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Abstract—The new MPEG-4 video coding standard enables with objects, and reuse of content information by scene com-
content-based functionalities. In order to support the philosophy position, which are all suitable for multimedia applications.
of the MPEG-4 visual standard, each frame of video sequences In the MPEG-4 visual coding standard, each frame of

should be represented in terms of video object planes (VOP’s). he vid . d b f h .
In other words, video objects to be encoded in still pictures or N€ VIOEO sequence Is represented by a set of snapshots in

video sequences should be prepared before the encoding proceséime of these objects, which are referred to as video object
starts. Therefore, it requires a prior decomposition of sequences planes (VOP’s) [1], and different encoding tools, such as
into VOP's so that each VOP represents a moving object. This shape, texture, and motion encoders, are applied to each
paper addresses an image segmentation method for separatindy,op  However. MPEG-4 encoding assumes availability of
moving objects from the background in image sequences. ) ] . . )
The proposed method utilizes the following spatio-temporal S€gmented video objects in the form of VOP's.

information. 1) For localization of moving objects in the image Hence, video segmentation is an indispensable process for
sequence, two consecutive image frames in the temporal direction MPEG-4 coding, although only the syntax and semantics of
are examined and a hypothesis testing is performed by comparing video bitstreams and specification of the decoding process are

two variance estimates from two consecutive difference images, - avive parts of the MPEG-4 visual standard. Segmentation
which results in an F'-test. 2) Spatial segmentation is performed to

divide each image into semantic regions and to find precise object Of image usually divides the image contents into semantic
boundaries of the moving objects. The temporal segmentation regions that can be dealt as separate objects. Here, a semantic
yields a change detection mask that indicates moving areas object means a moving object through time evolution in image
(foreground) and nonmoving areas (background), and spatial seg- sequences.

mentation produces spatial segmentation masks. A combination : . _ - :
of the spatial and temporal segmentation masks produces VOP’s During the first phase of the MPEG-4 standardization ac

faithfully. This paper presents various experimental results. tivity, the multifunctipnal ad hoc groupf the MPEG'4 visual
part had been working on development of automatic segmen-

’ tation algorithms for moving objects in video sequences. The
framework for video segmentation in MPEG-4 consists of
three major components: temporal segmentation, spatial seg-

I. INTRODUCTION mentation, and combination of spatio-temporal segmentation

BJECT-BASED coding is one of the distinct feature§esults [2]. Temporal segmentation localizes moving parts of
Oof the MPEG-4 standard, which is distinguishable frorRbjects in the image, and the spatial segmentation divides the
the previous standards, such as MPEG-1 and MPEG-2. ijpage into semantic regions with precise object boundaries
MPEG-4, the audiovisual contents are decomposed into obje2€§ording to the given criteria. The combination of the spatial
that may represent a fixed background (still image), a talkif§gmentation and the temporal segmentation produces robust
person (video object), his/her voice (audio object), backgroug@gmentation results of moving objects. The spatio-temporal
music, etc. [1]. Object-based coding allows many usef§gmentation scheme adopted in the MPEG-4 visual part is
functionalities: easy access to bitstreams of individual objecgigpicted in Fig. 1.

object-based manipulation of bitstreams, various interactionSince moving objects in image sequences usually entail
intensity changes, we take differences of intensity values
between two successive image frames to find moving objects
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F, K, obtained, an ON/OFF decision of global motion compensation
¢ #_ (GMC) is made because the camera movement does not
: o always exist in the video sequence. We adopt dbefficient
Global Motion Estimation . . . . .
and Compensation of multiple determinationwhich is usually employed for the
] model adequacy test in statistical analysis. If the value of the

l Scono Chanse Detocti ﬂ coefficient of multiple determination is greater than the given
& threshold, the GMC is performed. Otherwise, the GMC is not
Y performed.
Temporal Spatial Let (z,y) be a position in a frame before a camera mo-
Segmentation Scgmentation . nay . .
tion occurs andz’,y’) a location after the camera motion.

lCha"ge detection masky Here, the affine motion model of six parameters is used to

Fusion of spatio-temporal scgmentation estimate the camera motion, and the resulting motion vector
and temporal Coherence is expressed as follows:

Object Masks ox(z,y) = P —r=az+ay+ta (1)
y — . _ — -
Fig. 1. Spatio-temporal segmentation scheme. o (x, y) SY TY S tar At asy+as (2)
or
level of significance [7]. However, the true variance should be Ux(z, )\ _ (o1 a2\ (=z as 3
known a priori to compute the test statistic. In practice, the oy(z,y) ) \as a5 J\y * ag ) ®)

true value of variance is unknown and is dependent on theS that the local displ ; ¢ ¢ alk166
activity of the image. uppose that the local displacement vectors of al

In this paper, we propose a temporal segmentation met cks are known. These vectdfe, v,) can be obtained by

based on intensity differences, which includes a statisticat full search _block-matchlng algorlthm._ln order to estimate
global motion vectors, an error function to be minimized

hypothesis test based on variance comparison. The compari

of two variances leads to a test statistic withZ&mlistribution. ' efined as

Under a hypothesis, this test statistic does not require the N ) )

true variance to be knowa priori. We also introduce the E(a) = Z{[”X(xi’yi) = Ox (i, i)l

spatial segmentation scheme adopted in the informative part =1

of the MPEG-4 visual standard [2]. The spatial segmentation + [ov (zi, 93) — Oy (zi, 9%} 4)

method is based on the watershed detection that is a regiWFfereN is the number of motion vectors in the estimation
growing algorithm. However, the watershed algorithm resul& the six parameters.

in oversegmented regions. Therefore, it needs a region mergln(%y substituting (3) into (4), we have

operation. Last, a combination of the spatial segmentation an

the temporal segmentation is proposed, which considers both N )

the spatially segmented regions and the temporally segmented E(a) = Z{[UX(“’“ yi) = (a1z + azy + az)]

regions so that moving object regions are separated from the =1

background accurately. + [y (i, %) — (aaz + azy + a))*}. (5)

This paper i? organized as follows. SeC“P” I addre_srhe optimal solution to the estimates of the six parameters is
ses preprocessing steps, such a global motion estimatigg{;ineq by the least square method.

compensation and a scene-change detection methothy geene-Change Detectioor scene-change detection,

Then, the temporal segmentation method proposed is &% can use two measures. One is the mean absolute difference
plained. Spatial segmentation and the combination of spat AD) of luminance components between two consecutive

temporal segmentation are addressed in Sections Il and ages. If the MAD value is greater than a given threshold,

respectively: Section.V presents experimental results, and We." - sidered that a scene change has occurred. The other
conclude this paper in Section V1. measure is a signed difference of MAD (SDMAD), which is
defined as follows:

SDMAD;, = MAD;, — MAD;_;

II. LOCALIZING MOVING OBJECTS

A. Preprocessing where MAD, is the MAD between thé:ith frame and the

1) Global Motion Estimation and Compensatiofor the k& + 1st frame and MAR_; is the MAD between thé — 1st
global motion estimation, we utilize the affine six-parametdrame and thekth frame.
motion model. We first calculate local motion vectors for The SDMAD is the second derivative of a frani¢ and
nonoverlapping 16< 16 square blocks using the block matchexhibits large positive and negative peaks at image frames that
ing algorithm [9]. Then we estimate six parameters using tave scene changes. Due to large positive and negative peaks
least square method. In this process, we remove the outkeérthe preceding and the following scene-changed frames, the
vectors and iterate the regression process until the estimatetection performance of scene change is insensitive to the
of six parameters converge. After the six parameters aelected threshold value. The SDMAD may fluctuate in small
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positive and negative values around zeros when the scéwes a chi-squared distribution with— 1 degree of freedom.
change does not occur. When there is a scene change,LweV; andV; be independent random variables governed by

do not perform the temporal segmentation. chi-squire distributions withn; and n, degrees of freedom,
respectively. Furthermore, for simplicity, the pixel differences
B. Temporal Segmentation of the frame differenceD, are assumed to be identically

hi([}]l{jependently distributed random variables. ARyrandom

separates moving objects as foreground from stationary baXﬁ—”able can be wrltt(_en as the I‘atIO. qf two mdep.endent Cr."'
ground, statistical hypothesis tests are worth using. In gene?q,uamd random variables, each divided .by their respective
the motion of moving object entails intensity changes iﬁ‘egrees of freedom. Then the random variable
magnitude so that intensity changes are one of important cues V- Va/na
for locating moving object in time and space. These intensity  Vi/m
changes can be represented with the difference image betwgen o .
two successive images, both of which embed moving objedt®> an-distribution .W'th ot a2nd "2 ‘;'eggees of ere_edqm.
Intensity difference in stationary background between t ere, the_random variablesy /o7 andS3 /o3 havex d'St.”'
consecutive frames is from thermal noise of the image caj l_mons;/v 'thm;l andn, —1 degrees of freedom, re25pect|ve|y,
turing device such as charge-coupled device and quantizat Iaeresl ands3 are estimators of varianceg an.d(f?’ andrn,
noise etc., which are often modeled as normal distribution [ ,nd ny are the numbers of samples, respectively. Therefore,
[8]. The model of normal distribution is reasonable becau test statistic
of the central limit theorem. For temporal segmentation, a _ 83/o3
test for the equality of two variances from each background o 52 /gf
and a location under consideration of equality is performed. o )
The idea of this approach is that the intensity variation of Wil have anf"-distribution withn, — 1 andn, — 1 degrees of
moving region is different from that of stationary backgrounfi€edom. Under the null hypothesis, that i85 = 0'_5' the
because the motion of the moving object changes in intensigpt StatisticV” is reduced to the ratics /.57 . Looking at
of the corresponding region. Therefore, a statistical hypotheli§ ratio performs the hypothesis test established on variance
testing is incorporated based on a variance test to detg@fmparison. Note that the true variance is not required to
intensity change. be a priori k_nown for computingV” if the n_uII_ hypothesis
Let D;, be the frame difference betwedf_; and F},. The Hy:0? = 03 is true. When the nuI_I hypothesis is true, we can
difference image is modeled with a normal distribution. A sdf€n assers} andS3 to be close in value, forcing /57 to
of random variables in the observation wind&iis compared be close to 1. If the ratio is §|gn|f|cantly larger than 1,' then
with that of the background. Therefore the null hypothesi€ conclude that the two variances from each population are
made on variance is assumed that the two random Saquggerent. This happens whes? is estimated in the observation
observed inside and outsid® were drawn from the sameWindow passing over a region that was affected by moving
distribution. In other words, the two variance$ and o2 are objects. The intensity difference of pixels in the region with a

the same. The hypothesis made on variance is written such tRQVing object shows a large variation in intensity so that the
) resulting variance estimates in the region are usually large.

Ho: 0] = 03 The test statistid” computed from the window and back-
Hi: 0? < o2, (6) ground is used in computing a change detection mask by
testing the hypothesis established in (6). The change detection
The hypothesis test in (6) is a left-tailed test. The null hymask (CDM) is a binary image that indicates foreground
pothesisH, implies that the true varianeg’ from background (moving object regions) and background (nonmoving regions).
and the true variances from an observation are the same. The |t is desirable to rejecH if V > Viu., where the threshold
alternative hypothesis is that if the observation wind&v 7V}, is chosen so that wheH, is true, Pr(V < Vip) = «
passes over a region of a moving object, the variance estimﬂggarmess ofi; and . Viy, is theo percentage point of the
&% of pixel differences if¥ should be larger than the varianceg-distribution withn, —1 andn, —1 degrees of freedom. This
estimates3 of pixel differences in background. This is becausgads to the conclusion that the pixel under consideration in the
the moving object in the region usually entails large chang@gndow is declared as being changed in intensity because its
in intensity, resulting in a large value of the variance estima{griance estimated at the center of ifieis different from that
for the pixel difference in the region between two consecutiv stationary background. ¥ < V;i.., then the null hypothesis
frames. is accepted and the alternative hypothesis is rejected. In this
In order to perform a hypothesis testing on a paraméter case, the pixel intensity at the location under consideration in
that is, the variance?, a test statistic needs to include thene current frame is declared unchanged compared to that at the
parameter assumed. L&t , X», ..., X;, be a random sample same location in the previous frame. Note that our hypothesis
from a normal distribution with meap and variancer®. The test does not require the information of the true variances
random variable o2 and o2 a priori in computing the test statistic under the
n null hypothesis. There is a close relationship between the test
(n—1)8%/o* = Z(Xi - X)/o? of a hypothesis about the parameterand the confidence
i=1 interval foré. If the confidence intervdD, Vi1, is a 100(+«)

In order to develop an image segmentation method t

(7)

(8)
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F, A. Simplification of Image
For spatial segmentation, images are first simplified for ease
] Image Simplification | of spatial segmentation. Many morphological filters are often
P designed to smooth noisy gray-level images by a determined

A 4
Gradient
Approximation

composition of opening and closing with a given structuring
element [12]. Here, erosion and dilation with a flat structuring
element are used in constructing a morphological filter for

5 image simplification
I Watershed Detection ‘ en(Fr(z, ) = min(Fy(z +Ly+m)) Y({,m)e R, (9)
v 6 (Fr(z,y)) = max(Fr(z — Ly —m)) V(,m) € R,.
‘ Region Merging } (20)
foAd

Morphological opening and closing operations are given by
on(Fr) = en(6,(F)). (12)

confidence interval for the parametér then the hypothesis |t ¢an be noticed that in order to simplify the original
(6) will lead to rejection ofH, if and only if V is not in the IMage, the morphological opening operatigr( £}.) removes

Spatially segmented regions

Fig. 2. Spatial segmentation process.

interval [0, Vi the bright components that do not fit within the structuring
Following is a summary of the CDM computation proce€léments and the morphological closing operajer(£y)
dure. eliminates the dark components compared to the structuring

. .__components. For the case of the images containing fluctuating
1) Select a background region and compute the variance .
. 5 ‘ . o . scale values, the bright and dark components should be con-
estimateS; of pixel differences inside the region i8,. . S ) .
. : sidered for the simplification. With the boundary preservation,
2) Set the center of an observation window of si¥eat a . : ; . .
: . morphological opening/closing by reconstruction filters are
location (z,y) in Dx. ; S .
. . . . used for the purpose of image simplification [13]. That is, the
3) Compute variance estimat of the pixel differences h . )
S . . usage of these filter pairs removes regions that are smaller than
inside the observation windowd'x (z, ). . . o .
. a given size but preserves the contours of the remaining objects
4) Compute the test statistic . . . . A"
in the image [13]. The opening/closing by reconstruction filters
is given by partial reconstruction.

2 2
V= 52/51- Morphological opening by reconstruction of opening
) (4, (Fi), Fi).- 13

5) For a given significance level, read the corresponding 7 O, F) (13)

thresholdV;y,, from a table. Morphological closing by reconstruction of closing
6) If V > V.., the location under consider is declared as (rec)

foreground. Else it is assigned background. o on(Fi), Fe). (14)
7) Repeat steps 1) through 5) for all pixel locationslip. By removing unwanted details in texture of the regions,

the image is homogenized in terms of region textures. So
this morphological operation helps spatial segmentation obtain
[ll. SPATIAL SEGMENTATION more semantic region partitioning in the later stages. The

Spatial segmentation splits the entire image into homoq@]age_simplification is not necessary applied only to the gray-
neous regions in terms of intensity. The different homogeneoﬁé’el mage. For the regions thqt show low contr.asts, the
regions are distinguished by their encompassing boundarf¥@Plification may results in merging of the two regions that
that can be obtained from the spatial segmentation. Salembi PUId be separated. F'g' S(b.) shows the S|mpllf|cat|on results
et al. [13] proposed a method for spatial segmentation bas8 9raY level byope_nmg/ closing by reconstructloproc_e_ss.

on a morphological segmentation that utilizes morphologicA® Siz€ of structuring elements wasx55. The simplified
filters and a watershed algorithm. However, the watershed udfiage e_Xh'b'tS that detailed textures of ha|r_and clothes ,Of the
ally introduces oversegmentation problems, which cause mﬂjﬂ'nal image are smoothed out, but the object boundaries are
partitioned regions even in a single object region [16]. A regi e§erved. The size of the structuring elements is dependent
merging process should be devised to avoid the oversegmgﬂ—'m""ge sizes and types.

tation after watershed in the proposed spatial segmentation. i o

Fig. 2 depicts the proposed spatial segmentation process. Fhe®radient Approximation

spatial segmentation algorithm consists of the following steps:The spatial gradient of the simplified image is approximated
simplification, gradient approximation, watershed detectiohy the use of a morphological gradient operator [12]-[14].
and region merging. The details of each step are explain€drough the image simplification, the inside of each homoge-
in the following subsections. neous region is small gradient, but large gradients are induced
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Fig. 4. Watershed flooding.
© Usually, a semantic region is distinguished by its inclines

Fig. 3. Spatial segmentation. (a) Original image, (b) simplified image, (ffom the surrounding contiguous regions in the image. The
gradient image, (d) region split after watershed, and (€) region split afigadient exhibits large values at the inclines. So a watershed
merging. algorithm is applied to the gradient image to partition the
image into homogeneous intensity regions. A number of
along the region boundaries among different homogeneaygtershed algorithms have been proposed in the literature, but
regions in the image. So the spatial gradient can be usedn@$e we use an immersion-based watershed algorithm that is
an input of watershed algorithm to partition an image intgimp|e and computationally efficient.
homogeneous intensity regions. The morphological gradientrhe watershed algorithm is a region-growing algorithm, and
operator used is expressed such as it assigns pixels in the uncertainty area to the most similar
G(f) = 6.(f) — e1(f). (15 n_eighbor reg_ion W_ith some segm_entation criterion suc_h as
difference of intensity values. The final result of the algorithm
Note that the morphological gradient is positive. The positiie a tessellation of the input image according to its different
gradients usually indicate borders between neighbor regiasstchment basins.
and allow the watershed to split an image into regions that areFig. 4 depicts a one-dimensional graphical illustration of the
divided by the borders. watershed algorithm in an intuitive way. The local gradient
In the regions where intensity variations are small, adjginima are detected and used as seeds for region growing. In
cent regions are ambiguous so that watershed algorithm mag image, these local minima are derived from homogeneous
yields false contours due to the resulting small gradients. Wtensity regions. As the tessellation of the gradient image is
overcome this problem, we incorporate color information inttnmersed, each catchment basin is filled up from its lowest
gradient computation in a way that the largest values amogagitude selected as a seed. When the surface of the water in
the gradients obtained im; Gy, w2Ge,, and wsGcy, are each catchment basin reaches the top of the crest, a dam is
chosen whereu;, w,, andws are weighting factors applied made for the water not to overflow into the nearby catchment
to the gradients ofsy, G¢y, and Gey,, respectively basins. Last, the water surface in each catchment basin reaches
the same level but is confined within the region encompassed
(16) . . : .
by the crest lines or dams built on the crest in the gradient
In many practical cases, the resulting gradient images émage. Then each region is assigned a unique label.
hibits many noisy gradients, which usually cause the watershedrhe watershed algorithm is highly sensitive to gradient
algorithm to oversegment the image. In order to prevent thisise, which yields many catchment basins, resulting in over-
the gradient images are clipped by a certain threshold valsegmentation. The resulting image of watershed detection is
In other words, gradient values less than the threshold valsigown in Fig. 3(d). Since the watershed detection could result
are set to zero; otherwise they remain same. in oversegmentation, the region-merging algorithm based on
The gradient image obtained from the simplified image istensity homogeneity should be incorporated to solve the
shown in Fig. 3(c) and exhibits large values along the regimversegmentation problem.
boundaries. Note that in this experiment, small gradients less
than ten were set to zero for removing noisy small gradients. Region Merging

Thg weighting fa_ctolrswﬁ, w2, e;]ndwg)d\_/vere ];set to ong, t\t/)VO, As mentioned in the previous section, the watershed algo-
and two, respectively, that is, the gradients for Cr and Cb &g, 1, \vas applied to partition the images into small regions

emphasized twice. This gradient image is used as input imagg; »re homogeneous in terms of luminance and color. There-

for the watershed detection. fore, the image partition into many homogeneous regions
i results in oversegmentation. As shown in Fig. 3(d), the wa-

C. Watershed Detection tershed detection led the image partition to oversegmentation
The image is often interpreted as geographical surfase that a region-merging step is necessitated to avoid the
in mathematical morphology, and its gray level is regardexersegmentation problem. As the images are simplified for re-
as altitude. As for geographical surfaces, image structugesn partition, the oversegmented partition can also be relaxed
exhibits inclines, hills, and plateaus over the image planesing a spatio-temporal similarity measure. In the region-

max{w Gy, waGey, wsGey, }-
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merging step of the algorithm using a graph-based clustering, W
small regions are recursively merged into their neighbored Fx
regions to which the small regions are most similar based
on the spatio-temporal similarity. This region clustering yields

f RnSz = 10 and MaxRuSz = 50 ]

larger and meaningful regions, which are homogeneous and ¢ v
different from their neighbors. An adjunct scheme of region Sele]c]t srr}:all ;Zgl(};lsSR, ..... R, that are
. . . : 1 .

representation can be developed using a graph theory. This smatier Than Mooz

scheme represents both regions and their boundaries explicitly,
and makes the storing and indexing of their semantic properties
possible. In the following, a spatio-temporal similarity measure
is proposed, and the region merging strategy is introduced
using the spatio-temporal similarity measure.

l Compute 77s for all regions in F," J

1) Spatio-Temporal Similarity Measurezor region merg- v
ing, it must be determined which regions are merged to Merge the regions R, smaller than
their neighbors in terms of certain predefined criteria. A gi’;féfe;ilgbgfw::;g?t?;; Iﬁofa:‘;hiﬁz
spatio-temporal similarity is measured from a region under smallest,
consideration and neighbored regions for region merging. ¢
The spatio-temporal similarity SM consists of a temporal | RSz = RSz +10 |
similarity SM, and a spatial similarity SMand is given by

SM,; = aSM, + 3SM, 17)

where « and /5 are weighting factors. SMis the average
intensity of a region and measures the similarities against fg. 5. Region merging process.
neighbor regions in the current frame. On the other hand, SM

indicates the average sum of absolute differences between {952y 10 until the valukRnSzeachesMaxRnSzin Fig. 3(e),
successive frames, which measures the similarity of a regigiz merged spatial segmentation mask shows larger and more
under consideration in temporal dimension. For rigid motioBemantic regions. The small regions on top of the heads and

the regions of a moving object show temporal coherence geound the mother’s forehead are shown to be merged into the
another so the regions should be represented within a singlgr regions and the forehead region.

object region and could be easily distinguished from their
neighbored regions that are stationary. Since object motion |\ FusioN OF SPATIO-TEMPORAL SEGMENTATION
entails luminance change in intensity, the absolute difference AND TEMPORAL COHERENCE

corresponding to the moved regions shows generally larger

. . o .
values. Therefore, the temporal similarity $Mf a moving In_all spatial Segme”ta“‘;]” mask;” obtained frorr? the
region will exhibit larger values compared to its stationaryPalidl segmentation, each region represents coherence in

neighbored regions. So it could be a good discriminatH?htenS'ty_ a}nd motion. With thi fus(;or;] module thlat combines
distinguishing moving regions from stationary regions. the spatial segmentation mask and the temporal segmentation

2) Region MergingThe region merging process is depicte&na_Sk’ foreground regions are discriminated from background
in Fig. 5. As mentioned, the region merging is done ydegions, so yielding VOP’s for foreground and background,

ing a graph theory. As shown in Fig. 5, the small regionrgspectively._Tr_Ha partition_ of _the image into foreground and
that are smaller tham pixels are selected from the spatiaP@ckground is illustrated in Fig. 6.

segmentation mask after watershed detection. Each smaIThe .decision of foreground and bac_"grou!"d (FG/BG) is
region is then merged to its most similar region in terms Wade in two steps. First, FG/BG decision is made based

the spatio-temporal similarity measure §Mhat represents on combln_lng_the change detection masks with the spgt_|al
how a region is closer to a neighbored region. In othSegmentation in the current frame; second, the FG/BG decision

words, we compare the similarity measure SMf the region process is performed, based on region projection and tracking

under consideration with its neighbors. Then the region und8f© the current frame. The details of the FG/BG decision are
consideration is merged to the region where the diﬁeren@éplamed in the following two subsections.
between two similarity measures is smallest. This region .
merging process is repeated until no more small regiofis Foreground/Background Decision Based
smaller thann pixels do exist. on the Change Detection Mask

Fig. 3(e) illustrates a spatial segmentation mask after regionFirst, the spatial segmentation magk is superposed
merging. For the imageyx and 5 were set to 1.8 and 0.1,on top of the change detection mask CPlgbtained from
respectively. The maximum region sidaxRnSawas set to temporal segmentation between the preceding frde;
50, which yields a good performance for the region mergingnd the following frameF;. When the majority part of a
The valuen controls the amount of meaningful regions in @patially segmented regiaR,; ; is covered by the foreground
segmented image. We start the merging process with a regparts of CDM,, the whole region ofR:; ;. is declared as the
sizeRnSz= 10, and repeat merging iteratively with increasingoreground; otherwise the whole region &f; ;. is declared

Fr
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If the projected regioanrkOj covers most of the spatially
partitioned regioniz; ; in the current frame, the regioR; ;
is also declared as foreground. LE}pxo; - . . be the number

. ik Gk
of pixels within the union(RY;; N R; x) of the two regions
R and R; . A decision rule is defined as
N

RYZINR {2 7:FG

pP= (18)

Nr,, <7:BG
whereNg, , is the number of pixels ik, ;. If the value of P

is greater than or equal to a given thresholthe whole region
R; ;. is considered as foreground; otherwise background. The
FG/BG decision results based on the region tracking method
are shown in Figs. 6 and 7. The valuevas set to 0.9. That

Fo 6. Redion track 4 FG/BG decisionother & Daudht is, if more than 90% ofR; x is covered by the region union,
ooy sonedience. .1 is declared as foreground. The region tracking process
mask in the thirtieth frame; () FG/BG decision results with the chang@Nd FG/BG decision are performed for all foreground regions
Qetection mas_,k only in the thirty_-third frame; ((_j) spatial sggmen_tation m_ahﬁ F_q.

:2 tt?\??rllri:{;?r:ri?dfr:r?rﬁéénd (e) final segmentation mask with region tracking Fig' 6(a) indicates the previou_s final §egment:_:1ti_on masks in
which the foreground parts are filled with the original images
of the thirtieth frame for theMother & Daughtersequence.

as the background. This will be effective when object masl$ie corresponding spatial segmentation mask is shown in

do not cover the whole area of an object consistently throuiig. 6(b). The FG/BG decision result based on the CDM

time evolution. The resulting image is a labeled image imbtained between frame 30 and 33 is shown in Fig. 6(c). It

dicating foreground and background. In this case, the pacdsn be noticed that most of the daughter’s chest in frame 33

of the change detection mask exceeding the region boundanot detected as foreground with the CDM. This is because

(dashed line) are cut by the region boundary in the spatthle corresponding regions failed to be detected as foreground

segmentation mask. Furthermore, parts of the region unfilledthe CDM. Fig. 6(d) shows the spatial segmentation mask

by the foreground of the change detection mask in the spaiiaiwhich the regions that are foreground but declared as back-
segmentation mask are all declared as foreground within theund are gray-colored. In the region tracking, the regions

region. belonging to the foreground in Fig. 6(b) are projected onto
frame 33 and then matched with the regions in Fig. 6(d).
B. FG/BG Decision Based on Region Tracking Since the background regions in frame 33 are mostly covered

Second, historical attributes can also be taken into accounft their corresponding foreground regions in frame 30, their
FG/BG decisions. In generic video sequences, a moving obj&egions labeled as background are changed to foreground. The
often moves continuously through temporal evolution. That iénal segmentation mask is obtained as shown in Fig. 6(€).
a region that is a part of foreground in a frame is likely to bECT the Claire sequence, as shown in Fig. 7(d), almost all
a foreground in the next frame. Also, when an object mov&89ions in the chest part @laire remain as background after
slowly at a certain time instance, the temporal segmentati6?/BC decision with the CDM. However, they are declared
may fail to localize the object region because the intensiﬂﬁ foreground by incorporating the region tracking, which is
change due to motion is not significant. This insignificart’OWn in Fig. 7(e). _ _
intensity change introduces the missing probability problem Noticeé that when the scene change is detected, the region
of a hypothesis test. In other words, temporal segmentatifCKing is not incorporated in the foreground/background de-
methods based on a hypothesis test have the missing prdBgion at the scene change. That is, the foreground/background
bility (Type Il error) problem inherently. Therefore, a regiorfl€Cision is only made based on the change detection mask.
tracking method is incorporated to overcome the problem of
missing probability and to enhance the temporal coherence of V. EXPERIMENTAL RESULTS
thier?zviggi::ﬁi:jeg? :?E)?g;rr]c.)und region in the previous T_he spatio_—temp_oral segmentation described ha_s begn ex-
frame I._,. A polygon matching is used to track; s in perimentally investigated by means of comquer s!mulatlons.
the current framd.. The matching is done by computing anTWO test sequenceﬁ/,lothgr & Daughterand Claire with the .
intensity similarity as a matching criterion. This criterion comQCIF format (176x 144 pixel elements), have been used with
pares an average of absolute intensity difference®;in_; a reduced frame frequency of 10 Hz.
with those in the regions of the current frame. When the _
best matched region is found at a certain location Ry, A Temporal Segmentation
in Fy, R; 1 is projected on top ofz; ;. at the location to be  The temporal segmentation has been performed by testing
centered, which is called};”. the hypothesis established on variances between background
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144 147 150

156 159 162 165

(© (d) (e)

Fig. 7. Region tracking and FG/BG decisioBlaire sequence: (a) final
segmentation mask in the 147th frame; (b) spatial segmentation mask in 168 171 174 177
147th frame; (c) FG/BG decision results with the change detection mask Giny

in the 150th frame; (d) spatial segmentation mask in the 150th frame; (e) fi 9. Original imagesClaire with OCIF

segmentation mask with region tracking in the 150th frame. fﬁb ' iginal imagesClaire with QCIF.

j

(75, 78)

9

(81, 84) (84, 87) (87, 90) (90, 93)

. --. j
6 ' 9 1 - i (93, 96) (96, 99) (99, 102) (102, 105)
Fig. 8. Original imagesMother & Daughterwith QCIF. Fig. 10. Change detection mashkdother & Daughtersequence.

and locations under consideration. The test statistic (6) wasest of the daughter exhibits a little motion through the
used to test the hypothesis established on variance comparigmtire sequence. The hairs of the mother and daughter and
Figs. 8 and 9 show the original framesMbther & Daugh- Claire have sufficient textures while their closes have rela-
ter and Claire sequences from frame 72 to frame 105 antively simple and homogeneous textures. For the detection
from 144 to frame 177, respectively. Figs. 10 and 11 exhilof change in intensity, sufficient textures in moving objects
the corresponding change detection masks obtained betweémmage sequences make it easier for the intensity change
the pairs of two frames (one frame in a three-frame disletection. However, it is difficult to detect intensity change
tance with the other) over the frame range. The bright areasthe moving objects having simple and homogeneous tex-
indicate foreground, that is, parts of moving objects artdres.
the dark areas are background. The level of significamce In Fig. 10, it is observed that background parts (dark re-
was set to 1x 102 for threshold selection of testing thegions) of the change detection masks are not significantly
hypothesis. It can be noticed that foreground (mother adéturbed by salt and pepper noises (bright spots and small
daughter in Fig. 8 andClaire in Fig. 9) and background regions in the change detection masks). On the other hand,
are well distinguished in all the change detection maskfie moving objects (mother and daughter) are well covered
The characteristics of th¥other & Daughtersequence are by foreground parts (white regions) for the given significance
that the head of the mother has relatively larger motidavel o« = 1 x 1072, In Fig. 11, due to small motion of the
(mostly small rotation) but the chest part exhibits smadtihest part of Claire as in the mother and daughter, a large part
motion. This is the same in th€laire sequence. The whole of the chest region is declared as background.
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L P

(141, 144) (144, 147) (147, 150) (150, 153)

6

(153, 156) (156, 159) (159, 162) (162, 165)
(158, 168) (168, 171) (171, 174) (174, 177) 168 171 174 177
Fig. 11. Change detection masiGlaire sequence. Fig. 13. Spatial segmentation mask3aire sequence.

shows a good discriminating power between locations having
the intensities of pixels changed and locations having pixel
T, By 7 £ intensities unchanged between two consecutive frames.

G

Jahsidhi

B. Spatial Segmentation

While the change detection masks were computed from two
consecutive frames (the preceding and following frames), the
spatial segmentation is performed on the current frame. First,
the following images are simplified with an open/close by
reconstruction filter with a 5< 5 structuring element. The
resulting simplified images were used as inputs to the wa-
tershed algorithm. After watershed detection, oversegmented
regions smaller than 50 pixels were merged to neighbored
large regions.

For the Mother & Daughter sequence, the spatial image
partitions (spatial segmentation masks) are shown in Fig. 12.
Since background exhibits a simpler texture structure than
Fig. 12. Spatial segmentation maskéother & Daughterwith QCIF. those of the objects (mother and daughter) in Fig. 8, spatially

segmented regions of background in the merged spatial seg-
mentation masks are shown to be semantically well partitioned

Since the test statistic is computed as the ratio of a variangieer the region merging process. That is, the wall and couch
estimate of the pixel values in an observation window tat the daughter’'s side in background is represented almost
the variance estimate of background, the values of the test a single region through the frames, and a picture in
statistic are large when the center of the window passiame behind the mother and daughter and the frame were
through the insides of moving object regions in the framaiso partitioned, respectively. On the other hand, the whole
differences. For foreground in Fig. 10, Some parts in thebjects are partitioned into many regions due to their complex
Daughtefs chest and some parts of tiaughtets head are structures of textures. In addition to the complex structures,
not declared as foreground due to her small motion. Alsthe spatially segmented regions of the objects are slightly
in Fig. 11, large foreground parts @laire’s chest are not or significantly different frame by frame. This is because
detected between frame 144 and 147, between frame Jbject motion changes the structures of texture, and the
and 147, between frame 144 and 147, and between fralaminance of some parts of texture may change due to change
144 and 147. Relatively, the head part showing large motiam illumination angle. The structural change in regions of
is well identified as foreground. The small regions in ththe daughter is smaller than in that of the mother because
background were removed by median filtering with a sizte daughter's motion is relatively small while the mother
of 5 x 5 while the holes inside the foreground were filledomewhat moves. The regions of the mother’s face and neck
up in the change detection masks in a further processirgpow somewhat consistent structures, while some parts of
The test static used for computing the change detection makk mother’'s shoulder are shown to be changed due to some
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that correspond to foreground in the previous frame are cor-
rected to be foreground. Fig. 14 shows the final segmentation
results for Mother & Daughter It can be noticed that the
moving objects are well captured by the change detection
masks and the spatial segmentation masks precisely represent
the object boundaries. Some unfilled portions of the changed
regions in the change detection masks are also fully covered
by the region tracking. It is also observed that the unfilled
foreground regions (daughter’s right shoulder) in the change
detection masks from frames 84 to 91 are fully declared
as foreground via the region tracking. This improves the
segmentation performance of temporal coherence of moving
objects, especially when the objects move slowly for a certain
period of time frames. Fig. 15 shows the final segmentation
results for theClaire sequences. In spite of unstable results of

> 7 temporal segmentation, the final segmentation masks exhibit
96 99 102 105 nearly perfect separation between foreground and background

Fig. 14. Final segmentation masks with original images filled in the forvpy Incorporating the region traCkmg'
ground: Mother & Daughterwith QCIF.

VI. CONCLUSION AND DISCUSSION

An automatic VOP generation method for the support of
an object-based coding standard MPEG-4 has been presented
that continuously separates moving objects in image frames

144 147 150 153

through time evolution. The proposed method utilizes tem-
poral information for localizing moving objects and spatial

information for the acquisition of precise object boundaries

and semantic region partition. For the temporal, a statistical

hypothesis testing is proposed that allows for automatic local-

ization of moving object. The temporal segmentation method
156 159 162 165

does not suffer from required information (true mean and/or
variance values)a priori and predefined threshold values

depending on image types. The combination of the spatio-
temporal segmentation improves segmentation accuracy and
temporal coherence of moving object boundaries.

168 171 174 177

Unfortunately, image segmentation is recognized as an
ill-posed problem and still remains unsolved. In addition,
Fig. 15. Final segmentation masks with original images in the foregrounmPEG"“r assumes that VOP's in video are available prior
Claire with QCIF. to the encoding process. Therefore, real-time generation of
the VOP’s is a very attractive problem, and the accurate
warped parts of the cloth that cause changes in intensity fragfgmentation of high quality is required for high-level image
by frame. analysis such as object recognition, image understanding, and
For theClaire sequence, the spatial image partitions (spatigf€ne interpretation and is necessary for authoring multimedia
segmentation masks) are shown in Fig. 13. The backgrougentent, etc. When good segmentation performance becomes
and the parts of Claire’s jacket are homogeneous so that tigjievable in generic images and video, it will enrich the
are well partitioned into semantically meaningful regions. Theurrent MPEG-4 and MPEG-7 that is related to content-based
boundary shapes of the region partition vary in the parts fdexing and retrieval of multimedia data bases.
the left and right arms in different frames. This is because
small chest motion of Claire changes the wrinkle’s shape of REFERENCES
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