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Abstract

Dynamic analysis of image sequences is an important task in object-oriented video applications. It often relies on the
segmentation of each image of the sequence into region entities of apparent homogeneous motion. In this paper, we
present an original motion segmentation algorithm based on 2D polynomial motion models, a multiresolution robust
estimator to compute these motion models, and appropriate local observations supplying both motion relevant
information and their reliability. Motion segmentation is formulated as a contextual statistical labeling problem
exploiting multiscale Markov random field (MRF) models. One of its main features is that it avoids time consuming
alternate iterations between motion model estimation and spatial support identification. An original detection step
allows us to estimate and to update the number of required motion models, and thus to handle the appearance of new
objects. Numerous experiments performed with real indoor and outdoor image sequences demonstrate the efficiency of
the method. ( 1998 Published by Elsevier Science B.V. All rights reserved.

Zusammenfassung

Dynamische Analyse von Bildsequenzen ist eine wichtige Aufgabe in objektorientierten Videoanwendungen. Diese
hängt oft von der Segmentierung jedes Bildes einer Sequenz in Bereiche offenbar gleicher Bewegung ab. In dieser Arbeit
stellen wir einen Algorithmus zur Bewegungssegmentierung, der auf 2D polynomialen Bewegungsmodelle basiert, einen
robusten Multiresolutions-Schätzer, um diese Bewegungsmodelle zu berechnen, und angemessene lokale Beobach-
tungen vor, die sowohl bewegungsrelevante Informationen, als auch deren Zuverlässigkeit unterstützen. Die Bewegungs-
segmentierung wird als ein kontextuelles, statistisches Zuordnungsproblem formuliert, da{ multiskalen Markov
Random Field (MRF) Modelle ausnutzt. Ein wesentliches Merkmal dieses Algorithmus ist, da{ er zeitintensive wech-
selnde Iterationen zwischen Schätzung des Bewegungsmodells und räumlicher Support-Identifikation vermeidet. Ein
Original-Detektionsschritt erlaubt es, die Anzahl der benötigten Bewegungsmodelle zu schätzen und zu aktualisieren
und so das Auftreten neuer Objekte zu handhaben. Zahlreiche Experimente mit echten In- und Outdoor Bildsequenzen
demonstrieren die Effizienz dieses Verfahrens. ( 1998 Published by Elsevier Science B.V. All rights reserved.

Résumé

L’analyse dynamique de séquences d’images est une tâche importante dans les applications vidéo orientées objet.
Elle s’appuie souvent sur la segmentation de chaque image de la séquence en régions de mouvement apparent
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homogène. Dans cet article, nous présentons un algorithme de segmentation original basé sur des modèles polynomiaux
du mouvement 2D, un estimateur robuste multi-résolution permettant de calculer ces modèles, ainsi que des observations
locales appropriées fournissant aussi bien l’information pertinente sur le mouvement que sur leur fiabilité. La segmenta-
tion du mouvement prend la forme d’un problème de classification statistique, en exploitant des modèles de champs de
Markov aléatoires multi-échelles. Une de ses principales caractéristiques est d’éviter les itérations alternées entre
l’estimation des modèles de mouvement et l’identification des supports spatiaux, pénalisantes en temps de calcul. Une
approche originale de détection nous permet d’estimer et d’actualiser le nombre de modèles de mouvement requis, et de
traiter ainsi l’apparition de nouveaux objets. De nombreuses expériences avec des séquences réelles d’intérieur et
d’extérieur ont demontré l’efficacité de cette méthode. ( 1998 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction and related work

The apparent motion existing in an image se-
quence contains a rich source of information about
camera motion and the composition of the viewed
scene. Therefore, substantial research efforts have
been devoted very early in the computer vision
domain to motion analysis. Motion-based segmen-
tation [4,13], i.e., the partitioning of the image in
relevant regions that are homogeneous according
to a given motion criterion, emerged as an essential
tool in dynamic scene analysis applications. More
recently, the need for motion segmentation algo-
rithms arose in the image communication domain
too [19]. Promising approaches for visual com-
munication are now oriented towards content-
based functionalities. This is of course the case for
the MPEG-4 compression standard, but newly
emerging objectives as in particular content based
video indexing are also involving such require-
ments [9,18,20]. They therefore greatly depend on
the ability of the analysis step to provide an object-
based representation of the scene.

Motion-based segmentation plays two essential
roles. First, motion segmentation naturally leads to
motion compensation. The block effect observed
with the more traditional schemes is much reduced
with such a region-based approach. Secondly, it is
useful to analyse and interpret the scene, as well as
to extract the different moving parts visually im-
portant for the task at hand, sometimes referred to
as layers [1,2]. The choice of motion as a cue for
image segmentation allows us to deal with a small
number of meaningful entities, as opposed for in-
stance to a gray-level based segmentation ap-

proach, and to build a compact and structured
representation of the spatio-temporal content of
a video sequence.

Different techniques have been investigated for
motion segmentation. A first category is composed
of top-down hierarchical schemes [10,22], which
consist in the computation of successive dominant
motions. Significant areas consistent with the cur-
rent dominant motion are associated with a single
label, while the process is iterated on the remaining
data. A drawback of these methods is that they
generally break down in the absence of a well
defined dominant motion. Moreover, the deter-
mination of the support layers greatly suffers from
the lack of competition between different motion
models to explain the motion measurements at
pixel locations. Clustering methods [7,1,11], in
a wide sense, fall into the second category. For
instance, in [7], an unsupervised clustering tech-
nique mixes information on the position, color and
motion-based residual at every pixel in a competi-
tive learning scheme, whereas in [1], a k-mean
technique is employed to group regions based on
their pre-computed affine motion. One important
shortcoming of these methods is that clustering in
the parameter space is usually sensitive to the num-
ber of specified clusters. Besides, these methods
generally start the segmentation process using ele-
mentary and somewhat arbitrary spatial areas. The
resulting motion estimates, on which the clustering
relies, are usually noisy. Moreover, these bottom-
up algorithms [7,11,24], suited for the two-frame
case, cannot easily incorporate the temporal
aspect and the benefit from a predicted segmenta-
tion map.
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The third category is composed of the techniques
that address the segmentation issue in a Markovian
framework, as a contextual labeling problem [4,
13,23].

Finally, a fourth related category is composed of
other methods, that are based on mixture models
[2,21], MDL criterion principle [2,24], or the ro-
bust regression framework [3]. In [2], motion
models and spatial supports of the mixture are
simultaneously estimated as the two steps of an
EM algorithm. One drawback of mixture-based
methods, also true for clustering methods, is that
they do not inherently incorporate spatial coher-
ence in the estimation of the spatial supports. Spa-
tial smoothness is usually introduced in an ad-hoc
way between iterations [2], or postponed to post-
processing stages, as done for example in [11].
Recently, [21] proposed a formulation to overcome
this problem. The main advantage of the MDL
approach is that no threshold on a discrepancy
measure needs to be set, while allowing the joint
estimation of the number of motion models [2,24].
However, the coding optimality principle may not
coincide with motion analysis purposes. In prac-
tice, algorithms using the MDL principle or mix-
ture models need to start with a number of motion
models greater than the actual one. As in clustering
techniques, they cannot easily exploit a temporally
predicted segmentation map, especially when the
number of regions is growing. As pointed out in
[2], no mechanism to allow for the variation of the
number of regions in time has been proposed.

In this paper, we present an original and efficient
motion-based segmentation method. In Section 2,
the general features of our approach, its main con-
tribution, and an overview of the algorithm are
given. In Section 3, which forms the main part of
this paper, we describe our motion segmentation
algorithm. Results that validate our approach are
reported in Section 4, while Section 5 contains con-
cluding remarks.

2. General features and overview of the algorithm

Our motion-based segmentation algorithm relies
on the use of 2D parametric motion models, the
robust estimation of these models, and the intro-

duction of multiscale Markov Random Field
(MRF) models. The goal of the segmentation is to
jointly estimate the motion models M(H

k
)t`1
t

N be-
tween time t and time t#1 in each delimited region
R

k
(t), k3M1,2,N

r
(t)N, and the associated partition

into regions represented by a label field e(t) at time
t, whose labels are in the set M1,2,N

r
(t)N. N

r
(t)

stands for the number of regions in the image, and
has to be estimated on-line also. It has also to be
updated in time in accordance with the scene con-
tent. The time indexes will be dropped when there is
no ambiguity.

To satisfy these requirements, we have designed
a direct model-based segmentation algorithm
which presents the following attributes:
1. A segmentation technique relies as much on the

theoretical modeling as on the considered
measurements. We thus pay attention to the
definition of the latter, and look for local
motion-related measurements that quantitat-
ively indicate whether the modeled displacement
d at pixel s"(x,y) in region R

k
, dH

k
(s), constitutes

a good approximation of the underlying true
flow at this pixel, d

536%
(s). More precisely, we

would like to have in each region R
k
:

∀s3R
k
, E*d(s,k)E)g,

with *d(s,k)"d
536%

(s)!dHK
k
(s), (1)

where HK
k

represents an estimate of H
k

and
g a constant desired accuracy. Since the compu-
tation of a reliable flow field is a difficult prob-
lem per se, we only resort to partial local motion
measurements adequately defined as explained
later, to locally assess the validity of the esti-
mated model according to Eq. (1). This is the
first meaning of the term ‘direct’ used to qualify
our method.

2. Most approaches to region segmentation gener-
ally proceed in two steps that are iterated until
convergence. The first one consists in estimat-
ing the motion models given the current image
partition into regions; the second one in deter-
mining the optimal partition, the motion models
being kept unchanged [1,2,4,21]. This optim-
ization procedure happens to be computa-
tionally expensive, especially when stochastic
minimization is utilized [13]. In our case, these
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Fig. 1. Flow chart of the algorithm. e(t) denotes the label map at
time t, and Ht`1

t
"M(H

k
)t`1
t

N is the set of motion models asso-
ciated with e(t) and accounting for the description of the motion
field between time t and t#1.

successive alternate iterations are avoided
thanks to the use of a robust multiresolution
motion estimator, as explained below. This is
the second motivation to present our motion
segmentation method as a ‘direct’ one.

Fig. 1 shows a flow chart of the algorithm. The
determination of the segmentation map at time t,
given the segmentation map at time t!1, involves
four main steps: the prediction of an initial segmen-
tation map, the estimation of the motion models,
the updating of the predicted map given the com-
puted motion models, and finally the detection of
new regions. This four step approach is now rather
usual [4]; the way they are defined is original and
efficient. The motion-based segmentation corre-
sponding to the first image of the sequence is con-
ducted in the same manner, starting with an
arbitrary segmentation map (in practice, an initial
map composed of one single region). Before de-
scribing the different processing steps in the next
section, we introduce the motion model and briefly
describe the robust motion estimation algorithm.

2.1. Motion model and estimation

We consider 2D parametric motion models to
represent the projection of the 3D motion field of

the different parts of the scene. Though less general
than the full 3D rigid case, the choice of 2D models
leads to an efficient motion computation scheme.
In all the experiments we have carried out so far,
the 2D affine motion model proved to be a good
compromise between its relevance as a motion de-
scriptor and the efficiency of its estimation. With
this model, the displacement dH

k
at point s"(x,y) is

described by

dH
k
(s)"C

ak
1
#ak

2
x#ak

3
y

ak
4
#ak

5
x#ak

6
yD, (2)

where H
k
"(ak

i
), i"1,2,6, is the parameter vec-

tor to be estimated characterizing the motion in
the region R

k
. Using this model, each region of

the segmentation can be interpreted as being the
projection of a planar surface of the scene, pro-
vided that the slant of this plane is not too im-
portant.

To estimate this motion model between two suc-
cessive frames I

t
and I

t`1
, we have developed

a gradient-based multiresolution incremental ro-
bust estimation method described in [15]. To en-
sure the goal of robustness, we minimize an M-
estimator criterion with a hard-redescending func-
tion [8]. The constraint is given by the usual as-
sumption of brightness constancy of a projected
surface element over its 2D trajectory. In order to
handle large displacements, we adopted an in-
cremental approach. Given a current estimate HK

k
of

the motion parameters, an increment *H
k

is com-
puted according to

"argmin
*H

k

+
s|Rk

o(r*H
k
(s,HK

k
)) (3)

with

r*H
k
(s)"eI

t`1
(s#dHK

k
(s)).d*H

k
(s)

#I
t`1

(s#dHK
k
(s))!I

t
(s), (4)

where o(x) is a function which is bounded for high
values of x, and eI

t`1
(s) denotes the spatial gradi-

ent of the intensity function at location s and at
time t#1. The incremental minimization is con-
ducted within a multiresolution framework. For
more details about the method and its perfor-
mances, the reader is referred to [15].
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3. Segmentation algorithm

The main goal of our segmentation algorithm,
stated in Eq. (1), is to recover coherent regions
where the estimated motion models account for
the true motion field up to a given precision g.
Another way to formulate this goal is to state that
we aim at discriminating regions whose ‘motion
difference’ is greater than g. The principal steps of
the algorithm ensuring the constraint (Eq. (1)) are
the updating step, and the detection step (cf. Fig. 1),
which localizes subregions where this constraint is
violated.

To achieve this goal, we utilize only locally meas-
ured quantities that can be straightforwardly com-
puted from the images. They supply valuable
information accounting for the motion compensa-
tion accuracy obtained using the estimated motion
models. Since such local measurements can be too
noisy or insufficient to reach a correct decision, we
state both the updating and detection issues as
statistical contextual labeling problems. Thanks to
such regularization schemes, information on
motion compensation errors at reliable points (e.g.,
corners) will be propagated to points where ambi-
guities might exist (e.g., straight edge line) or points
with no information (uniform areas), as explained
below.

3.1. Definition of local motion-related measurements

Experience shows that the displaced frame differ-
ence expression, given by

DFD(s,H
k
)"I

t`1
(s#dH

k
(s))!I

t
(s), (5)

is not a reliable measure to assess whether
a modeled flow dHK

k
(s) is a ‘good’ or a ‘bad’ approxi-

mation of the true flow. Indeed, in uniform intensity
areas, the response of this measure is always very
low, whatever the accuracy of the estimated motion
model is; along highly contrasted edges, the re-
sponse is large whenever there exists even a small
residual motion. As a more appropriate measure,
we have adopted a weighted average of the normal
residual flow *d

n
(s,k), given by DDFD(s,HK

k
)D/EeI(s)E,

over a 3]3 neighborhood N(s) of site s. As
weights, we take EeIE2, since the spatial image

gradient is often considered as a good indicator of
the relevance of the normal flow measurements.
Thus, we consider the following measurement:

e
s
(k)"

+
p|N(s)

DDFD(p,k)D]EeI(p)E
max(9]G2

m
,+

p|N(s)
EeI(p)E2)

, (6)

where G
m

is a predetermined constant related to the
noise level in uniform areas.

An interesting property of this local measure is
that at each site s, we can derive two bounds l

s
and

¸
s
, such that

e
s
(k)(l

s
NE*d(s,k)E(g,

e
s
(k)'¸

s
NE*d(s,k)E'g.

(7)

Let us point out that l
s
and ¸

s
do not depend on the

motion models, but only on the preset parameter
g and the local distribution of the directions of the
local spatial intensity gradients. Thus, they allow us
to adapt the meaning of a measure to the local
intensity structure. For example, at a linear iso-
intensity contour s, the bound l

s
is zero, indicating

that even very low measurement e
s
(k) cannot be

trusted as expressing the motion adequacy. Indeed,
in this example, due to the aperture problem,
a motion model k may be consistent with the
motion of the contour (i.e. e

s
(k)K0), although there

is no coincidence between the true velocity and the
velocity obtained with this model.

Bounds l
s
and ¸

s
, in the general case, are given by

(l
s
,¸

s
)"(q]g]j@

.*/
,g) (8)

with

q"
+

p|N(s)
(EeI(p)E2)

max(9]G2
m
,+

p|N(s)
(EeI(p)E2))

and

j@
.*/

"

j
.*/

j
.!9

#j
.*/

, (9)

where j
.*/

and j
.!9

are, respectively, the smallest
and highest eigenvalues of the following matrix
(with +I(p)"(I

x
(p),I

y
(p)):

M"C
+

p|N(s)
I
x
(p)2 +

p|N(s)
I
x
(p)I

y
(p)

+
p|N(s)

I
x
(p)I

y
(p) +

p|N(s)
I
y
(p)2 D. (10)

By exploiting a modelisation of the local spatial
intensity gradient distribution, tighter bounds can
be obtained, as reported in [16].
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3.2. Algorithm steps

We now describe in more details each step of the
motion segmentation algorithm.

3.2.1. Step 1: prediction map determination
The prediction map of the partition at time t,

denoted eJ (t), is determined using the segmentation
map along with the estimated motion models ob-
tained at time t!1. This step, along with step 3,
allows us to supply a coherent labeling of the same
moving scene element in the successive partitions
over time. The label k present at site s in the
computed label map at time t!1, eL (t!1), is as-
signed to each point on the grid around
s#d

(HK k)tt~1
(s) in eJ (t). Pixels that receive no label are

given a special label, as well as pixels that get
several labels. They respectively correspond to un-
covered regions between t!1 and t, and to occlu-
sion areas, which are thus effectively and
straightforwardly handled in our method.

3.2.2. Step 2: robust motion estimation
The motion models Ht`1

t
"M(H

k
)t`1
t

N between
image I

t
and image I

t`1
are estimated using the

initial partition eJ (t). Since we use a robust es-
timator, an imprecise predicted map or the appear-
ance of new objects do not perturb this estimation
process. Therefore, parameters (H

k
)t`1
t

are com-
puted only once, according to the incremental
scheme outlined previously, where the estimation
support is now RI

k
(t), the kth predicted region sup-

port at time t.

3.2.3. Step 3: updating of the predicted partition
The estimation of the optimal partition eL (t) given

the predicted map eJ (t) and the estimated models
(HK

k
)t`1
t

, is achieved through a statistical regulariz-
ation approach based on multiscale Markov Ran-
dom Field (MRF). We adopt a Bayesian MAP
criterion, which, due to the use of MRF models,
leads to the minimization of an energy function
º(e,o,eJ ). o is the field of observations and is com-
posed of the images I

t
and I

t`1
, from which we can

compute the bounds (l
s
,¸

s
) and the local measure-

ments e
s
(k). We have established an energy function

comprising three terms:

º(e,o,eJ )"º
1
(e,o)#º

2
(e)#º

3
(e,eJ ), (11)

where each term, that can be written as the sum
of local potential functions, are described here-
after.
f We have paid particular attention to the data-

driven term º
1
expressing the adequacy between

the labels and the observations. Since the role of
this term is to indicate, given the local intensity
structure, which motion model is ‘adequate’, and
which is not, the potentials involved in this
energy term º

1
has to convert somehow the

inequalities (Eq. (7)) into an energy-based formu-
lation. This is done as follows:

º
1
(e,o)"+

s|S

a.F
s
.»

1
(e

s
,o) (12)

with

»
1
(e

s
,o)"A

ls
(e
s
(e

s
))!(1!A

Ls
(e
s
(e

s
))) (13)

where A
tr
(x) is a smooth version of a step edge.

We use the normalized arctangent: A
tr
(x)"

(1/p)arctan(2p(x!tr))#0.5 instead of a sigmo-
ide, because it reaches saturation levels 0 or 1 less
rapidly. F

s
"max(A

G
(EeI(s)E),At

.!9
) is a damp-

ing factor. A site with low image gradient usually
carries poor and unreliable information about
the adequacy of a given motion model. The
role of the damping factor F

s
is to reduce the

amplitude of the energy term »
1

provided by
the observations at such a site, which converse-
ly increases the relative contributions of the
regularization terms. The parameter At

.!9
fixes the minimal value allowed to avoid over-
damping.

Let us comment the choice of »
1
. First, since the

potential energy function »
1

is bounded, it behaves
similarly to a ‘robust estimator’. It avoids isolated
strong spurious mesurements to have a sufficient
influence to locally impose the wrong label even if
all the neighbours ‘disagree’. Secondly, the poten-
tial function »

1
reflects the inequalities on the

measurements. It is illustrated in Fig. 2 where we
have plotted this potential function for two repre-
sentative cases. A very low potential value should
indicate that the discrepancy between the true and
the modelled motion at site s is below a given
predefined value g. In a straight edge configura-
tion, due to the aperture problem, a measurement,
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Fig. 2. Potential function »
1

for two specific configurations: case of a site located on a corner (curve 1), and on straight edge (curve 2).

whatever low it is, cannot indicate with certainty
whether the discrepancy magnitude is below g.
Therefore, the potential value does not fall as low as
in other cases, like in the corner configuration,
where the aperture problem does not arise.

When locally there exists an ambiguity, energy
terms º

2
and º

3
described below introduce the

contextual information necessary to remove it and
to perform a correct labeling.
f Energy term º

2
accounts for the expected spa-

tial properties (homogeneity) of the label field. It
has the following expression, which is a usual
one:

º
2
(e)" +

(s,t)|C
b
d
(1!d

es/et
) (14)

where C represents the set of cliques of two
elements associated to a second order neigh-
bourhood system, and d is the Kronecker func-
tion.

f º
3

favours the conservation of labels over time,
except in occluded and uncovered regions be-

tween I
t~1

and I
t
where no label is favoured. It is

given by

º
3
(e,eJ )"+

s|S

F
s
]b

dt
(1!d

es/eJ s
) (15)

This step of the algorithm performs the updating of
the boundaries between two regions R

k
and R

k{
,

taking into account the new motion model esti-
mates. When completed, the image segmentation
into regions of homogeneous motion is achieved
using the number of motion models intervening in
the segmentation at the previous instant. The pur-
pose of the next step is to test: (a) if new moving
objects have appeared in the scene; (b) if the current
number of motion models is still adequate to pro-
vide a good description of the apparent motion in
the image.

3.2.4. Step 4: detection of new regions
Within each region R

k
, sub-areas whose motion

does not conform to the estimated motion model
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HK
k

are detected. This is achieved using a scheme
similar to the one described in [14], which was
concerned with the detection of moving regions not
conforming with the global dominant motion
model estimated in the whole image. Briefly, this
detection phase uses a statistical regularization
leading to the minimization of an energy function
º

d
similar to Eq. (11). In particular, the data driven

term in º
d
can be directly computed from Eq. (13)

at no cost, leading to an extremely fast detection
procedure.

The significant connected components are ex-
tracted from the set of all the detected sub-areas,
and the number of regions N

r
(t) is updated ac-

cordingly. If there is no new region, the final parti-
tion at time t is that obtained at the end of the last
relaxation iteration performed at step 3. Otherwise,
the motion models, in the newly created regions
only, are estimated, still using the multiresolution
robust estimator, and the partition is updated again
according to the relaxation scheme described in
step 3. The relaxation then involves only few com-
putations, since it is only concerned with the ad-
justment of the boundaries of the newly created
regions.

3.3. Dealing with occlusions

In the motion-based segmentation of a scene
using two images only, a problem arises with
areas at time t that are occluded at time t#1. In
these areas, no correct local measurements can
be extracted. The energy term º

1
has been ex-

tended to deal with occluded area. The most intu-
itive way to correctly label these areas consists in
looking towards the past. In addition to motion
estimates from time t to time t#1, (HK

k
)t`1
t

, we
have also considered motion models from t to
t!1, (H

k
)t~1
t

. Then, we can define local motion
measurements e@

s
(k) involving these models and the

images I
t
and I

t~1
, in a way similar to the definition

of e
s
(k). When the right label k is assigned to s, at

least one of the measurement e
s
(k) or e@

s
(k) should be

small, whereas with a wrong label, both should be
high. Consequently, the energy term º

1
is simply

modified by replacing e
s
(e

s
) in Eq. (13) by:

min(e
s
(e

s
),e@

s
(e

s
)).

3.4. Computational issues

The minimization of the energy functions (steps
3 and 4) is performed using the multiscale approach
described in [17]. At a given scale j, the solution,
constrained to be constant within blocks of size
2j]2j, is computed using the Highest Confidence
First [6] minimization procedure. Experiments
have shown that both the use of the multiscale
approach and the HCF minimization algorithm
(instead of the standard ICM) improve the results.
Especially, the multiscale scheme reinforces the
homogeneity constraint without having to over-
weigh the corresponding a priori energy term.

Parameter setting is an important issue in any
image processing algorithm. Results should not ex-
hibit a high sensitivity to the choice of parameter
values. In our algorithm, no parameter setting ap-
peared to be crucial. Indeed, results shown in the
next section are all obtained with the same set of
parameter values in the different steps of the seg-
mentation algorithm, except two parameters. The
values of the unchanged parameters are the follow-
ing: a"200, b

d
"20, b

dt
"40, G"1, At

.!9
"0.5,

and we use four levels in the multiscale minimiz-
ation algorithm.

The first variable parameter, G
m
, is related to the

image quality, and is not sensitive. Its value is 6 for
the ‘van’ sequence, and 3 for the four other se-
quences. The second one is the parameter g in-
volved in the constraint (1), and which represents
the precision with which a motion model in a given
region represents the underlying true motion field.
From its definition, it is clear that it influences the
number of motion models needed to describe the
true flow field, and therefore the number of regions
in the segmentation. It offers a real flexibility to the
method, and is a typical user-defined parameter of
obvious physical interpretation, that can easily be
set according to the needs and requirements.

Finally, let us note that, prior to the updating
step (step 3), a procedure merging regions undergo-
ing similar motions is performed. However, only
very few region merging events happen indeed (ap-
prox. one every 10 images). This procedure is re-
quired to overcome specific problems that occur
in the processing of a whole sequence [16]. The
main one stems from the variability of the motion
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Fig. 3. ‘Van’ sequence: (a) Segmentation map obtained at time t
34

. (b) Enlarged detail of (a). (c) Segmentation map obtained at time t
54

.
(d) Enlarged detail of (c). g"0.8. We obtain similar results for values of g ranging from 0.5 to 1.5.

complexity along a video sequence. When this com-
plexity decreases, less motion models are required
to describe the flow field, and thus regions must be
merged. The merging procedure relies on the esti-
mated motion models in a simple way and is very
fast. It is developed in [16].

4. Experimental results

The proposed algorithm has been validated on
many real sequences comprising indoor and out-
door scenes. Here, we give results obtained on five
different sequences. Boundaries of the segmenta-
tion are overprinted in white on the original im-

ages. The value of the precision parameter g is given
in the caption. We also indicate, for the ‘Van’,
‘Renata’ and ‘Mobile’ sequences the range of values
for parameter g leading to almost identical results.
With the current non-optimized implementation of
the algorithm, the whole algorithm has a computa-
tional cost of 15—20 s per image on a Sun Sparc 20,
for images of size 256]256. However, this cost
could be greatly reduced since most of the calculus
are local and regular.

In the ‘Van’ sequence (Fig. 3(a—d)), the scene
takes place at a crossroad. A white van, followed by
a black car driving at almost the same speed, is
coming from the left of the scene and going to the
right. A white car is coming from the opposite
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Fig. 4. ‘Garden’ sequence: segmentation map at time t
2

(a) and associated estimated model flow fields (b).

Fig. 5. ‘Renata’ sequence: segmentation map obtained at time t
1

(a) and t
15

(b). g"0.5. We obtain similar results for values of g ranging
from 0.4 to 1.0.

direction. The results demonstrate the accuracy of
our algorithm in determining the motion discon-
tinuities, even when the white car is getting oc-
cluded (Fig. 3(b)). The creation of a new region is
perfectly realized as soon as the front of the white
car reappears, as shown by Fig. 3(c,d).

In the ‘Garden’ sequence, the camera is translat-
ing to the right, while the scene is static. Several
motion models are needed to structure this scene
into its different layers. An affine model is a reason-
able approximation of the motion of rather fronto-
parallel planar surfaces or shallow objects. The
garden sequence illustrates nicely this property.
The ground as well as the houses in the background
can be considered as planar surfaces with different

orientations, while the two regions in the tree can
be considered as shallow objects. Boundaries be-
tween regions correspond not only to motion or
depth discontinuities but also to orientation dis-
continuities, as shown by the estimated modeled
flow field displayed in Fig. 4(b).

Fig. 5(a,b) displays the results obtained for the
‘Renata’ sequence. The small swing of the woman
arm, as well as the slight nod of the head at the
beginning of the sequence are taken into account.
Let us note that segmentation boundaries usually
extend outside the moving object border, especially
when the background is uniform. This effect is due
to the facts that we only rely on motion informa-
tion, and that of course all motions are valid in
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Fig. 6. ‘Mobile’ sequence. (a) Segmentation map obtained at time t
1
. (b) Enlargement of one part of the segmentation map obtained at

time t
4
. g"0.6. We obtain similar results for values of g ranging from 0.4 to 1.5.

Fig. 7. ‘Interview’ sequence. Motion-based segmentation map obtained at time t
37

with two different ‘precision’ levels: (a) g"1.25 and
(b) g"0.75.

uniform areas. However, as soon as there exists
some texture on both sides of a motion discontinu-
ity, we recover this discontinuity with very high
precision. This is illustrated for instance by com-
paring the boundary location near the woman left
arm in Fig. 5(a,b), or by the boundary around the
train in the ‘Mobile’ sequence, Fig. 6(a,b). In this
example, the camera is panning the scene while the
calendar is sliding vertically, the ball is rolling and
the train is moving forward.

In the ‘Interview’ sequence, the camera is track-
ing the woman on the right, who is standing up

while moving her arms. Besides, casted shadows
of these arms are sliding over her pants. Fig. 4(a,b)
emphasis the role of the precision parameter g, and
displays results obtained with two different values
of g. As expected, a larger value of g is more suitable
for motion analysis, as in that case the algorithm
captures only the few principal motion components
of the scene. A smaller value (Fig. 7(b)) can be used
if a better description of the motion field is prefer-
red, for motion-compensation purposes in image
coding for instance. It usually leads to the recovery
of more regions, as in this example, where the
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algorithm creates regions to account for the motion
of the right hand or the hairs.

5. Conclusion

We have described a motion-based segmentation
method based on 2D motion models. The method
aims at recovering a relevant partition of each
image of the sequence, where in each region the
estimated motion model is able to describe the true
motion field with a predefined precision level.

The algorithm relies, apart from the prediction
step, on three essential steps. The first one is the
motion estimation step, based on a multiresolution
robust estimator which enables for the computa-
tion of accurate motion model estimates using
a predicted segmentation map, even in the presence
of prediction errors and changes of scene content
like the appearance of new objects. As a conse-
quence, this step is performed only once. The sec-
ond step uses local appropriate motion-related
measurements, and is embedded in a multiscale
MRF framework to favour spatio-temporal con-
sistency of the segmentation maps. A key feature is
that the aperture problem is explicitly and directly
acknowledged in this framework, allowing us to
differentiate between informative sites and non-
informative ones. Moreover, the scheme has been
extended to handle occlusions. Finally, the third
step achieves an efficient detection of new regions.
Experiments carried out on many different se-
quences have demonstrated the robustness and the
validity of our approach.

As illustrated by the results, our algorithm con-
stitutes a powerful tool for the extraction of rel-
evant information from video sequences. The short
term temporal link provided by our algorithm can
be efficiently exploited to build long term object
trajectories, even in the presence of long occultation
[12]. Background motion estimates can be ex-
ploited to compute mosaic or key frames [9] as well
as to identify and to characterize different shots of
a video sequence [5]. The use of motion and traject-
ory of objects along with the detection of dynamic
events (e.g. object emergence or disappearance, ob-
ject stopping, occultation) to build storyboard-like
representation is currently studied.

References

[1] E.H. Adelson, J.Y.A Wang, Representing moving images
with layers, IEEE Trans. Image Process. 3 (5) (September
1994) 625—638.

[2] S. Ayer, H.S. Sawhney, Layered representation of
motion video using robust maximum-likelihood estima-
tion of mixture models and MDL encoding, in: Proc. IEEE
Internat. Conf. Computer Vision, Boston, June 1995, pp.
777—784.

[3] M. Black, A. Jepson, Estimating optical flow in segmented
images using variable-order parametric models with local
deformations, IEEE Pattern Anal. Machine Intell. PAMI
18 (10) (October 1996) 972—996.

[4] P. Bouthemy, E. Franc7 ois, Motion segmentation and
qualitative dynamic scene analysis from an image se-
quence, Internat. J. Comput. Vision 10 (2) (April 1993)
157—182.

[5] P. Bouthemy, F. Ganansia, Video partitioning and camera
motion characterization for content-based video indexing,
in: Proc. 3rd ICIP, September 1996, pp. 905—909.

[6] P.B. Chou, C.M. Brown, The theory and practice of
Bayesian image modeling, Internat. J. Computer Vision
4 (1990) 185—210.

[7] M. Etoh, Y. Shirai, Segmentation and 2D motion estima-
tion by region fragments, in: Proc. 4th IEEE Internat.
Conf. on Computer Vision, Berlin, May 1993, pp. 192—199.

[8] P.J. Hubert, Robust Statistics, Wiley, New York, 1981.
[9] M. Irani, P. Anandan, J. Bergen, R. Kumar, S. Hsu,

Efficient representation of video sequences and their ap-
plications, Signal Processing: Image Communication
8 (1996) 327—351.

[10] M. Irani, B. Rousso, S. Peleg, Detecting and tracking
multiple moving objects using temporal integration, in:
Proc. 2nd ECCV, May 1992, pp. 282—287.

[11] S.-M. Kruse, Scene segmentation from dense displacement
vector fields using randomized Hough transform, Signal
Processing: Image Communication 9 (1996) 29—41.

[12] F.G. Meyer, P. Bouthemy, Region-based tracking using
affine motion models in long image sequences, CVGIP:
Image Understanding 60 (2) (September 1994) 119—140.

[13] D.W. Murray, H. Buxton, Scene segmentation from visual
motion using global optimization, IEEE Trans. Pattern
Anal. Machine Intell., PAMI 9 (2) (March 1987) 220—228.

[14] J.-M. Odobez, P. Bouthemy, Detection of multiple moving
objects using multiscale MRF with camera motion compen-
sation, in: Proc. 1st ICIP, November 1994, pp. II:257—261.

[15] J.-M. Odobez, P. Bouthemy, Robust multiresolution es-
timation of parametric motion models, J. Vis. Comm.
Image Representation 6 (4) (December 1995) 348—365.

[16] J-M. Odobez, P. Bouthemy, Direct incremental model-
based image motion segmentation for video analysis,
Technical Report 1129, IRISA/INRIA-Rennes, October
1997.
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