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SUMMARY 
We propose a new algorithm for the approximation of the maximum a posteriori (MAP) 
restoration of noisy images. The image restoration problem is considered in a Bayesian 
setting. We assume as prior distribution multicolour Markov random fields on a graph 
whose main restriction is the presence of only pairwise site interactions. The noise is 
modelled as a Bernoulli field. Computing the mode of the posterior distribution is NP 
complete, i.e. can (very likely) be done only in a time exponential in the number of sites 
of the underlying graph. Our algorithm runs in polynomial time and is based on the coding 
of the colours. It produces an image with the following property: either a pixel is coloured 
with one of the possible colours or it is left blank. In the first case we prove that this 
is the colour of the site in the exact MAP restoration. The quality of the approximation 
is then measured by the number of sites being left blank. We assess the performance of 
the new algorithm by numerical experiments on the simple three-colour Potts model. More 
rigorously, we present a probabilistic analysis of the algorithm. The results indicate that 
the approximation is quite often sufficiently good for the interpretation of the image. 

Keywords: 	BAYESIAN IMAGE RESTORATION; CODING; FORD-FULKERSON'S MAX-FLOW 
ALGORITHM; MARKOV RANDOM FIELDS; PROBABILISTIC ANALYSIS OF 
ALGORITHMS; SIMULATED ANNEALING 

1. INTRODUCTION 

In recent years, Bayesian methods have been extensively applied in many image 
restoration problems. (See the survey paper by Geman (1990).) The use of Markov 
random fields as prior models has been particularly successful. The true unkown 
image is thought of as being a realization of a Markov random field, defined to 
capture prior information concerning the observed scene. The underlying graph or 
lattice structure, the number of colours and the type of interaction are all important 
aspects in modelling such a spatial prior. Additional assumptions on the type of 
degradation and noise, which deform the true image, allow us to compute the 
posterior distribution given the observed image. If the deformation acts locally, then 
this posterior measure is still a Markov random field. Inference is then guided by 
the choice of a loss function. If a simple 0-1 loss function is assumed, then the 
optimal Bayesian estimator is the mode of the posterior distribution. This is called 
maximum a posteriori (MAP) restoration. The MAP estimator does not need to 
be unique: often we are interested in finding one of the absolute maxima. 
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Clearly, computing such an MAP estimator is a global optimization problem in 
a highly dimensional space. For instance, if the image is modelled on a regular grid 
with N sites (called pixels) and each pixel may take c colours, the space of all possible 
images Q has cN elements. Enumeration quite soon becomes unfeasible, and in 
fact the maximization problem is generally NP complete (see Garey and Johnson 
(1979)). Simulated annealing (see Gidas (1991) for a recent review) is an iterative 
stochastic algorithm that converges weakly to a distribution concentrated on the set 
of global maxima Q*.This is true if a certain parameter, called temperature, which 
controls the algorithm decreases towards 0 as l/log t ,  where t is the iteration index. 
Hence simulated annealing with such a logarithmic schedule is extremely slow. 
Therefore faster schedules have been proposed (see Aarts and Korst (1989)), but 
using them does not guarantee convergence to Q *. The estimate obtained by running 
the simulated annealing algorithm with these schedules is hence an approximation 
to the MAP restoration. No rigorous analysis of the error therein is available; 
however, many simulation studies have been carried out for specific distributions. 
Nevertheless there does not seem to be conclusive evidence on the reliability of such 
approximations. In Greig et al. (1989) evidence is given that no 'good' MAP estimate 
can be obtained by simulated annealing with neither logarithmic nor faster schedules 
in finite time, except for distributions that are relatively close to a sitewise indepen- 
dent field. 

We stress the importance of this point. Bayesian modelling allows a precise char- 
acterization of the properties of estimators, thus permitting the user to be confident 
in its conclusions. However, the algorithms used will not produce such a reliable 
estimator but just an approximation to it, whose quality cannot be assessed. Because 
of its computational complexity, we must rely on an approximate MAP restoration; 
but we would like to quantify and maybe to determine on the image the possibly 
misclassified pixels. This is the aim of this work: we propose a fast method that 
will produce an approximate MAP estimate, with the property that if a pixel is 
restored, i.e. a colour assigned to it, then that colour appears in an exact MAP 
estimate. Some pixels in the approximate estimate will be left blank: no colour will 
be assigned to them. For those pixels our method is unable to discriminate. We call 
and code such blank pixels as 'question-marks' (?). 

We immediately start with an example. In Fig. l(b) a three-colour image degraded 
by Bernoulli noise is represented. Fig. l(c) shows the output of our restoration, 
where question-marks are displayed. Fig. l(a) is the true unknown noiseless image 
(used to generate Fig. l(b)). 

Clearly, the crucial question is how many ?s are there in our restorations? If too 
many the method does not give a proper answer. However, if their number is limited 
then the estimate is useful. In Fig. l(c) 3% of the pixels are ?s. 

We present the results of a simulation study that shows how the number of ?s 
varies as a function of the variance of the noise and the attraction of the random 
field. Although we present cases where every pixel is left undecided, in most 
common situations when the signal-to-noise ratio is not too small, the number of 
?s is very limited (less than 10% of the N pixels). The geometry of the ?-clusters 
and their location is also remarkable: ?s appear on the boundary of well-restored 
areas and the number of pixels that contribute to a ?-cluster is very small. This 
brings out another important feature of our method. If it is required to restore all 
pixels it is possible to treat each ?-cluster independently of the others (given the 
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(c) (d) 

Fig. 1. (a) Original image with /3 = 1.2 produced by the Gibbs sampler run for 1000 raster scans and 
three colours; (b) image in (a) degraded with E = 0.2; (c) approximate MAP restoration of (b) (?s are 
shown in black, whereas the three colours take grey levels); (d) simulated annealing (with geometric 
schedule) restoration of (b) 

restored boundary conditions), even in parallel, reducing the overall restoration time 
drastically. In particular, small clusters can be treated by full enumeration. We also 
note that the special location of ?s may be such that in practical situations no further 
restoration is required, since the ? can be resolved 'visually'. Furthermore, if large 
?-areas are left, this may be considered as a sign of a very unfavourable signal-to- 
noise ratio and could suggest that more data must be taken to make inference more 
reliable. 
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Together with the computational experiments we also perform a rigorous proba- 
bilistic analysis of our method. In the Bayesian setting the number of ?s is con- 
sidered very naturally as a random variable with respect to a probability measure 
P. (Precise definitions will be given later.) We prove that the expected number 
of ?s is CN, where C is a constant (smaller than 1) which depends on the variance 
of the noise and the inverse temperature of the Markov random field, which 
governs the strength of attraction. At a first glance CN seems quite a large number. 
But we should not forget the NP-completeness of the MAP restoration task. 
Since NP-problems are unlikely to be solved in polynomial time, we could not expect 
the number of ?s to be of any order smaller than O(Na) for a > 0. Unfortunately 
for our method we prove cr = 1. However, the constant C is smaller than 1; 
moreover it tends to 0 exponentially fast as the inverse temperature increases. 
It also decreases to 0 as the variance of the noise decreases. For the model that 
was used to produce Fig. l(b), we estimated C = 0.03. Viewed in this light the 
gain is considerable: 3% pixels were left for restoration after our method had 
been applied. 

Computing an MAP estimate is not always NP complete. In special situations 
the problem becomes polynomial. An important example is the Ising model with 
Bernoulli noise (Barahona, 1982). The Ising model is a binary (c = 2) Markov 
random field on a finite subset of Z 2  with nearest neighbour interactions. Greig 
et al. (1989) reduced the MAP computation in this case to a minimum cut problem 
on a graph. The minimal cut can be determined very efficiently, for instance 
by means of the standard Ford-Fulkerson algorithm, which runs in O(N2) itera- 
tions. So in Greig etal. (1989) it is shown how exact MAP restorations can be 
obtained if the true image has exactly two colours, the prior Markov random field 
model features only pairwise interactions and the noise is sitewise independent 
(but can be signal dependent and non-symmetric). Several improvements on the 
original Ford-Fulkerson algorithm have been proposed in Greig et al. (1989) and 
in Jubb (1989). The latter also includes a treatment of the three-colour restora- 
tion problem: the data image is partitioned into subimages that are likely to be 
composed of two colours only. Then these subimages are restored and pasted 
together. Unfortunately these operations have an uncontrollable effect on the 
final estimate of the MAP restoration. The quality of the approximation cannot 
be quantified. 

Our method, based on the results in Greig et al. (1989), allows us approximately 
to restore images with more than two colours. However, we cannot treat continuous 
noise, as was done in Greig et al. (1989). In this paper we first describe our approach 
for the three-colour Potts model with independently and identically distributed 
noise. (The MAP calculation is NP complete in this case; Barahona (1982).) 
Essentially we code the three colours into two colours in the three possible ways 
and apply the Ford-Fulkerson algorithm three times to the coded two-colour 
images. The three binary restorations thus obtained are then combined into a three 
colour plus ? image. We prove that if a colour is returned at a pixel this is the correct 
MAP restoration. 

Section 2 includes a description of the coding and the proof. Section 3 is devoted 
to the probabilistic analysis of our approximation method, by estimating the 
expected number of ?s. We describe how the method is extended to more than 
three colours in Section 4. Section 5 reports on our simulations. 
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2. APPROXIMATE MAXIMUM A POSTERIORI RESTORATION FOR 
THREE-COLOUR POTTS MODELS CORRUPTED BY NOISE 

2.1. Model 
Let A be a finite subset of 2 (e.g. a square) with N sites. Let X = (Xi)i= , , ,, 

for XiE (0, 1, .. ., c - I), v i EA, represent the true unknown image with prior 
distribution P(X) on the set of all possible images Q .  Denote the observed image 
by Y = (Yi),= ,, , and let P(Y I X) be its likelihood. The MAP estimator x EQ 
is any image that maximizes the posterior distribution P(X (Y)oc P(Y I X) P(X): 

We now specify this general setting to the three-colour Potts model observed 
through a memoryless symmetric channel. We take c = 3 and 

where the sum is over all unordered nearest neighbouring pairs i, j E A. This means 
that every pair is considered only once. (Boundary conditions are free.) Z, is the 
normalizing constant. P is called the inverse temperature. 

Next we define the noise. Conditional on X, at each pixel independently the 
colour Yi E (O,1, .. ., c - 1) is observed exactly with probability 1 - E ,  whereas 
with probability e/(c - 1) it is switched to any of the remaining colours: 

otherwise. 

Hence 

where 

h = log re- - O  I 
Maximizing the posterior distribution is equivalent to maximizing the posterior 
energy 

with respect to X E 8. 

2.2. Coding and Decoding 
Let c = 2. We transform the data image Y into three two-colour images. This is 

how the coding acts. For each colour a E (0, 1, 2) define C" : Q + Q ' = (0, 1)A 

sitewise as follows: 



FERRARI, FRIGESSI AND GONZAGA 	 [No. 3, 

c"(x)= (-X')ieil, -X'E{O, 11, 

where 

-X'= 	 if Xi = a ,  
otherwise. 

From the data image Y we thus construct C0 (Y) , C1 (Y) and C2(Y) in Q '. Of 
course this coding does not depend on the numbering assigned to the three original 
colours. For each of these coded images consider the two-colour maximization 
problem 

L{Za I C a ( Y ) }= max [L{Z' I Ca(Y))1
Z' E Q '  

where L is defined in equation (2.6) and /3 and E are those in the original model 
(2.2) and (2.3). Denote by Z" E Q ',a E (0, 1, 21, any image realizing the maximum 
in equation (2.8). Computing equation (2.8) is easy by Greig etal. (1989) and can 
be performed quickly by a Ford-Fulkerson algorithm. 

Of course the mapping (2.7) cannot be inverted but we can consider the set of 
all possible three-colour images that, once coded by conditions (2.7) to a two-colour 
image, are exactly equal to Z": 

S w o l =  p(Y) 	 = {X EQ: Ca(X)  = Z"}, ~ E { O ,  1, 2). (2.9) 

It holds that, 	v W E  SW", 

L{Ca(W) (Ca(Y)}  = L{Z"(Cff(Y))= max [L{Cff(X) ( C a ( Y ) ) ]  (2.10) 
X E Q  

for a E{O, 1, 2). If a pixel i takes colour a for an image W E  W", then all other 
images in W" have pixel i with the same colour a ,  because 27 = 0. The images 
W E  5-Pmay differ only over sites j for which Cff (W)j= 1. We are ready to state 
our main result. 

Theorem I .  For a E (0, 1, 2) let W E W". If Wi = a then Ai = a where 

L ( X ~ Y )= max{L(X)Y)) ,
X e O  

i.e., if the colour cr is assigned to a site iEA in the set of images W" (associated 
with that same colour a )  then this is precisely the colour of site i in the MAP 
estimate of the original three-colour image. 

Proof. Fix cr E (0, 1, 2). For any X E Q let 

Aff (X)  = { i ~  = a }  

and observe that the pixel set 

A: Xi 

P = Aff(W), v W E  W", 

does not depend on WE Wff. Consider now the set of images in Q for which all 
pixels in A" at least take colour a 

W"+ = {XEQ: Aa(X) > n"l} 3 W". 

The theorem is proved if we show that for any MAP estimate x E Q, for which 
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L ( X ( Y )  L ( X ( Y ) ,  v XEO, (2.11) 

it is XEW;. 
Consider, for any X E O, 

where 

H a ( X ( Y )= 0C l { ~ , t x j , x ~ + a , ~ ~ + a }+ h C ~ { x ~ + Y ~ , x ~ + ~ , Y , + ~ } .  
( i j ) C A  i c A  

For any subset B C A define XB as the restriction of X to B. We extend the 
definition of L, H a ,  etc. to configurations XB by restricting the sums to labels i, j 
EB. By definition of A" it follows that 

Ha(XA,,X)IYA,,,)) = 0, v XEO. (2.12) 
From equation (2. lo), for any W E Wa we have 

L(W1Y) + H f f ( W ( Y )= max (L(X1Y) + H f f ( X ( Y ) )
X € O  

and in particular 

E(WIY) + Ha(WIY) 2 L ( W ( Y )  + H*(W[Y) 

where we choose w E O  such that W,!% = WA\$, i.e. any image that outside * 
coincides with W E P,and otherwise is free. Splitting the summationkin equation 
(2.6) (and counting boundary conditions properly only once in the Aa-term), we 
rewrite the last inequality as 

E ( w ~ ,  WaplY;i..) + L(WA\p IYA\p) + N " ( w ~ ,  WapIYp) + Ha(WA\p IYA\p) 

> E ( w ~ ,waG(yG) + R ( w ~ ,  + f P ( w A \ p ( y A \ p ) ,+ L ( w ~ \ ~ ( Y ~ \ ~ )  wana(yG) 

(2.13) 
where 

and an" = O.E ALP: (g) for some i-E p}(and analogously for p). 
Since outside Aa the configurations W and W coincide, the second and last terms 

of both sides of inequality (2.13) simplify. Furthermore, analogously to equation 
(2.121, 

N" (Wp,  Wa$ I Yp) = 0. 

Hence inequality (2.13) reduces to 

~ ( w G ,  W a p ( Y p )  - E ( w p ,  w a n a ( ~ $ )  kaa(~$) .2 N"(wg, 

But the right-hand term is by definition non-negative, i.e. 
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However, since w,a has not been fixed and waG= Wap, this is equivalent to 

i.e. in the set ;1", for any boundary conditions fixed in ah?, the maximum of 
~ ( x ( Y )is realized by colouring the pixels in A* with the colour a. 

Take any Z in the set of configurations that realizes the global maximum (i.e. 
satisfies inequality (2.11)). There are two possibilities. 

(a) Z E 5P:  in this case the theorem is proven. 
(b) For some j ~ h ? ,Zj + a: in this case we define WE 5P sitewise as 

a for i~;1",ei= [
zi for i ~ A \ h ? .  

Since w = Z on A\*, by the definition of W, 

by inequality (2.14). But the last line of the above equation equals L(Z I Y); hence 
w E 5P is also a global maximum. 

The theorem is not too surprising. Intuitively, if the colour a is the correct colour 
in the coded problem (when the two colours are merged), or, in other words, if for 
a pixel the best possible choice is the colour a, compared with the other two 
undistinguished colours, then colour a will also be the best choice (up to equivalent 
MAP estimates) in the three-colour problem (when the two colours are not merged). 
Or, if colour 0, say, is preferred to colours 1 and 2 merged together and thus is 
stronger, then 0 will also be preferred when 1 and 2 are each on their own. Of 
course, owing to non-uniqueness of the posterior mode, there may be other MAP 
estimators with different site colourings, but with the same posterior probability. 

If Zy = 0 then a is the true MAP restoration, for a E (0, 1, 2). However, it is 
possible that Zy = 1 for all a E (0, 1, 2). (It is easy to see that there is no further 
possible outcome. If Zy = 0, say, then necessarily Zi = Z: = 1 since in both cases 
the colour 0 will be merged with a second colour and will hence continue to be the 
optimal choice.) In this case the colour of the pixel will remain undecided and we 
shall denote it by ?. 

To summarize our algorithm works as follows. We consider three codings 

of the data. For each we run a Ford-Fulkerson algorithm to obtain ZO,Z1and Z2. 
Finally we define X* E (0, 1, 2, ?IA as 

if Zy = 0 for one a~ (0, 1, 21,x;= 
otherwise. 
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Could it happen that Zr = 0 for more than one a? First, it is a consequence of the 
proof that any such colouring would yield the same posterior probability; hence the 
colour of X? can be put equal to any of these as. Furthermore, a quite tedious 
proof that we omit allows us to exclude this possibility completely. 

Our theorem says that XT = 2iwhenever XT # ?. The approximation of x 
obtained by means of X* consists of the non-restored ?s in X*; note that X* is 
computed in O(Cl A 1 2, steps, i.e. in polynomial time in I A ( . 

3. EXPECTED NUMBER OF QUESTION-MARKS 

The number of ?s left in X* measures the quality of the approximation. Our 
algorithm is deterministic and the output X* depends only on the input Y. Hence 
the number of ?s in X* depends on the data Y, and we define 

In Section 5 we show several experiments with our method and we always 
compute the corresponding NA(Y) or the relative approximation NA(Y)/ I A I .  In 
this section we estimate NA(Y) theoretically. From Section 2.1 we see that Y is a 
stochastic process, obtained from equations (2.3) and (2.2). Hence NA(Y) is a 
random variable. We denote by P,,6(Y) the probability of Y obtained from equa- 
tions (2.2) and (2.3) and we want to estimate the expected value of NA(Y), 

Here is our result. 

Theorem 2. There are two constants c = C(E, 0) and C = C(E, P), strictly positive 
and independent of I A 1 ,  such that 

Proof of lower bound. Assume that h < 4P. (If h 2 4P then X* = Y.) Consider 
a box B consisting of b2 sites. Consider a configuration in the (0, 1, 2IB-space 
such that the following property holds: for any E coinciding with 6in B, 

there is a site i in B such that Xi*= ? when X* is obtained from k 
Such a box always exists. For instance consider the case of nearest neighbour 

interactions and a square B centred on the origin with b2 sites (b odd). Let 

B, = ((i ,  j ) :  ( i  > 0 and j 2 0) or ( i < O  and j > 0)) nB, 

B2 = ((i, j ) :  ( i > O  and j<  0) or ( i <  0 and j<0)) nB. 

Consider the configuration 6 ,  

if (i, j)EB, , 
if (i, j )  EB2, 
if (i, j) = (0, 0) .  
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Now choose b sufficient1 large such thaA independently of the configuration ii4outside B, n? = B, and A = B2, where A" is defined at the beginning of the proof 
of theorem 1. This is possible for any h and 6 because in the CY = 1 coded problem 
(1 against 0 and 2) the number of terms in equation (2.6) that multiply h is 1 B, I 
which grows roughly as 1 aB11 2, whereas the number of terms that multiply 0 is of 
the order 1 aB, I .  Hence, for any b sufficiently large, the best choice is to put 1s 
in B,. The same argument works for the CY = 2 coded problem (2 against 0 and I). 
Furthermore, it is easy to see that if h < 4P we obtain a ? at the origin. Hence the 
above configuration & has the following property: 

X$  = ? when X* is obtained from Q .  
Let p = min, ( P , , ~ KI Zff)), where the minimum is taken over all possible 

boundary conditions Zff. Divide the lattice A into non-overlapping boxes of the 
same type as B. If Y coincides with 6on any such box, then our algorithm will 
produce one ? in the centre of the box. Altogether there are lA(/b2boxes. 

Hence NA(Y) is bounded stochastically from below by a binomial random 
variable with parameters p and I A 1 /b2, so that 

EE,p(NA(Y))2 ~ l ~ l / ~ ~ 
and c = p/b2. 

Proof of upper bound. We have 

If we can show that 

P,,,(Y EQ: XT = ?)  < C 
for C independent of I A1, then we have the claim 

We need to find the upper bound. 
As before in this proof we obtain a rough estimate of P,,@(Y€0: XT = ?). 

First- consider again a box B with b2 sites, where b = b(P, c), and a configuration 
Y, such that 

if Y, takes only one colour then X2;is equal to that colour. 

(It is easily seen that if b > 4P/h then such a box is sufficiently large to have this 
property.) Next take the site i to represent the centre of the box B. We have 

P,,P(YEQ: XT + ?) 2 P,,,(&) =: q 

which is independent of I A J .  It follows that C = 1 - q. 

From the proof it can be seen that good bounds can be obtained by specific 
choices of B and 5.In the lower bound the choice should make p/b2 as large 
as possible. In the upper bound the proof can be improved by considering more 
?-free events of the type 6.Note that we have decided to use a very special 
configuration where we can check locally that a ? will be produced. Of course 
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this happens in general also because of global effects. 
Rough estimates are easy to obtain. From a practical point of view they are not 

useful, however. To obtain better estimates for p and q, we should consider as many 
configurations as possible. To obtain an idea of their optimal values we 
consider the one-dimensional case for given P ,  e and b. We can then enumerate all 
configurations giving rise to a ?. Let us take b = 5 and 0 and E such that 
0.5 < P/h < 1. Writing out the 3' = 243 possible configurations on the box By we 
find 54 configurations which give rise to a ? at the centre of the box By inde- 
pendently of the boundary conditions on the box. This implies that in this case 
C = 54/243 - 0.2. 

4. OTHER MODELS 

We next generalize our algorithm to images generated by the Potts model with 
a greater number of colours. This generalization is not straightforward, how- 
ever, as it involves the introduction of a further step in the algorithm, which we 
call 'cascade coding', and which we describe briefly for four-colour images for 
simplicity. 

The first step, when applied to four-colour images, is simply the extension of the 
coding transformation (2.7) by considering a ~ ( 0 ,  1, 2, 3). This produces a first 
approximation X* e (0, 1, 2, 3, ?IA to the MAP estimate. We are assured (by a 
simple extension of theorem 1) that the colours attributed are exactly those of the 
MAP estimate. We are left with the ?-clusters, but this time we can perform a second 
coding, of the pixels belonging to these ?-clusters only, to try to solve some of them. 
The coding is 

As previously, if we apply the Ford-Fulkerson algorithm to these coded images, 
we shall obtain Z k e  (0, IIA, k e  (1, 2, 3) as solutions to the three two-colour 
maximization problem. We must next define a decoding algorithm to obtain, from 
Zk, information on the four-colour maximization problem over the ?-clusters. 

We conjecture that the decoding algorithm should run as follows. If for a site 
i we have Zf = 0, y k~ (1, 2, 31, then &i = 0. If, however, we have 2,' = 0 and z = Z :  = 1, t h e n x i =  1, and similarly for z = 0 ,  Z; = Z :  = 1 a n d z  = 0 ,  Z; = 
Z;? = 1, which would give respectively = 2 and &i= 3. All other outcomes would 
give rise to 'double question-marks' (??). The reason is the same as before: if a 
colour is always preferred, helped by any of the other three, it is also preferred in 
the full four-colour MAP estimate. 

In other words, in the four-colour case we must not only test the 'strength' of 
any given colour against the three other colours merged together but also how 
colours behave when merged two by two. If we venture even further, it becomes 
apparent that for five colours we have essentially the same situation (one colour 
against the other four, then two colours against the other three) but that for six 
colours, for example, we must consider yet another step (colours merged three 
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by three). The algorithm becomes increasingly more complicated but remains 
polynomial in 1Al. Also only increasingly smaller clusters must be treated. 

Our algorithm works, for the Potts model, not only with nearest neighbour inter- 
actions but also when we consider the contribution of the sites 'on the diagonals', 
at distance d2. It is easy to extend theorem 1 to that case, as the number of neighbours 
taken into account when calculating the posterior energy (2.6) is of no consequence 
in the proof presented here. More generally, only pairwise interactions are required. 

In many applications the noise follows a continuous distribution, say pixelwise 
independent Gaussian. We cannot operate a coding of such data. Of course, if the 
noise can be discretized to produce the same number of colours as in the original 
image, our method would be practicable. 

5. SIMULATION STUDY 

We present some of the results of the computer simulations that we have carried 
out on 64 x 64 pixels. To study the typical number of ?s produced by the coding 
and decoding algorithm for various values of the noise parameter E, we first 
produced a 'clean' image with a Gibbs sampler, an example of which is shown in 
Fig. l(a). We then corrupted the clean image with noise (see for example Fig. l(b) 
with E = 0.2) and applied the coding and decoding algorithm to this 'dirty' image, 
to produce an image containing a new, fourth, colour -representing the ? -such 
as shown in Fig. l(c). Finally, for comparison, we also applied the simulated 
annealing algorithm to the corrupted image (see for example Fig. l(d)), to be able 
to judge the efficiency of our algorithm against other methods used so far. 

We show four groups of images, all of which were generated starting from 
Fig. l(a) with increasing values of the noise parameter E. From Figs l(c), 2(b), 
3(b) and the results given in Table 1 we can see that, in general, the number 
of ?s produced by the algorithm increases as the value of the noise parameter 
increases. And although, for a sufficiently high level of noise, the approxima- 
tion to the MAP estimate produced by the algorithm may consist entirely of ?s 
(see Fig. 4(b)), if the value of E is not too large, the number of ?s produced is 
limited. Moreover, it is easy to see that the ?s tend to be localized on the interface 
between two regions having a definite colour, or in regions which correspond, 
in the corrupted image, to areas where all three possible colours are present together. 
In other words, the ?s produced by the coding and decoding algorithm indicate 
regions of the image in which the data are the least reliable. Furthermore the 
?-clusters are often small, making further estimation of the corresponding pixels 
easy. 

We computed the percentage of ?s in the images produced by our method for 
various values of 0and E. These are displayed in the third column of Table 1. Note 
that the ?s increase when E increases and decrease when increases. Values of 0 
over 1.2 make the picture smoother and are thus more relevant. Here the number 
of ?s is very small. Of course, as already mentioned, by increasing the noise we 
can produce a restoration displaying only ?s. 

The next column in Table 1 is related to the performance of the simulated 
annealing algorithm run with a geometric schedule (i.e. the temperature decreases 
like 0.9k where k is a full updating step: we stopped at temperature 0.001 starting 
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Fig. 2. (a) Image in Fig. l(a) degraded with E = 0.3; (b) approximate MAP restoration of (a) (?s are 
shown in black, whereas other colours take grey levels); (c) simulated annealing (with geometric 
schedule) restoration of (a) 

from 1). The percentage displayed is that of misclassified pixels with respect to 
the exact MAP estimate produced by our algorithm, excluding of course ?s. In 
the areas where our method produces the exact MAP estimate, simulated annealing 
makes mistakes, sometimes of the same order as the number of ?s. Starting from our 
three colour plus ? restorations we can compute the exact MAP estimate by full 
enumeration of the ?-clusters. If these are too big we could run simulated annealing 
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Fig. 3. (a) Image in Fig. l(a) degraded with e = 0.4; (b) approximate MAP restoration of (a) (?s are 
shown in black, whereas other colours take grey levels); (c) simulated annealing (with geometric 
schedule) restoration of (a) 

on them (with the correct boundary conditions) with a logarithmic schedule. With 
respect to this exact MAP estimate, simulated annealing on the whole scene (with 
geometric schedule) still performs reasonably. If we compare this final column with 
the third, i.e. the percentage of ?s and percentage of misclassified pixels in simulated 
annealing, we observe that for high values of /3 our method is better than or 
equivalent to simulated annealing. For low values of /3 our method produces more 



19951 FAST APPROXIMATE MAXIMUM A POSTERIORI RESTORATION 499 

Fig. 4. (a) Image in Fig. l(a) degraded with E = 0.5; (b) approximate MAP restoration of (a) (all 
pixels are ?s and are shown in grey); (c) simulated annealing (with geometric schedule) restoration of (a) 

?s. But remember the two completely different computational burdens. Moreover 
the time required to produce an exact MAP restoration (as described here) is less 
than that for simulated annealing with a logarithmic schedule. 
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