propose the likelihood 
PG, = gt+ I 4, lt, gt- ). Then,  we directly postulate a  
displacement field model  for P(Dt = dt, Lt =  Ztlgt-). 

1) Structural Model: To facilitate inference of motion from 
images, it is fundamental  to specify a  structural model  relat- 
ing motion vectors and  image intensity values. It is usually 
assumed that image intensity or its spatial gradient is constant 
a long motion trajectories. Applying the intensity constancy 
assumption to the true underlying image u  along the true 
motion trajectories 2  in time interval [t-, t+] results in the 
following relationship: 

u(x - At .2(x, t), t-) = U(Z + (1.0 - At) . ;1(~, t), t+). (6) 

A more complex model  incorporating linear variation of 
intensity has  been  devised in [34] and  [ll]; however,  it will 
not be  considered here. 

2) Observation Model: The true underlying image u  results 
from the “ideal” projection of a  scene onto an  image plane. 
In reality, images are acquired with a  video camera and  
discretized using electronic circuitry. Hence,  the observed 
image g  is a  transformed copy of u  after such operat ions as  
filtering, sampling, y correction, and  quantization, and  it also 
incorporates image sensor  noise, quantization noise, distortion 
due  to aliasing, etc. 

Extrapolating the relationship (6) to the observed image g, 
we model  the displaced pixel differences (DPD’s) 

F(:(;i(xi,t),xi,t) =s(xi +  (1.0~ At) .;I(xi,t),t+) 
-g(xi-At.d(zi,t),t-) 

for (zi, t) E Ad by independent  Gaussian random variables. 
g(z, t) above  denotes an  intensity value at (z, t) @A9 obtained 
by  interpolation. W e  have  investigated various interpolation 
schemes [23] and  have  concluded that a l though matching 
algorithms are relatively insensitive to the type of interpolator, 
spatio-temporal gradient methods require interpolators that 
provide continuity of both the intensity and  its first derivative. 
W e  thus use  a  third-order (bicubic) separable interpolator, as  
proposed by Keys [19], which has  this property. 
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Given these assumptions, we can write’ 

P(Gt+ = iit+ I dt,lt,gt-) = 

(2aa2)-Md/2. e  -Q&+ iha- )/202 (7) 

where energy U, is def ined as  

i=l 

and  where ct+ and  ct+ denote the random and  sample image 
fields at time t+ spatially interpolated at posit ions pointed to 
by  displacement vectors. W e  need,  however,  U, (gt+ I 4, gt- ), 
i.e., energy at locations of the image sampling lattice A, at 
time t+ . W e  could account  for this d iscrepancy by  interpolating 
the motion field dt to get a  field of motion vectors terminating 
on  the lattice points at t+; however,  this will not significantly 
change  the energy U,, and  thus, we simply assume that 
ugbt, I &,a-) = UgGt+ I dt,gt- ). 

3) Displacement Field Model: It can  be  observed that in 
most scenes,  motion is the result of a  change  of position 
of near  rigid bodies. After projection onto the image plane, 
that 3-D motion becomes a  2-D motion of 2-D objects. The  
motion field in such an  image consists of patches of similar 
(orientation and  length) vectors with possible discontinuities 
at motion boundaries.  Therefore, it will be  assumed here 
that motion fields are smooth functions of spatial position 
x (fixed t) except for occasional abrupt changes  in vector 
length and/or orientation. In fact, displacement fields are 
significantly smoother than the images themselves. Based on  
this observat ion and  on  successful application of MRF’s to 
image model ing [13], [lo], here, we propose to jointly model  
the motion and  motion discontinuity fields by  a  pair (Dt, Lt) 
of coupled vector and  binary MRF’s. 

The  traditional approach to characterization of MRF’s via 
the finite-dimensional joint distributions is cumbersome and  
does  not provide a  simple and  clear relationship between the 
distribution parameters and  the propert ies of a  MRF. Due to 
the Hammersley-Clifford theorem [3], however,  a  MRF with 
respect to ne ighborhood system JV is uniquely character ized 
by  a  Gibbs distribution with respect to ni. Since a  vector MRF 
(VMRF) differs from a  scalar MRF only by  the definition of 
a  state (in R2 instead of R), the propert ies of scalar MRF’s 
hold for VMRF’s as well. 

Recall that the propert ies of a  motion model  are descr ibed by  
the discrete probability distribution P(Dt =  dt, Lt = Zt I gt-) 
from (l), which can be  factored using the Bayes rule: 

P(Dt=dt,Lt=ltlgt-)= 
P(Dt =  dt I Lst-) . P(Lt = it I St-). 

If P(Dt =  & I Zt,gt-) and  P(Lt = Ztlgt-) are Gibbsian, 
then P(Dt =  4, Lt = It I gt-) is also Gibbsian, and  the pair 
(44) has M ar k ovian properties. Since a  single image field is 
expected to contribute little information to the motion vector 

‘Note that dt constitutes a  complete description of motion, and  line field 
It is only an  aid in estimation of dt. Hence, the condit ioning on  It can be  
dropped, thus giving U(&+ Idt, gt- ). 

model, the condit ioning on  gt- in P(Dt =  4  I It, gt- ) is omit- 
ted as  an  approximation. However,  motion discontinuities will 
most likely occur at the posit ions of intensity discontinuities 
at object boundaries,  which is expressed through condit ioning 
on  gt- in P(Lt =  4 I St-). 

Under  assumed Markov properties, the probability govern-  
ing the displacement RF Dt can be  expressed by  the Gibbs 
distribution 

P(Dt = & I it) = $emud(& I ft)/Pd (9) 

where zd is a  normalizing constant (partition function), pd  is 
a  constant controll ing characteristic propert ies of Dt, and  the 
(conditional) energy function Ud(dt I Zt) is def ined as  

u&t 1  it) = c vd(dt,cd)[l - l(@i,xj),t)]. 

Cd={x,,xj}ECd 
(10) 

cd  is a  clique of vectors, whereas cd is a  set of all such 
cl iques derived from a  ne ighborhood system Nd def ined over 
lattice Ad. (@;, xj) , t) E Ql denotes a  site of line element lo- 
cated between vector sites Zi and  xj. vd is a  potential function 
crucial to characterization of the propert ies of displacement 
process Dt. This is a  straightforward extension of the scalar 
MRF model  for images as  proposed by Geman  and  Geman  
POl* 

The energy function (10) can be  understood as  follows. 
There exists a  cost Vd(dt, cd) associated with each  vector 
cl ique cd that increases if a  motion field sample locally departs 
from the assumed a priori model  character ized by  pd  and  
vd. If, however,  the line element separat ing the displacement 
vectors from clique cd is “turned on” (Z( &i, zj), t) = l), there 
is no  cost associated with the clique cd. In this way, there 
is no  penalty for introducing an  abrupt change  in length or 
orientation of a  displacement vector. The  ability to zero the 
cost associated with vector cl iques by  inserting a  line element 
must be  penalized, however.  Otherwise, a  line field with all 
e lements “on” would give the zero displacement energy (10). 
This penalty is provided by  the line field model  descr ibed in 
the next section. 

To  specify the a priori displacement model, the potential 
function v,+ the ne ighborhood system J%& and  the cl iques cd 
have  to be  specified. Bearing in mind the assumed smoothness 
of dt, we define the potential function vd as  follows: 

cd  = {Zi,Xj} E cd (11) 

where II . 11  is a  norm in R2, e.g., L2: This particular potential 
well captures the smoothness of the displacement field process 
Dt [21]. W e  use the first-order ne ighborhood system N1 

4  depicted in Fig. 2(a), which consists of two-element horizonta 
and  vertical vector cl iques (Fig. 2(b) and  (c)). Note that every 
displacement vector has  four vector neighbors and  four line 
neighbors. 

To  demonstrate that this VMRF is a  valid model  for 
displacement fields, we generated unconstrained (by image 
intensities) VMRF samples disregarding the line process. Fig. 
3  shows such samples for the first-order ne ighborhood system 
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Fig. 2. (a) First-order neighborhood system ,%: for vector field dt defined 
over Ad with discontinuities It defined over @r; (b) horizontal cliques; (c) 
vertical cliques (o-center vector site, r-vector site, x-line site). 

(4 (b) 
Fig. 3. VMRF samples for potential function (11) and neighborhood system 
-ki initialized by a random vector field with mean (0.5, 0.5): (a) .jd=l.O; 
(b) &=B.l. 

and two different values of pd after 50 iterations of the Gibbs 
sampler (Section III) starting from random initial configuration 
with mean (0.5, 0.5). Note that for smaller value of ,8& the 
sample field is less “chaotic.” The value of ,6d can be viewed 
as an “activity” or “ordering” measure. Thus, to model a 
slowly varying motion pd of the order of 0.1 seems to be 
appropriate; however, an exact value cannot be established. 

4) Line Field Model: The line field model is based on a 
binary MRF (BMRF) Lt and is described by the Gibbs 
probability distribution 

P(Lt = lt 1 gt-) = +w~L, (12) 

with Zr and ,L?r as the usual constants. Ul is the line energy 
function, which is defined as follows: 

Uz& I St- > = 1 wt, St- 1 cz) 

where cl is a line clique, and Cl is a set of all line cliques 
derived from a neighborhood system h/ defined over Ql. The 
line potential function K provides a penalty associated with 
the introduction of a line element. 

The second-order neighborhood system J$: for the “dual” 
sampling structure Pl is shown in Fig. 4. Note that since the 
union of cosets !IJz = ?/& &,!I, identifies positions of horizontal 
and vertical line elements, two neighborhood systems are 
defined (Figs. 4(a) and (b)). Every line element has eight line 
neighbors and two vector neighbors. There are two types of 
four-element line cliques. The cross-shaped cliques from Fig. 
4(c) are the same as those used in [lo] and aim at modeling 
the shape of motion boundaries (small penalty for straight 
lines and high penalty for intersections; see Fig. 5(a)). The 

X X 

x l x X X 

X 63 X x 0 cg l x 

x l x X X 

X X 

(4 W 

. 

X 

0 x 0 X . 
0 x 0 x l 

X X x 0 x X 

0 x l . 

Cc) cd; (e) (9 

Fig. 4. Second-order neighborhood system .‘1;’ for line field It defined over 
+l: (a) Horizontal line element; (b) vertical line element; (c), (d) four-element 
cliques; (e), (f) two-element cliques (‘:,-center line site, x-line site, e-vector 
site). 

square-shaped cliques from Fig. 4(d) are employed in order 
to exclude isolated vectors (I$ = 00; see Fig. 5(b)) when all 
four line elements are “on.” The two-element vertical cliques 
of horizontal line elements (Fig. 4(e)) and the horizontal 
cliques of vertical line elements (Fig. 4(f)) are used following 
Marroquin [27] to prevent formation of double edges (Fig. 
5(c)). Fig. 5 shows possible configurations (up to a rotation) as 
well as related costs, which were chosen experimentally. Only 
one configuration of the square-shaped four-element clique 
(Fig. 5(b)) is shown since other configurations are accounted 
for in the cross-shaped and two-element cliques. 

Note that the a priori probability of the line process (12) 
is conditioned on the observations. It means that image in- 
formation gt- should be considered when computing the 
line samples lt. In general, a 3-D scene giving rise to a 
motion discontinuity will also contribute to an intensity edge. 
Only under specific circumstances will a motion discontinuity 
not correspond to an edge of intensity. Hence, similarly to 
Hutchinson et al. [18], we assume that an introduction of a 
line element should coincide with an intensity edge. We use 
the following potential function for one-element cliques: 

6, (k, St-, cz) = 

i 

(vUg”t- I* Eh(+z;,zj), t) for horizontal cr = {zi,zj} 
&$-+(&,z.j),t) for vertical cr = {z;,zj} 

where lh, 1, are horizontal and vertical line elements, Vh, V, 
are horizontal and vertical components of the spatial gradient 
at position (@i, zj), t), and a is a constant. The above potential 
introduces a penalty only if a line element is “on,” and the 
appropriate gradient is relatively small. The total potential 
function for the line field can be expressed as 

wt, St-, cz) = ti, (4, cr> + E, (L s> + h (4, St-, s> (14) 

where Vl, and Vl, are tabulated in Fig. 5, and I$, is given 
above. 
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Fig. 5. Costs 1  i, , Ii, associated with various configurations (up to a  rota- 
tion): (a) Four-element cross-shaped cliques; (b) four-element square-shaped 
clique (other configurations are accounted for in (a) and  (c)); (c) two-element 
cliques (e-vector site, - -line element “turned on”). 

To demonstrate that VMRF/BMRF is a  valid model  for 
discont inuous displacement fields, we generated unconstrained 
(by image intensities) samples from this model. Fig. 6  shows 
such samples for pdzO.1 and  two different values of ,& after 
50  iterations of the Gibbs sampler starting from a  random line 
field with mean  0.0 (other parameters are the same as for Fig. 
3). Note that, again, for smaller value of pr, the sample field 
is more organized. 

D. A Posteriori Probability 

Combining the conditional l ikelihood (7), the displacement 
a priori probability (9), and  the line a priori probability (12) 
via (1) and  substituting (a,;) for (4, lt), the following Gibbs 
form of the a posteriori probability can  be  obtained: 

P(Dt =  2, Lt =  i‘, 1  gt-,gt+) = ~~-~(~~i~l~-+) (15) 

where Z is a  new normalizing constant ( incorporating the 
probability P( Gt+ = gt+]gt-) from (l), (2rra2)-%i2 from 
(7) Zd  from-(91, and  ZZ from (12)), whereas the new energy 
function V(dt , It, gt- , gt+ ) is def ined as  follows: 

U(~,il,gt-,a+) = 

~,u,(s,+ 1  a, St- > + ~&-&t j 8) +  huz@i 1  St- )- (16) 

Fig. 6. VMRFBMRF samples for potential functions (11) and  (14) neigh- 
borhood system ,tfl U ,k;‘, 

4  
and  ddZO.1 initialized by a  random vector field 

with mean  (0.5, 0.5 and  by a  random line field with mean  0.0: (a) .9,=0.25; 
(b) 13~ =0.05. 

The conditional energies in the above  relationship are def ined 
in (8), (lo), and  (13), respectively, and  X, =  1/(2cr2), Ad = 
l/p,+ Xl =  l//3,. The  ne ighborhood system for this new Gibbs 
distribution is a  combinat ion of JI.> and  Nr since the DPD 
model  is based  on  the independent ly distributed noise random 
variables. Should this model  be  correlated (e.g., filtered noise), 
the ne ighborhood system for D would need  to be  redef ined 
appropriately [lo]. 

Having shown that the posterior distribution (1) is Gibbsian, 
it follows that the MAP estimation can be  achieved by  means  
of the following minimization: 

(17) 
Note that the functional to be  minimized consists of three 

terms: U, is a  sum of squared DPD’s over the entire image and  
descr ibes the il l-posed matching problem of the data (St-, gt+ ) 
by  the motion field &, ud  is responsible for conforming to the 
propert ies of the a priori displacement model, and  Ul allows 
for occasional discontinuities according to the a priori line 
model. The  three-term formulation of the energy function (16) 
can be  v iewed as regularization of the original cor respondence 
problem (DPD only). Then,  $JUd(& I 2) +XlUl(i‘, I gt-) is a  
stabilizing functional, and  l/X, is a  regularization parameter.  
Hence,  the Bayesian formulation comprises, as  a  specific case, 
the regularization method, which has  been  frequently used  in 
computer  vision [2]. 

The  objective function in (17) is similar to that used  in 
[18], which is der ived from the original formulation of Horn 
and  Schunck [ 171  with the additional nonstochast ic motion dis- 
continuity model. W e  pursue the stochastic approach by  using 
two coupled MRF’s and  a  random displaced pixel difference 
instead of the motion constraint equation. In addition, the line 
cl iques are different, and  the penalty for introducing a  line 
element is a  cont inuous function of data rather than a  binary 
one  [18]. Most importantly, however,  we will use  a  stochastic 
relaxation algorithm for minimization of (17). 

In the fOmWkttiOn (7), the ratios Ad/x, and  Ad/Al play 
an  important role weighting the conf idence in the data and  in 
the a priori model. A modification of any  X has  an  effect on  
the estimate; however,  the magni tude of this effect is highly 
dependent  on  the data itself. Recall that g2  is a  var iance of the 
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displaced pixel difference (Gaussian) model; its value can be  
estimated given a  displacement field. However,  the parameters 
,6d and  pl, which characterize the a priori motion model, 
are far more difficult to compute.  When  MRF’s are used  in 
estimation of such observables as  images or textures, /3 can be  
estimated by  analyzing a  number  of samples (training process) 
and  then used to perform estimation on  some other data. The  
success of the estimation is highly dependent  on  the similarity 
between the real data and  the model  (the training data). In the 
case of estimating an  unobservable such as  motion, it is not 
clear how to compute p, and  thus, it is usually chosen ad hoc. 
Consequent ly,  there is no  point in estimating a2; the ratios 
Ad/x, and  Ad/& may be  chosen instead. 

III. STOCHASTIC SOLUTION TO MAP AND MEC ESTIMATION 

The MAP estimation expressed through optimization (17) 
is a  very complex problem because of the number  of un-  
knowns involved (typically tens of thousands)  and  because 
of multimodality of the objective function, which depends  on  
& through the observat ions g. The  MEC estimation problem is 
also character ized by  a  large number  of unknowns and  by  the 
necessity to compute the marginal conditional distributions in 
(5). 

A. Solving the MAP Estimation: Simulated Annealing 

To solve the optimization problem (17) we use the method 
of simulated annealing [20], [lo], which is based  on  the 
analogy with the process of annealing of solids. In simulated 
anneal ing, the behavior of a  solid is simulated by  generat ing 
sample configurations from a  Gibbs distribution with the 
energy function suitably crafted for the given optimization 
problem. A “temperature” parameter T, which replaces the 
true temperature in chemical anneal ing, is introduced into the 
a posteriori probability (15) as  follows: 

P(Dt =  2, L  =  L  I gt- , a+) =  Fe  1  -~&,L~J~+)/T 

&3) 
The sample configurations are produced using stochastic re- 

laxation (e.g., the Metropolis algorithm or the Gibbs sampler), 
which will be  descr ibed in Section III-C. Similarly to Geman  
and  Geman,  we incorporate the Gibbs sampler into the inho- 
mogeneous simulated anneal ing algorithm2 with the anneal ing 
schedule specif ied by  the initial and  final temperatures Ta  and  
Tf and  the temperature change  rule Tk = (P(T~, Ic) at iteration 
/c.~ In [lo], it was proved (Theorem B) that if a  sufficiently 
high initial temperature Ta  is used,  if the temperature TI, 
attains 0  with at most logarithmic rate, and  if every site is 
visited infinitely often, then with time t +  00, the system will 
converge to the global opt imum for any  starting configuration. 

The  theoretical value of Ta  is usually impractically high, 
and  therefore, it is typically establ ished through experimenta- 
tion. Another practical problem is posed  by  the logarithmic 

2Simulated anneal ing is called homogeneous  if the Markov chain it gener- 
ates can be  decomposed into a  sequence of stationary chains, i.e., with constant 
temperatures. It is called inhomogeneous if such decomposit ion does not exist, 
i.e., transition probabilities are t ime dependent  through the temperature. 

3An iteration is understood here as a  complete scan of the unknown field, 
i.e., Md  or Md  -I- Mr attempted modifications of individual unknowns. 

anneal ing schedule. In order to obtain a  “very organized” 
solution, the final temperature Tf after N iterations must be  
quite small. Unfortunately, the required number  of iterations 
to attain the final temperature Tf from Tu grows exponential ly 
with Tu/Tf. If the initial temperature cannot  be  lowered 
more without affecting the quality of the solution, then only 
the anneal ing schedule can be  modified. In the experiments 
descr ibed in Section V, we have  used the exponential  schedule 
cp(T,,, Ic) =  To  . a(“-‘), where a  is slightly less than 1.0. 
Such a  schedule reaches a  low temperature in fewer iterations 
than the logarithmic one  with the same number  of iterations 
[lo] but has  to be  used with caution since a  large temperature 
decrement  between iterations may trap the chain in a  local 
minimum. 

B. Solving the MEC Estimation: LLN for Markov Chains 

The propert ies of a  Markov chain constructed by  the 
Metropolis algorithm or the Gibbs sampler are such that it is 
a  regenerative process, and  the time instants of the returns 
to a  given state constitute a  renewal process. Hence,  the 
law of large numbers (LLN) for Markov chains [32] can be  
applied, and  the marginal conditional expectat ion (5) can  be  
approximated as  follows: 

^d*(zi,t) M  $d*(zi,t) 
k=O 

where d”(z;, t) is a  displacement vector estimate at iteration 
number  Ic, and  N is the total number  of iterations. 

The  advantage of the above  approach over simulated an-  
neal ing is that it requires no  anneal ing schedule since the 
generat ion of samples occurs at a  constant temperature T. This 
temperature controls the state-rejection rate of the generat ion 
algorithm. If the parameter T  is higher, the lower the rejection 
rate and  the more chaotic the generated samples. If the T 
is lower, the higher the rejection rate and  the more orderly 
the structure of generated realizations. To  choose optimal T, 
Marroquin proposed a  method that maximizes the likelihood 
of a  solution with respect to T  [27]. 

C. Stochastic Relaxation 

To implement the MAP and  MEC estimation algorithms 
discussed above,  samples from MRF’s Dt and  Lt are needed.  
Such samples can be  provided by  stochastic relaxation such 
as  the Metropolis algorithm [29] or the Gibbs sampler [lo]. 
A very important feature of stochastic relaxation methods is 
that they produce states according to probabilit ies of their 
occurrence, i.e., the unlikely states are also generated (less 
frequently, however).  When  incorporated into simulated an-  
nealing, this property allows local minima to be  escaped,  
unlike the case of descent  methods. W e  will use  the Gibbs 
sampler since, despite its high complexity per  iteration, in our  
tests, it provided a  lower overall computat ional burden than 
the Metropolis algorithm [24]. 

The  Gibbs sampler for discrete displacement process Dt 
is a  site-replacement procedure that generates a  new vector at 
every position (zi, t) E Ad according to the following marginal 
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conditional discrete probability distribution [25] der ived from 
probability (18): 

with the local displacement energy function Ui def ined as  

Ad c k^d(zj,t)l12[1 -ii( (21) 
j:xjETd(Zz) 

where vd(Zi) is a  spatial ne ighborhood of displacement vector 
at zi, and  2: denotes a  displacement field identical to field &, 
except  for spatial location CC;, where the vector is z. Similarly, 
it can  be  demonstrated [24] that the conditional probability 
driving the Gibbs sampler for displacement discontinuities can 
be  expressed at spatio-temporal location (y;, t) E 91  as  follows: 

P(L(Y,,G =iiyd) I iiYjA.7. #  &,gt-) 

,-a;(~;^dt,st-j/T 
=  

c ZES; e  
-u;(&i.st-j/T 

(22) 

where the local line energy function IJ: is def ined as  

u,;@,&,k, =xd c Il&m,~) - &d)l12[1 - zl+ 
Cd={%,z,b 
(2, .3&l) =y, 

Xl c  K@,gt-, Cl) (23) 
ct :y, ECl 

and  2  denotes a  line field that is identical to field z, except  for 
spatial location yi =< 2,) zn  >, where the line element is Z. 

1) Discrete State Space Gibbs Sampler: The discrete state 
space Gibbs sampler scans the displacement and  line fields 
and  generates new states according to the Gibbs marginal 
probability distributions (20) and  (22) respectively. 

At each  spatial location of random field Dt, a  complete 
bivariate discrete probability distribution is computed (prob- 
ability for all possible displacement vector states). Then,  the 
2-D distribution is accumulated along one  direction (e.g., hori- 
zontal) to obtain a  1-D marginal cumulative distribution, and  a  
random state is generated from this univariate distribution. The  
vertical state is generated by  sampling the univariate cumula- 
tive distribution obtained from the 2-D discrete probability 

distribution for the known horizontal state. The  calculation of 
the complete probability distribution at each  location results 
in a  high computat ional load per  iteration of the discrete 
state space Gibbs sampler. However,  this is offset by  faster 
convergence than the Metropolis algorithm, which samples the 
states from a  uniform discrete probability distribution and  only 
then rejects the unlikely ones.  

Since the random field Lt is binary, only the probabilit ies 
for “on” and  “off” states have  to be  computed.  A new line 
state is generated based  on  those two probabilities. 

2) Continuous State Space Gibbs Sampler for Dt: Recall 
that in the case of the cont inuous state space (sd = R2), 
the marginal conditional discrete probability distribution de-  
f ined in (20) bzcomes the probability density p(^d(zi, t) ] 
+j,W #  iJt,gt~,gt+) with the same local energy Ui 
as  def ined in (21). Note that the first term in this energy 
is quadrat ic with respect to F, whereas the second term is 
quadrat ic in &. If &he first term could be  approximated by  a  
quadrat ic form in d,, then Ui would be  quadratic, and  the 
conditional density would be  Gaussian. There exist efficient 
techniques for generat ing normal bivariates, which would 
significantly speed  up  the estimation. 

Assume that an  approximate estimate ht of the displacement 
field is known and  that the image intensity is locally approx-  
imately linear. Then,  using the first-order terms of the Taylor 
expansion,  the displaced pixel difference F can be  expressed 
as  follows: 

iy(^d(z;, t), 5; ) t) M 
F((h(Zi,t),Zi,t) +  (2(3J;,t) -i(zi,t))TVd~(:(b(s;,t),si,t) 

(24) 

where the spatial gradient of F  at (i(Zi, t), 2;) t) is def ined 
as  shown at the bottom of this page.  Incorporating the 
linearization (24) into the local energy Ui (21) we obtain 
approximation (25) (which is shown at R t e  bottom of the 
next page),  where & is fixed. To  simplify the subsequent  
derivation, we temporari ly use  Fi, 2, &, and  & to denote 
F((i(z;, t), zi, t), ^d(zi, t), ;I(%;, t), and  ii@;, zJ, t), respec- 
tively. W ith this simplification, the energy (see (25)) can  be  
written as  follows: 

&et us  fit the-condit ional probability density p(^d(Zi, t) ] 
d(zj, t), j #  i, It, gt- , gt+ ) with energy approximated as  above  

v&2(&, t),zi> t, = I, = 

~~(Z,-A~~(Zi,t).t-)at + a;;(z,+(l.o-aazt).d(z,,t).t+) (1.0 - At) 

$((z;-At$Zi,t),t-) At + ~~(~,+(l.o-~~).d(~,,t),t+) (1.0 - At) 1 ’ 
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into the following 2-D Gaussian distribution: 

P(Z) =  1  
2rr(det M) 4  e  

-3(Z-myM-‘(z-m) 

where m is the mean  vector, and  the covar iance matrix A4 is 
def ined as  follows: 

By complet ing the squares,  we obtain the following equat ions 
(note that the temperature T from (20) must be  taken into 
account):  

kZTM-‘Z =$ (XgZTvdFiviFiZ + /!dZTZ C (1 - lij)), 
j:jel, 

1  
- 5ZTM-‘m  = f 

( XgzTv#i 

(Fi - $vdFi) - XdZT C 2j(l - lij)) 

which can be  simplified to 

where I is the identity matrix, and  &, & are def ined below. 
Comput ing appropriate inverses, the following parameters of 
the Gaussian distribution can be  obtained: 

where PL;, the average vector Ji, and  the scaling factor <i are 
computed as  follows: 

pi ++vT-. 
dr ,vdk 

9  

<i= C (1 -xj). 

Note that this definition of averaging takes into account  the 
line elements and  simply does  not allow performance of 
such operat ion across a  motion boundary.  The  horizontal and  
vertical component  var iances a$, ai, as  well as  the correlation 

coefficient p, which comprise the covar iance matrix M, have  
the following form: 

The  initial vector h, can  be  assumed zero throughout the 
estimation process, but with increasing 4, the error due  to 
intensity nonlinearity would significantly increase. Hence,  it 
is better to “track” an  intensity pattern by  modifying & 
accordingly. An interesting result can  be  obtained when  it 
is assumed that at every iteration of the Gibbs sampler, 
& = &, i.e., the approximate displacement field is equal  to 
the average from the previous iteration. Then,  returning to the 
original notation, the estimation process can be  descr ibed by  
the following iterative equation: 

;i”+‘(Zi, t) = 

Pi 
v#(dk(zi, t),Z;, t) +  ni 

(27) 

where Ic is the iteration number.  n; is a  Gaussian bivariate 
with the covar iance matrix M, which along with pi is def ined 
as  before except  for 2: replacing &. 

The  cont inuous state space Gibbs sampler descr ibed above  
results in a  spatio-temporal gradient estimation method, 
whereas the discrete state space Gibbs sampler from the 
previous section is an  example of an  explicit (pixel) matching 
algorithm. This important difference is due  to the Taylor 
expansion used in approximating the displaced pixel difference 
P by the linear form (24). 

Note the similarity of the iterative update equat ion (27) 
to the update equat ion of the Horn-Schunck algorithm [17]. 
Except for the displaced pixel difference replacing the motion 
constraint equat ion and  the inclusion of the random vector tzi, 
they are identical. It is interesting that similar update equat ions 
result from two different approaches:  Horn and  Schunck 
establish a  necessary condit ion for optimality and  solve a  
linear system by deterministic relaxation, whereas here, a  2- 
D Gaussian distribution is fitted into the conditional marginal 
probability density to obtain the Gibbs sampler update formula. 
For T=O and  & = &, the cont inuous state space Gibbs sampler 
is equivalent to a  variation of the Horn-Schunck algorithm, or 
in other words, their algorithm can be  v iewed as an  instantly 
“frozen” simulated anneal ing. 

Note that at the beginning, when  the temperature is high, the 
random term )Zi has  large variance, and  the estimates assume 

U~(;i~.C,gt-,gt+) MXg[F(h(Zirt), zi,t) + (Z-d(zi,t))TVd~(~(zi,t),zi,t)]2+ 

c llz - 2(q,  t>ll”[1 -Q+i,tj)7 t>l, 

j:zjEVd(zs) 
(25) 
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quite random values. As the temperature T is reduced to 
zero, the variances and the correlation coefficient get smaller, 
thus reducing the random term of the estimate. In the limit, 
the algorithm performs a deterministic update. In addition, 
observe that the variance g2 in (26) for fixed Ad/X, and 
P decreases with growing P. It means that if there is a 
significant horizontal gradient (detail) in the image structure, 
the uncertainty of the estimate in the horizontal direction 
is small. The same relationship applies to ui. Hence, the 
algorithm takes into account image structure in order to 
determine the amount of randomness allowed at a given 
temperature. 

As stated at the beginning of this section, the continuous 
state space approach should be more efficient computationally 
due to generation of Gaussian bivariates, as opposed to genera- 
tion of bivariates with arbitrary discrete probability distribution 
(Section 111-C-l). Due to the complexity of both approaches, 
it is very difficult to calculate the number of multiplications 
and additions needed. We have found, however, that for a 
maximum displacement of two pixels and a quarter-pel preci- 
sion (typical values for slow motion in broadcast applications), 
the computational cost for the continuous state space Gibbs 
sampler should be at least two orders of magnitude smaller 
than that for the discrete state space case. This finding has 
been confirmed experimentally and is discussed in Section 
V-B-2. 

IV. BAYESIAN ESTIMATION OVER 
A HIERARCHY OF RESOLUTIONS 

There are two major reasons for carrying out motion com- 
putation over a hierarchy of resolutions: to speed up the 
estimation process and to reduce violation of underlying 
assumptions. The discrete state space Gibbs sampler, because 
it is a stochastic exhaustive search method, requires a computa- 
tional effort proportional to the size of the state space searched. 
When incorporated into simulated annealing at one resolution 
level, it is capable of locating the global optimum but at a 
substantial computational cost. In the case of the continuous 
state space Gibbs sampler, however, the major reason for 
the hierarchical approach is to minimize the violation of the 
assumed locally linear intensity variation. 

The basic operation in a hierarchical algorithm is data 
prefiltering, which, when applied in a cascaded fashion, results 
in an even or odd4 data pyramid [12]. Usually, after each stage 
of filtering, the data are subsampled [6] to provide a more 
compact representation at a given resolution level. In motion 
estimation with subpixel accuracy, however, such subsampling 
leads to unnecessary interpolation errors. Hence, we will use a 
constant-width odd pyramid for images. A similar pyramid is 
constructed for the displacement fields. Subsampling in such 
a pyramid is not obligatory, but since the data lack high- 
frequency content at lower resolution levels, it is reasonable 
to specify displacement vectors on a subsampled grid. Such 
subsampling will cause faster convergence of the estimation 

41n even pyramids, lower resolution pixels are half-pixel shifted with 
respect to the preceding higher resolution pixels, whereas in odd pyramids, 
they are aligned. 

algorithm because of fewer vectors at the top of the pyramid 
and because of faster propagation of smoothness constraints 
over increased absolute distances. 

Let the sequence of sample fields {gt”, ,K = 0, 1, . . . , Kl - 
l} denote a constant-width odd pyramid of images with 
Kl being the number of resolution levels and subscript th 
denoting either t- or t+. gF* denotes the full resolution image, 
whereas the image g& is obtained by filtering the image g:;‘. 
The Gaussian (low-pass) [9] and Laplacian (bandpass) [l] 
pyramids of images have previously been used in hierarchical 
motion estimation. We used Nyquist-like low-pass 2-D sepa- 
rable FIR filters [24] to allow 2:l subsampling with minimal 
aliasing. 

Letthesequences{;i,“,n=O,l,...,K~-l}and{@,K= 
O,l,..., Kl - 1) denote an odd pyramid of displacement field 
estimates and an even pyramid of discontinuity field estimates, 
respectively. 

Once an estimate is obtained at level 6, it must be trans- 
formed to the next higher resolution level for subsequent 
improvement. The interpolation 2, between levels ri and IE - 1 
can be expressed as follows: 

where b,“-’ and m,“-‘, here known as the base displacement 
and line fields at level (6 - l), are the results of interpola- 
tion 27,. For displacement interpolation, we use the neighbor 
repetition of K-level estimates at the missing positions of 
level (6 - 1). The interpolation of discontinuities defined 
over an even pyramid is less straightforward. Since, at lower 
resolution levels, the motion discontinuity estimates may be 
somewhat unreliable, it may not be useful to use them ex- 
plicitly at the subsequent resolution level (m;=O). Instead, 
they can be used implicitly through the motion field, i.e., 
the discontinuities “encoded” into the motion field are passed 
through the displacement interpolation stage. The line process 
is absent for a number of iterations and is turned on once a 
coarse displacement estimate is known (other possibilities are 
discussed in [24]). 

Usually, hierarchical motion-estimation algorithms use the 
previous-level estimate as the initial state at a subsequent level 
and allow arbitrary estimates (within a given state space) 
thereafter. This strategy is not suitable for the discrete state 
space Gibbs sampler since the key problem is to speed up the 
computations or, equivalently, to restrict the size of Sb for 
IF. > 0. If the solution from the previous level is close to the 
optimal one, a limited spatial area around this initial solution 
can be searched for the new estimate. 

Hence, the base displacement field b: will not be used at 
level n merely as the initial state but as a coarse solution that is 
fine tuned at subsequent levels. The field b: is a fixed array of 
vectors and is used to identify the centers of new single-vector 
state spaces at level IE. Application of the MAP estimation 
algorithm yields an incremental displacement field z,” so that 
the final estimate at level K is given by x = ^h,” + br . Similarly, 
the final line field estimate at level K. is @ = @ $ rn; where 
z; is an incremental line field, and $ is a nonlinear (e.g., 
mod&o 2) operator combining two line elements. 
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With the above notation, the new energy function for the 
hierarchical MAP estimation can be expressed as follows: 

xg” CB(j&, t) + bn(zi,t),%t)12+ 

where the incremental estimates i” and @ are variable, 
whereas the base estimates b,” and rn; are fixed for given 
K. ? is the displaced pixel difference as before but evaluated 
for images gt”, . 

V. EXPERIMENTAL RESULTS 

A. Test Images 

The algorithms described above have been tested on a 
number of images with both synthetic and natural motion. 
The images, which are either captured by a video camera 
or computer generated, have been stored in a displayable 
line-interlaced format with interfield distance 760 = l/60 s. 

To provide a quantitative test, we used two image sequences 
with synthetic motion. Fig. 7(a) shows a pattern based on the 
concept of a random dot stereogram. The 0th field of the 
sequence consists of random, uniformly distributed numbers 
from the range [40 2001. The subsequent even fields are exact 
copies of the 0th field, except for a 50 by 20 pixel rectangle 
R E A, in the center of the outlined area, which has been 
moved by d,=(2.0, 1.0) with respect to the previous even field. 
The odd fields are exact replicas of the preceding even fields. 
Fig. 7(b) shows the test image 2, which provides a synthetic 
motion of natural data obtained from a video camera. The 
background is provided by the test image 3, whereas the 45 
by 20 pixel rectangle R E A, in the center is obtained from 
another image through low-pass filtering and subsampling. In 
subsequent fields, the same background image is used, whereas 
the moving pixels in the rectangle (d, =(lS, 0.5)) are obtained 
from appropriately shifted pixels in the prefiltered image. 
Unlike in the case of test image 1, this test pattern permits 
noninteger displacements, which is a more realistic situation 
since there is no perfect data matching. In both images, the 
white frame outlines the area of 77 by 49 pixels used in the 
estimation. 

Fig. 8 shows the 0th field of a natural sequence obtained 
with a video camera. The acquisition process included, as 
usual, camera filtering, sampling, and quantization, as de- 
scribed in Section 11-C-2. There is some aliasing present in 
the data due to insufficient vertical filtering before sampling 
(as is typical in most camera-captured imagery with interlace). 
No filtering or any other processing has been applied to the 
sequence after acquisition. The white frame outlines the area 
of 221 by 69 pixels used in estimation. 

B. Estimation Results 

The motion estimates presented below have been obtained 
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(4 (b) 
Fig. 7. Test images with synthetic motion and a 77 by 49 pel window used 
in estimation: (a) Test image 1, [RI = .SO x 20 pixels, d,=(2.0, 1.0); (b) test 
image 2, IRI = 45 x 20 pixels, d,=(1.5, 0.5). 

Fig. 8. Test 3 with natural motion and 
in estimation. 

a 221 by 69 pel window used 

forward estimation), and Ad = As. Estimates for other At and 
Ad can be found in [24]. 

The discrete state space stochastic relaxation used in sim- 
ulations was based on S’ with d,,,=2.0 and Nd=17 levels 
in each direction. This c I! oice of parameters gives the upper 
bound of a quarter pixel on the predicted accuracy of mo- 
tion vectors in the absence of such unaccounted effects as 
occlusions or .illumination change. The continuous state space 
estimation, however, can, in principle, give finer accuracy if all 
underlying assumptions are satisfied. In practice, the observed 
accuracy in both cases depends on the extent to which assump- 
tions are violated, which is difficult to assess, and on such 
parameters as annealing schedule, motion, and image models, 
etc. The annealing schedule is particularly difficult to establish 
since its parameters (initial temperature, number of iterations) 
are highly dependent on the data. At the moment, we do not 
know how to choose parameters of the algorithms in order 
to obtain given accuracy in practice, although we have been 
able to establish, through experimentation on synthetic-motion 
sequences, those models and parameter ranges that give lower 
mean square errors than others [24]. 

To model the motion, neighborhood systems from Figs. 
2 and 4 with notentials (11) and (14) were used. Since the from pairs of fields separated by Tg = 2760, with At=O.O (i.e., 1 \ I \ I 



922 IEEE TRANSACTIONS ON PAmRN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 9, SEPTEMBER 1992 

logarithmic anneal ing schedule requires too many  iterations 
to achieve very low temperatures, we used a  suboptimal 
exponential  schedule (Section III-A) with a  close to 1.0. The  
initial temperature TO and  the number  of iterations N have  
been  chosen experimentally: To  sufficiently high in order not 
to deteriorate the estimates and  N sufficiently large in order 
to attain final temperatures around 0.1. W e  have  found that a  
further increase of N does  not substantially improve the final 
estimates, which can be  explained by  the temperature having 
reached the “plateau” of the anneal ing schedule. Certainly, 
instead of setting N in advance,  one  could monitor individual 
and/or total energies from (16) and  stop the estimation process 
once  energy fluctuations fall under  a  given threshold. 

Since the true motion fields are known for the test images 
1  and  2  (except for the occlusion and  newly exposed areas), 
the quality of motion field estimates can be  assessed through 
the mean  squared error and  the bias def ined as  follows: 

MSE = E[(dS - ^d)2] = & c [d&i, t) - &%t)12 
X,ER 

bias = E[ds - 4 M  L ,R, c  [d&i, t) - ^d(xi, t)l. 
X,ER 

1) Results for Test Image 1: Since the images used for es- 
timation match exactly except  for the newly exposed and  
occlusion areas, the estimation should strongly rely on  the data 
and  not so  much on  the displacement model. Consequent ly,  X, 
is set to 1.0, and  Ad equals 0.05, resulting in a  weak a priori 
constraint. 

Fig. 9(a) shows a  MAP estimate for the exponential  an-  
neal ing schedule with Tu=l.O, a=0.98, and  N=200.  Note that 
except  for few spurious small vectors in the background and  
the occluded bottom and  right edges  of the rectangle, the 
estimate is very close to the true motion. This is confirmed 
by small mean-squared error and  bias. Application of the 
cont inuous state space MAP estimation resulted in an  estimate 
that had  little in common with the true motion. This is not 
surprising since the method relies on  the relationship between 
the spatial and  temporal intensity gradients, and  those are 
absolutely unrelated in the test image 1. 

Fig. 9(b) shows a  MEC estimate obtained with the discrete 
state space Gibbs sampler for T=O.l. The  average (19), which 
approximates the ensemble expectation, has  been  computed 
over the last 150  iterations (N=200). This result demonstrates 
that MEC estimation can also provide reliable estimates with- 
out the need  to use  an  anneal ing schedule. 

Fig. 9(c) and  (d) show the displacement and  line esti- 
mates for the model  incorporating motion discontinuities with 
xr/&=l.2. Due  to the very strong motion cue in the data, 
the subjective improvement, compared with the motion field 
estimate from Fig. 9(a), is rather minor. The  mean  squared 
error and  the bias, however,  have  been  reduced to zero! 
W ithin the rectangle, the estimate is exactly equal  to the 
true motion. Note that the well-defined motion boundary  
a long the top and  left edges  of the rectangle is correctly 
est imated by  the algorithm. The  other two edges  corresponding 
to the occlusion border, where the motion boundary  is not 

MSE=(0.0181,0  0081) .  b ios=(O 0120 .0  0093 )  

(4  

I 

/ 
MSE=(O 0000 .0  0000) .  b ios=(O 0000 .0 .0000  

Cc)  

M. SE=(O 0172 .0  0062) ,b tos=(O 0216 .00088 )  

(4 
Fig. 9. Discrete state space estimates with (a), (b) globally and  (c), (d) 
piecewise smooth motion model  for test image 1, xd/xs=O.O& bilinear 
interpolation: (al MAAP, Tc=l.O, a=0.98, 200  iter.; (b) MEC, T=O.l, 200  iter.; 
(c), (d) MAP (dt. It), &/+1.2, Ta=l.O, a=0.9866, 400  iter. 

well defined,’ are character ized by  numerous line elements 
splitting the occlusion regions into small patches and  thus 
disallowing significant contribution from vectors located there 
to the displacement energy.  Note that since the motion model  
does  not take the occlusion and  exposure effects into account,  
poorer  per formance of the algorithm in such areas is not 
unexpected.  

To  test the robustness of the algorithms in the presence of 
noise, additive white Gaussian noise with the var iance az=20.0 
has  been  super imposed on  the test image 1. Choosing @d  in the 
range 0.1-1.0, the original ratio Ad/x, should be  augmented 
by  2Uz/Pd valued at a round 100.0 (pdZO.4). 

Fig. 10(a) and  (b) show, respectively, the MAP and  MEC 
estimates of motion from the noise-corrupted test image 1. 
Note that higher temperatures have  been  used in both cases. 
In spite of significant noise, both estimates resemble well 
the corresponding estimates obtained from the images without 
noise (Fig. 9(a) and  (b)). These results demonstrate that both 
the MAP and  the MEC estimation are quite robust to noise. 
The  ratio Ad/&, could have  been  chosen differently since the 
value of pd  is not known; however,  values of /Id even  as  low 

5This motion boundary is not well def ined since in the occlusion areas (to 
the right and  to the bottom of the rectangle), the motion itself is not well 
defined. 
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SE=(0.1684.0  0698) .  b ios=(O 1483 .0  0808 :  

(4  

ISE=(O 2612 .00606) .  b ios=(03607 .00932 ]  

(b)  

Fig. 10  Discrete state space estimates with globally smooth motion model  
for test image 1  corrupted by white Gaussian noise (0,2=20.0), X~/X,=lOO.O, 
bilinear interpolation, 200  iter: (a) MAP, To=20.0, a=0.965; (b) MEC, T=2.0. 

as 0.1 did not change  the estimate dramatically. W ith the value 
of 0.4 used  here, the results for noisy and  noiseless data are 
quite comparable.  

2) Results for Test Image 2: Since the test sequence 2  con- 
tains no  perfect matching, the estimation process should rely 
to a  higher degree on  the a priori motion model. Assuming 
that the data contains noise with var iance u2  of the order 
of 1.0-10.0 and  that the motion field samples should be  
character ized by  the “activity” ,8d around 0.1-1.0, the ratio 
Ad/x, should be  on  the order of 20.0. The  exact value cannot  
be  easily established, however,  as  it has  been  demonstrated in 
[24] that even  a  two orders of magni tude change  in this ratio 
results in similar motion fields. 

Fig. 11  shows the cont inuous and  discrete state space 
MAP estimates for a  globally smooth motion model. W e  
have  found that the cont inuous state space process requires 
smaller temperature changes,  and  thus, a  longer anneal ing 
schedule starting at a  higher initial temperature is used  for the 
cont inuous case. The  estimates are similar subjectively, but 
the cont inuous state space estimate performs slightly better in 
terms of MSE. Fig. 11(c) shows the MEC estimate for T-1.0. 
Note that it is quite similar to the MAP estimates; however,  
its MSE is higher. 

To  evaluate the complexity of cont inuous and  discrete 
approaches,  we have  measured the CPU time per iteration in 
both cases. The  ratio of these times agrees well with the two 
orders of magni tude improvement (in favor of cont inuous state 
space approach)  approximately evaluated in Section 11X-C-2. 
Taking into account,  however,  the need  for a  longer anneal ing 
schedule in the cont inuous case, the overall speed  up  due  to the 
Gaussian approximation is closer to one  order of magnitude. 

Fig. 12  shows the displacement and  line estimates for the 
discrete state space MAP algorithm with a  piecewise smooth 
motion model. Note the substantially improved subjective 
quality of motion estimates at the rectangle boundaries,  which 
is confirmed by the reduced MSE. The piecewise smooth 
motion model  permits more abrupt transitions in the displace- 
ment estimates, which are thus closer to the true motion. The  
image energy V,, which reflects the precision of matching, is 

._: ” 

SE=(0.1082,0 .0306) .  b ios=(O 1744 .0 .0971 :  

(4  

M SE=(O.l358.0.0326), bios=(O 2008 .0  0 8 3 1  
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(b)  
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MSE=(O 1833 .0  0391) .  b ios=(O 3193 .0  1 1 0 5  

Cc)  

Fig. 11  Estimates for test image 2  with globally smooth motion model,  
Xd/X,=20.0, Keys bicubic interpolation: (a) Cont inuous state space MAP, 
To=5.0, rr=O.9944, 1000 iter; (b) discrete state space MAP, To=l.O, (r=O.98, 
200  iter; (c) discrete state space MEC, T=l.O, 200  iter. 

M. SE=(0.1051.0  0317) .  b ias=(O 0722 .0  0 7 0 1  

(4  

L-7 J 
Fig. 12. Discrete state-space MAP estimate with piecewise smooth motion 
model  for test image 2, Xd/X,=20.0, X,/X4=0.8, ,=lO.O, Keys bicubic 
interpolation, To=l.O, a=0.9866, 300  iter: (a) dt ; (b) It. 

substantially reduced here compared with the estimate from 
Fig. 11(b) based  on  the globally smooth motion model. 

In Fig. 13, the result of hierarchical three-level cont inuous 
state-space MAP estimation of motion from test image 2  with 
Tg  = 49-60 is presented. The  piecewise smooth motion model  
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MSE=(O 6051 .00460) .  b iasz (0 .1544 .00892)  

Cc)  (4 
Fig. 13. Hierarchical continuous state-space MAP estimate with piecewise 
smooth motion model  for test image 2, 1<r=3, Xd/X,=(20.0, 12.0, 10.0) 
Xr/Xd=1.8, a=lO.O, Keys bicubic interpolation, To=(l.O, 2.0, 4.0), r/=0.992, 
500  iter at each level: (a) s-=2; (b) ri=l; (c), (d) ~=0. 

has been  appl ied in this case, and  the Nyquist-like low-pass 
filtering has  been  used in data pyramid generat ion. Due  to 
the filtering, the var iance u2  of the DPD model  is reduced 
at lower resolution levels, and  the weights X are adjusted as  
follows: Ad/&= 20.0, 12.0, and  10.0 at levels n=O, 1, 2, 
respectively (a more detailed discussion of this adjustment can 
be  found in [24]). Note that despite the smoothness constraint, 
the estimates at all levels clearly identify the moving rectangle. 
The  transition is less abrupt in the newly exposed areas where 
motion is ill defined. The  estimate is incorrect in the top- 
left corner of the rectangle, which is due  to image breakup 
caused by a  newly exposed area. These effects have  not been  
accounted for in the motion models. 

Fig. 14  shows estimates of motion from the test image 2  
corrupted by  additive white Gaussian noise. The  ratio Ad/&= 
120.0 has  been  used in each  case. The  initial temperature 
has  been  set to 20.0 for both MAP estimations, whereas the 
constant temperature of 1.0 has  been  used in the MEC algo- 
rithm. The  estimates resemble quite well the corresponding 
true motion fields; however,  they are not as  good  as  the 
estimates from the noiseless data. Poorer per formance for the 
noise-corrupted test image 2  (compared with the test image 
1) is not surprising since its motion cue is much weaker,  and  
consequent ly,  imposition of noise masks the motion to a  larger 

'SE=(O 1209 .0  0374) .  b ias=(O 2326 .0  1362 )  

(4  

M SE=(O 1547 .0 .0401) .  b ios=(O 2533 .0  1119 :  

(b) 

fSE=(O 3153 .00402) .  b ias=(04959.0  1472 :  

(4  

Fig. 14. Estimates with globally smooth motion model  for test image 2  
corrupted by white Gaussian noise ((~2=20.0), Xd/X,=120.0, Keys bicubic 
interpolation: (a) Cont inuous state space MAP, To=20.0, a=0.993, 1000 iter; 
(b) discrete state space MAP, Tn=20.0, rr=O.965, 200  iter; (c) discrete state 
space MEC, T=l.O, 200  iter. 

extent. In the test image 1, however,  due  to the “gray value 
corners” that are almost everywhere,  such a  masking effect is 
much less pronounced.  

From the above  experiments, as  well as  from the exper-  
iments with noisy test image 3  [22], we conclude that the 
MAP and  MEC estimates are similar. No superiority of the 
MEC estimation in a  noisy environment can be  noticed, unlike 
the results observed by  Marroquin [27] with respect to scalar 
MRF’s appl ied to image reconstruction. This may be  due  to 
the fact that only noise with a  var iance of 20.0 has  been  tested 
and  that the state spaces used were much larger here than in 
Marroquin’s case. 

3) Results for Test Image 3: Since test image 3  contains 
natural data as  well as  natural motion, the importance of 
the a priori motion model  is reflected in increased ratio 
x,J/&=20.0. For clarity, the displayed vector fields have  been  
subsampled by  2  in each  direction. 

Fig. 15  shows a  cont inuous state space MAP estimate, 
whereas the discrete state space MAP and  MEC estimates are 
not presented here (they can be  found in [22]) because of their 
similarity to the cont inuous state-space result. The  discrete 
state-space MAP estimate has  been  outperformed, however,  
by  the cont inuous one  in terms of the parametrizing energies 
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Fig. 15. Continuous state-space MAP estimate with globally smooth motion 
model for test image 3, Xd/X,=20.0, Keys bicubic interpolation, To=5.0, 
a=0.9944. 1000 iter. 

(4 

0 0 

(b) 
Fig. 16. Continuous state-space MAP estimate with piecewise smooth mo- 
tion model for test image 3, Ad/X,= 20.0, X,/A~=O.S, n=lO.O, Keys bicubic 
interpolation, Tu=5.0, a=0.9944, 1000 iter: (a) dt; (b) 6. 

(the MEC estimate cannot be compared). The estimate from 
Fig. 15 is smooth within moving objects, and this smoothing is 
also applied across motion boundaries. This can be explained 
by the fact that motion boundaries are not as strong as in the 
test image 1. 

Fig. 16 shows the displacement and line estimates obtained 
through the continuous state space MAP estimation with the 
piecewise smooth motion model. Observe the well-identified 
motion boundaries of the moving palm of the hand, of the 
face, and of parts of the arm. Large fragments of motion 
boundaries are missing due to insufficient intensity gradient 
there, but motion boundaries coinciding with substantial in- 
tensitv gradients are easilv detected. Again. the image eneruv 

(4 (b) 

Fig. 17. Central parts of continuous state-space MAT’ estimates (no spatial 
subsampling of vectors applied): (a) Globally smooth motion model from Fig. 
15; (b) piecewise smooth motion model from Fig. 16(a). 

U, is significantly reduced compared with the result without 
the line model (Fig. 15). 

To demonstrate the impact of line process on the smoothness 
of the motion field in the test image 3, Fig. 17 shows 
windows of 60 by 30 vectors taken from the central parts of 
motion fields presented in Figs. 15 and 16(a). Note the sharp 
transitions between the palm of the hand and the background 
or the face in Fig. 17(b). These transitions are responsible 
for more precise motion portrayal and significant reduction 
of image energy without affecting smoothness of the motion 
field within moving objects. One may expect that due to 
the introduction of a two-layer motion model, the smoothing 
can be increased substantially without effects across motion 
boundaries. An example of discrete state space MAP estimate 
with the ratio Ad/X,= 100.0 for test image 3 (confirming this 
observation) can be found in [25]. 

Finally, Fig. 18 shows the continuous state space MAP 
estimates with the piecewise smooth motion model over a 
hierarchy of resolutions. The same ratios Ad/X, as the ones for 
test image 2 were used. The line model parameters &/Xd=l.O 
and a=lO.O as well as the annealing schedule Ta=(l.O, 2.0, 
4.0) a=0:9944, and N=500 have been chosen experimentally. 
The line process was turned on after 100 150 200 iterations 
to maintain similar initial temperature at each level. Note that 
the discontinuity estimates at levels rc=2 and 1 are not very 
precise; however, they limit the spread of smoothness across 
the hand and face contours. The precision in positioning of 
line elements is improved at the full resolution level when 
the contours of the hand, face, and parts of the arm are quite 
well established. The impact of the two-layer motion model is 
further confirmed by the 25% reduction in image energy U,. 

VI. SUMMARY AND CONCLUSIONS 

This paper has presented a new stochastic approach to 
the estimation of 2-D motion from time-varying images. 
The approach is stochastic in both the formulation, where 
probabilistic models are used in the MAP or MEC estimation 
criteria, and in the solution, where stochastic relaxation is 
incorporated into simulated annealing or into averaging. Two 
motion models were proposed: a globally smooth model 
and a niecewise smooth model with motion discontinuities. 
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Fig. 18. Hierarchical continuous state-space MAP estimate with piecewise 
smooth motion model  for test image 3, Kl=3, X&X,= 20.0, X,/X,= 1.0, 
a=lO.O, Keys bicubic interpolation, To=(l.O, 2.0, 4.0), a=0.9944, 500  iter at 
each level: (a) ~=2; (b) r;=l; (c), (d) n=O. 

The stochastic relaxation for motion fields was implemented 
through the Gibbs sampler in two versions: discrete and  
cont inuous state suace.  The  discrete version incornorated into 

simulated anneal ing resulted in a  stochastic exhaust ive pixel- 
matching algorithm with a  smoothness constraint, whereas the 
cont inuous one  was shown to be  a  stochastic general ization of 
the Horn-Schunck algorithm. Both methods were incorporated 
into a  hierarchical f ramework to handle large displacements 
efficiently. 

To  verify the validity of p roposed models and  algorithms, 
numerous natural and  computer-generated image sequences  
with natural and  synthetic motion have  been  used.  The  MEC 
algorithm performed similarly to the MAP estimation both for 
s tandard and  noise-corrupted images. The  cont inuous state- 
space MAP estimation outperformed the discrete version both 
in terms of MSE (slightly) and  in terms of computat ional 
efficiency (an order of magnitude). Compared with the globally 
smooth model, the piecewise smooth model  provided more 
accurate motion portrayal both objectively and  subjectively 
and  simultaneously significantly reduced matching errors. The  
hierarchical version of MAP estimation was demonstrated to 
reliably estimate large displacements without a  substantial 
increase in computat ional effort. 

In conclusion, the stochastic approach presented here pro- 
vides reliable and  close to optimal motion estimates (given 
the assumptions). W e  have  recently addressed the issue of the 
high complexity of the method, and  we are currently inves- 
tigating deterministic approximations to the above  stochastic 
algorithms [26]. Further work is also required to extend the 
models for such condit ions as  occlusions and  varying intensity 
a long motion trajectories. 
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