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Abstract 

In many conventional methods for change detection, the detections are carried out by comparing a test statistic, which 
is computed locally for each location on the image grid, with a global threshold. These ‘nonadaptive’ methods for change 
detection suffer from the dilemma of either causing many false alarms or missing considerable parts of non-stationary 
areas. This contribution presents a way out of this dilemma by viewing change detection as an inverse, ill-posed problem. 
As such, the problem can be solved using prior knowledge about typical properties of change masks. This reasoning leads 
to a Bayesian formulation of change detection, where the prior knowledge is brought to bear by appropriately specified 
a priori probabilities. Based on this approach, a new, adaptive algorithm for change detection is derived where the 
decision thresholds vary depending on context, thus improving detection performance substantially. The algorithm 
requires only a single raster scan per picture and increases the computional load only slightly in comparison to 
non-adaptive techniques. 
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1. Introduction 

The detection and accurate localization of inten- 
sity changes between subsequent frames of image 

sequences is a crucial issue for coding of moving 
video [lo, 21,301, in particular for region-oriented 
techniques [13,17,20], as well as for a variety of 
tasks in image analysis [S, 14,191. In any one of 

these applications, the purpose of change detection 

1 Dedicated to Prof. Dr.-Ing. Hans Dieter Liike on the occa- 
sion of his 60th birthday. 
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is to locate moving objects in the image plane by 
exploiting the fast temporal grey level variations 
caused by moving objects. To separate fast changes 
from slow drifts in intensity, which may e.g. be due 
to varying scene illumination, a highpass filtering 
operation is often carried out by subtracting sub- 
sequent pictures of the image sequence to be pro- 
cessed. 

An inherent difficulty when evaluating difference 
images is posed by the presence of noise, which 
gives rise to intensity changes covering moving 
areas as well as stationary ones. On the other hand, 
it is by no means certain that motion always causes 
perceptible temporal variations, as these are also 
dependent on the spatial grey level gradient 
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(cf. [16]). Change detection by thresholding test we first formulate change detection as a Bayesian 
functions computed from local samples of grey level estimation problem, and specify its main compo- 
differences thus suffers from the dilemma of either nents, viz. likelihood ratio and a priori probabilities. 
causing many false alarms or failing to detect con- From this formulation, decision rules and a proposal 
siderable parts of genuinely moving areas [S]. for a practical implementation will be derived. 

The reason for the poor operating characteristic 
of this approach is that local samples do not con- 
tain any information about the global properties of 
moving regions [6].’ Regions corresponding to 
moving objects tend to be of compact shape with 
smooth boundaries. Regions caused by false alarms 
almost never exhibit these properties, on the con- 
trary, they manifest themselves in irregular speckles 
spread randomly over the image plane. The main 
objective of this paper is to integrate this kind of 
prior information into change detection algorithms 
in order to distinguish better between ‘real’ changes 
and noise-related detection errors, thus allowing 
substantial improvements in detection performance 
to be achieved. In practice, this leads to the decision 
on whether a picture element is to be labelled as 
‘changed’ or ‘unchanged being made in context 
with other decisions regarding its neighbours (cf. 

ml). 

2. Change detection as a Bayesian estimation 
problem 

To find a formalism which allows the taking into 
account of prior knowledge about global region 
properties it is helpful to add change detection to 
the list of inverse problems of low level vision, 
which include edge detection, optic flow and sur- 
face reconstruction [7,25,26]. This reasoning leads 
to a Bayesian formulation for the problem of 
change detection, where our prior knowledge can 
be brought to bear by appropriately specified 
a priori probabilities. A tool well suited to the 
purpose of expressing our prior knowledge is for- 
med by Gibbs/Markov random fields, which in the 
past have been used with considerable success in 
a variety of image segmentation tasks [2-4, 121. 
Starting from this framework, we develop an adap- 
tive change detection algorithm, which, due to its 
non-iterative nature, is very attractive also from 
a computational point of view. In the next section, 

Let D = {d(k)) denote the grey level difference 
image, with d(k) = yr(k) - y2(k), where yl(k) and 
y2(k) are the grey levels at pixel location k of two 
subsequent pictures Y1 and Y2 of an image se- 
quence. The change mask Q consists of a binary 
label q(k) for each pixel k on the image grid. Each 
label q(k) either takes the value q(k) = u (‘un- 
changed) if the observed grey level difference d(k) 
supports the hypothesis that it is due to camera 
noise only (null hypothesis He), or the value 
q(k) = c (‘changed’) if the observed value of d(k) 
does not support this assumption (alternative hy- 
pothesis Hi). As a special case of a Bayesian esti- 
mate, we try to estimate the change mask Q such 
that its a posteriori probability Pr(Q 1 D) given the 
difference image D is maximized (MAP estimate). 

Let us for the moment assume that the values of 
the labels q(k) are known for all picture elements 
k except for one element i. Estimating Q then 
reduces to deciding between q(i) = u and q(i) = c. 
The change mask resulting from q(i) = u is denoted 
by Qt, and that produced by q(i) = c is termed Qi. 
The decision rule can thus be written as 

WQhlD) ; t 
Pr(QflD) 5 ’ 

(1) 

with t being a decision threshold. This notation 
means that the outcome of the decision is q(i) = u 
(‘unchanged’) if the left-hand side of (1) exceeds t, 
otherwise it is q(i) = c (‘changed’). For t = 1, this 
decision selects from the change masks QL and 
Qr that one with highest a posteriori probability. 
Using Bayes’ theorem, this decision rule can be 
rewritten as 

’ This difficulty thus also affects change detection algorithms 
which do not directly evaluate grey level difference images, like 
[18,23], since they suffer from the same problem of looking at 
local samples only. 

ADlQ;) ; t WQi) 
po-5 Pr(Qt)’ 
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where p(D 1 Q) denotes the conditional probability changed areas typically exhibit differences of large 
density of the observed difference image D given magnitude, the variance af is much larger than the 
a change mask Q, which acts as the likelihood variance ai caused by noise; estimates yield 
function for Q. Pr(QL) and Pr(Qr) are the a priori a: > lOOa& The above decision rule can now be 
probabilities for QL and QL, respectively. rewritten as 

We now assume that the grey level differences 
d(k) are conditionally independent, i.e. P(D(Q) = 
IIIk P(d(k)lq(k)). This assumption is certainly justi- 
fied in unchanged areas, where the observed differ- 
ences are regarded as being caused by camera noise 
only. Grey level differences in changed areas, how- 
ever, are correlated [ll], so that, at a first glance, 
they may not be assumed as independent. Never- 
theless, we found that for the purpose of change 
detection, these statistical dependencies can in 
practice be neglected without perceptible deteriora- 
tion in detection performance. Experimental evid- 
ence supporting this view is given in Appendix A. 
With this assumption, (2) can be simplified to 

exp{ -f(l -$)@} $ I(zr.$!$, (5) 

with z being the normalized square sum of grey 
level differences d(k) inside Wi, i.e. 

(6) 

N, denotes the size of the window wi in picture 
elements. 

As a; >> a& the fraction ag/a: may be dropped in 
(5). Taking the logarithm on both sides of (5) yields 

P(d(WcJ) ; t WQk) 
P(WH,) : Pro’ 

with p(d(i)lHj) denoting the likelihoods for the 
hypotheses Hj,j = 0, 1, with respect to pixel i. 

To make the detection algorithm more reliable, 
the decision to be taken should not be based on the 
grey level difference d(i) at pixel i only, but on 
a local sample di comprising several differences d(k) 
(see e.g. [S, p. 1681). The sample di is conveniently 
formed from the differences d(k) lying inside a small 
sliding window Wi centred at location i. To incor- 
porate the sample into the detection approach, (3) 
is slightly modified to 

P(dilHo) ; t WQt) 
P(dilH1) 5 W’ (4) 

In contrast to (3) this rule decides on whether or 
not the null hypothesis can be accepted based on 
the entire sample di = {d(k)lk E wi}. 

To convert (4) into a practical decision rule, 
assumptions must be made for the conditional 
densities p(d(k)(Hj), j = 0, 1, as well as for the 
a priori probabilities. Commencing with 
p(d(k)lHj), we assume the grey level differences to 
obey zero-mean Gaussian distributions with vari- 
ances a; and a: for H, and H1, respectively. As 

z$ _2ln t a0 
NW 

[( )I + 21n WQt) 
u 4 Pr(QS)’ (7) 

The decision threshold on the right-hand side of 
(7) consists of a fixed portion tS, which is indepen- 
dent of Qt and Qt, and of a portion which depends 
on the logarithm of the a priori probabilities of the 
solutions. If QL has higher a priori probability, the 
logarithm is positive and raises the threshold, thus 
biasing the decision in favour of q(i) = u, as int- 
ended. Conversely, Pr(Qt) < Pr(Qf) results in a de- 
creased threshold, hence favouring q(i) = c. 

2.1. Non-adaptive change detection 

Let us suppose for the moment that we have no 
prior knowledge with respect to the expected 
change masks. We thus have no information about 
which one of the two possible change masks, QL 
or Qf, has higher a priori probability. This can 
be expressed mathematically through Pr(Qi) = 
Pr(Qt). Correspondingly, the rightmost logarithm 
of (7) vanishes, depriving the decision threshold of 
its adaptivity. What remains is the global decision 
threshold &. Instead of specifying t, in terms of ao, 
a1 and t, as indicated in (7), it is more practical to 
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couple t, to the rate c( of false alarms associated 
with the test. As the normalized square sum 

1, given the null hypothesis HO, is known to obey 
a x2 distribution with N, degrees of freedom, the 
threshold t, can be determined from 

Pr(@ > t,lH,) = c(, (8) 

once an acceptable false alarm rate CI has been 
chosen. This procedure is termed a significance test 
&?8,29,5], with the false alarm rate a being called 
the significance. As no prior knowledge is brought 

to bear, the resulting non-adaptive technique is 
associated with the plight of either missing con- 
siderable parts of moving objects or producing 
many false alarms. Figs. l-3 show original se- 
quences, which are used as examples to demon- 
strate this behaviour in Figs. 4 and 5. For this 
experiment as well as for the following investiga- 
tions, a window of size 5 x 5 pixels, i.e. N, = 25, 
was utilized throughout. 

The choice of an appropriate false alarm rate LX is 
often not guided by mathematical considerations 
only, but depends also on the consequences the two 

Fig. 1. First and third frame (256 x 256 pixels) of a speaker sequence. 

Fig. 2. Two subsequent frames (256 x 256 pixels) of a traffic scene. 
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Fig. 3. Portions of size 256 x 256 pixels from frames no. 80 and 8 1 of the sequence Miss America. 

Fig. 4. Change masks obtained from Figs. 1 and 2 using the test statistic 2, a = lO-‘j, t, = 74.5. While the background is nearly error 
free, considerable portions of the moving objects could not be detected. (The blocky regions marked as changed in the background of the 
traffic scene are caused by pixel digitization errors which occurred during original image acquisition. These errors appear in difference 
images as differences of large magnitude.) 

possible types of errors, false alarms and misses, 
incur. In image coding, false alarms cause an in- 
creased data rate, whereas a miss causes visible 
image quality degradations. From an image quality 
point of view, one would therefore prefer higher 
values for a, as in Fig. 5 (cf. also [S]). 

Let us briefly note that employing Laplacian 
distributions to model the conditional densities 
p(d(k))Hj) of the grey level differences, as proposed 

e.g. in [9], leads to a very similar framework (see 

[ 1,5]). In this case, the local square sum g is to be 
replaced by the absolute sum 

&=2fi I (9) F k; IWI, 

which, given the null hypothesis, obeys a x2 
distribution with 2N, degrees of freedom. The 
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Fig. 5. Change mask obtained from Fig. 3 using the test statistic 

$, LX = lo-*, t, = 44.3. Due to the higher CI, there occur numer- 
ous detection errors in the background. 

performance of the detection algorithm 

nearly unaffected by the choice between 
di (Cf. also [31]). 

remains 

$ and 

2.2. The a priori probability 

The change masks shown so far emphasize the 
already mentioned opposite properties of regions 
corresponding to moving objects and regions due 
to detection errors: while objects tend to manifest 
themselves in compact regions of preferably 
smooth shape, detection errors typically appear as 
small, scattered regions. By specifying the a priori 
probability such that smooth regions are more 
probable to occur than irregular ones, these prop- 
erties can be exploited to improve the detection 
performance of change detectors in moving areas 
while simultaneously suppressing false alarms in 
stationary background. An expression well suited 
for the a priori probability can be found by describ- 
ing the change masks as samples from two-dimen- 
sional Gibbs/Markov random fields. The a priori 
probability is then given by 

Pr(Q) = h exp{ - E(Q)), 

with 2 being a normalization constant. E(Q) is 
a so-called energy term, which assesses the state of 
the change masks Q. In analogy to statistical phys- 
ics where this model has its origin, Eq. (10) favours 
states of low energy. Consequently, E(Q) should be 
specified such that the energy is low when the 
regions occurring in Q exhibit smooth boundaries, 
whereas irregular speckles should result in in- 
creased values for the energy. 

The smoothness of region shapes can be evalu- 
ated by considering the so-called border pixel pairs 
that are associated with a change mask Q (see e.g. 
[12,22]). A border pixel pair is a pair of horizon- 
tally, vertically or diagonally directly adjacent im- 
age points, which is situated across the boundary 
between a changed region and an unchanged one. 
This implies that both pixels of each border pixel 
pair carry different labels. As shown in e.g. [ 12,221, 
the number of border pixel pairs occurring in 
a change mask is low for smoothly shaped regions, 
whereas the occurrence of small and wriggled re- 
gions results in a steep increase of the number of 
border pixel pairs. Accounting for horizontally or 
vertically oriented border pixel pairs and diago- 
nally oriented ones separately, the energy E(Q) can 
be specified as 

E(Q) = nBB + ncC, (11) 

where nB denotes the number of horizontal or verti- 
cal border pixel pairs, and nc the number of diag- 
onal ones. The constants B and C are the so-called 
potentials, which, when positive, incur an energy 
increase for each border pixel pair present in 
a change mask Q. Combining (11) with (10) leads to 
an expression for the a priori probability which 
favours the occurrence of smooth regions. 

For the derivation of a practical decision rule, it 
is important to note that deciding between QL (i.e. 
q(i) = u) and Qt (i.e. q(i) = c) affects only eight pixel 
pairs, as illustrated in Fig. 6. Thus, the energy E(Q) 
can be split into a global component EG, which 
assesses all border pixel pairs except those to which 
pixel i belongs, and a local component EL(q(i)), 
which comprises only those border pixel pairs to 
which pixel i belongs. The local energy contribu- 
tion depends on how many of the eight pixel pairs 
depicted in Fig. 6 are border pixel pairs. Let us 
denote the number of horizontal or vertical border 
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pixel pairs inside this neighbourhood with v&(i)), 
and the number of diagonal border pixel pairs with 
v,(q(i)). As there are four horizontally or vertically 
oriented pixel pairs and four diagonally oriented 
ones, both these numbers range between zero and 
four. The local energy contribution is then given by 

&.(q(i)) = v&(i)) B + v&(i)) C? (12) 

with E(Q) = EG + E,(q(i)). Inserting (lo)-(12) into 
the decision rule (7) results in 

$ $ t, + 2(EL(q(i) = c) - E,(q(i) = u)), (13) 
u 

where E,(q(i) = c) and E,(q(i) = u) denote the 
values the local energy EL(q(i)) takes when q(i) = c 
and q(i) = u, respectively. Writing &(q(i)) explicitly 
for these cases, we get 

z $ t, + 2[(v,(q(i) = c) - vB(q(i) = u)) B 
u 

+ (vc(q(i) = c) - v&q(i) = 4)Cl. (14) 

Exploiting the fact that the labels q(k) can only take 
binary values, the decision rule may be further 
simplified. If q(i) = c, the number vB(q(i) = c) is 
identical to the number m;(i) of pixels which border 
i horizontally or vertically and carry the opposite 
label u (see Fig. 6). Conversely, v,(q(i) = u) is identi- 
cal to the number m;(i) of direct horizontal 
or vertical neighbours of i with label c. Similarly, 
v&q(i) = u) and v&q(i) = c) are equal to the 

Fig. 6. Left: The eight pixel pairs examined by the local energy 
&(4(i)), depicted as black bars. Each pixel pair is marked with 
the potential B or C it incurs on &(q(i)) if it is situated across 
a boundary. Right: Situation depicted for decision rule (16): mfi(i) 
denotes the number of shaded pixels carrying the label c (poten- 
tial B), and m;(i) is the number of nonshaded pixels with label 
c (potential C). 

numbers m:(i) and m:(i) of diagonal neighbours of 
pixel i with label c and U, respectively. Since 

m:(i) + m:(i) = 4, m:(i) + m:(i) = 4, 

decision rule (14) can be expressed as 

(15) 

2 $ t, + 8(B + C) - 4(mi(i)B + mg(i)C) 
u 

= t*(mi(i), m>(i)). (16) 

The threshold t*(m$(i), m:(i)) thus adapts to the 
label constellation in the neighbourhood of the 
considered pixel i. The higher the numbers m;(i) 
and m:(i) of changed neighbours, the lower is the 
value of the threshold, hence increasingly favouring 
the decision q(i) = c. The lowest value for the thre- 
shold is t^(4,4) = t, - 8(B + C), and the highest one 
is $0, 0) = t, + 8(B + C). If m;(i) = m:(i) = 2, there 
are as many changed as unchanged neighbours, 
and the threshold reduces to $2,2) = t,. As the 
fixed portion t, of the threshold thus lies in the 
centre of the range covered by the threshold vari- 
ation, we term t, the ‘anchor threshold’. 

3. Implementation: non-iterative multiple-threshold 
algorithms 

The derivation given so far started with (1) on the 
presupposition that the labels q(k) in the neigh- 
bourhood of the pixel i to be processed are known. 
In practice, this is naturally not the case. A possible 
way out of this dilemma would be to determine an 
initial change mask with a fixed, non-adaptive thre- 
shold which is then refined iteratively (cf. [S]). 
When working on an image sequence, however, the 
computational burden of iterative postprocessing 
can be avoided by exploiting the similarity between 
subsequent frames of the sequence and the corres- 
ponding similarity between subsequent change 
masks. As an example, we examine the computa- 
tion of the change mask Q for the nth frame of an 
image sequence, where the image grid is scanned 
pixel by pixel from its upper left to its lower right 
corner. At this instance, the change mask 
R = {r(k)} for the previous frame n - 1 has already 
been determined. When processing pixel i, the 
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labels q(k) of its neighbours situated to the left and 
above have already been established (causal neigh- 
bourhood, shown shaded in Fig. 7). The labels q(k) 

of pixels situated in the non-causal portion of the 
neighbourhood are not yet known. The unknown 
section of the label constellation is therefore ap- 
proximated by labels r(k) taken from the previous 
change mask R. For a practical implementation it 
is important to note that this situation, depicted in 
Fig. 7, emerges automatically while replacing the 
old labels r(k) successively with new ones during 
the determination of Q. 

Given the potentials B and C and a significance 
CI, the threshold $mi(i), m:(i)) can be determined in 
advance for all possible combinations of m;(i) and 
m:(i), and stored in a look-up table. Since a poten- 
tial can be regarded as a measure of interaction 
energy between two pixels of a border pair, which is 
inversely proportional to the squared distance 
between the pixel centres, the potentials may be 
related by C = B/2. Based on CI = 5 x 10m4, we 
obtain for the square sum an anchor threshold of 
t, = 55.1 via a X2-distribution of N, = 25 degrees of 
freedom. Choosing B = 3 and C = 1.5 yields the 12 
additional values for the threshold $&(i), m>(i)) 
given in Table 1. The highest threshold value is 
$O,O) = t, + 8(B + C) = 91.1, and the lowest one is 
t*(4,4) = t, - 8(B + C) = 19.1. 

The decision threshold on the right-hand side of 
(16) can as well be used in connection with the 
absolute sum ai given in (9). In this case, a x2- 
distribution with 2N, = 50 degrees of freedom 
has to be employed to establish the anchor thre- 
shold t,. The same significance of cI = 5 x 10m4 then 

Fig. 7. Pixel i to be processed and its 3 x 3-neighbourhood, 
subdivided into a causal portion (shown shaded), and a non- 
causal one. When working on pixel i, the new labels q(k) of its 
causal neighbours have already been determined, while pixels in 
the noncausal neighbourhood still carry ‘old’ labels r(k) from the 
previous change mask R. 

Table 1 
Decision thresholds resulting from (16) for a = 5 x lo-“ and 
N, = 25. The potentials were chosen to B = 3 and C = 1.5 for 

the square sum G, and to B = 5 and C = 2.5 for the absolute 
sum & as given in (9) 

t*(m’,(i), m;(i)) 2 a 

$, 0) 91.1 149.6 
t*(O, 1) 85.1 139.6 

i(O,2), i(l,O) 79.1 129.6 
i(O,3), i(l,l) 73.1 119.6 

$I 4), i( 1,2), t^(2,0) 67.1 109.6 
t*( 1>3), t^(2,1) 61.1 99.6 

t*(L4), i(2,2), F(3,O) 55.1 89.6 
$2,3), i(3,l) 49.1 79.6 

i(2,4), i(3,2), i(4,O) 43.1 69.6 
i(3,3), i(4,1) 37.1 59.6 
i(3,4), i(4,2) 31.1 49.6 

t*(4,3) 25.1 39.6 
t*(4,4) 19.1 29.6 

yields t, = 89.6. Since the anchor threshold is in this 
case higher than that one obtained for the square 
sum, the potentials should be chosen higher as well 
in order to achieve the same relative threshold 
variation. With B = 5 and C = 2.5, the thresholds 
given in the right-most column of Table 1 result. 

The above values for the potentials B and C were 
determined based on trials, with visual examination 
of change detection results. It also turned out that 
the precise parameter values are not critical, and 
the given threshold tables were used to process all 
our test sequences. 

Deciding on each label q(i) now reduces to the 

computation of the test statistic (square sum g or 
absolute sum bi) followed by a count of changed 
pixels in the 3 x 3-neighbourhood. The appropriate 
decision threshold can then be retrieved from 
Table 1. Through the normalization of the test 
statistics with the noise variance ai or the noise 
standard deviation co, the given threshold values 
remain valid for sequences with different noise 
levels. In practice, the noise level introduced by the 
actual camera system in use can, for example, be 
estimated in advance, or recursively from un- 
changed regions of the sequence being processed 
[30, p. 2021. 

A further simplification of the algorithm is pos- 
sible by choosing B = C. In this case, there is no 
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Table 2 
Decision thresholds resulting from (17) for a = 5 x lo-’ and 

N, = 25. The potential was chosen to B = 2.25 for 2, and to 
B = 3.75 for & 

i(mc(i)) yQ & 

30) 91.1 149.6 

f(l) 82.1 134.6 

E(2) 73.1 119.6 

i(3) 64.1 104.6 

i(4) 55.1 89.6 

t*(5) 46.1 74.6 

t(6) 37.1 59.6 

i(7) 28.1 44.6 

t(8) 19.1 29.6 

more need to discriminate between horizontal/ver- 
tical and diagonal adjacent pixels in the neighbour- 
hood when counting changed pixels. The bivariate 
decision rule (16) then reduces to a univariate one: 

z $ t, + 16B - 48&(i) = t*(m’(i)), (17) 
U 

where m’(i) is the number of all changed pixels in 
the 3 x 3-neighbourhood of pixel i. As m’(i) varies 
between zero and eight, the number of different 
threshold values has diminished from 13 in Table 1 
to only nine. In order to obtain the same minimum 
and maximum thresholds as in Table 1, the remain- 
ing potential B should be adjusted to the mean of 
the values given above, i.e. B = 2.25 for the square 

sum and B = 3.75 for the absolute sum. The result- 
ing threshold values are shown in Table 2. Even if 
not quite in agreement with the above interaction 
energy interpretation, the simplified threshold ar- 
ray was in practice found to produce results nearly 
identical to those obtained from the bivariate rule 

(16). 
For applications in block-oriented image coding 

it often suffices to carry out change detection block- 
wise instead of pixel by pixel. Our algorithm can 
easily be modified towards this end by simply replac- 
ing each pixel, as depicted e.g. in Figs. 6 and 7, by 
a block (‘macro-pixel’). Doing so offers another pos- 
sibility to save considerably on computation time, at 
the expense, however, of spatial resolution. If the 
spatial support of the window wi from which the test 
function is computed remains unchanged, threshold 
Table 1 or Table 2 can still be used, otherwise, new 
look-up tables have to be determined.* 

4. Results 

Fig. 8 shows two change masks computed by 
the multiple-threshold algorithm for the speaker 
sequence from Fig. 1. Here, the threshold values 
from Table 1 were used in connection with the 

’ For blocks of size 8 x 8 pixels which are often used in block- 
oriented coding, we have N, = 64. For a = 5 x 10e4, this results 

in t, = 108 for the square sum z, and t, = 187,3 for the abso- 
lute sum &. 

Fig. 8. Change masks for frames no. 5 and 7 of the speaker sequence. The test statistic used was the normalized square sum 2 in 
connection with the 13 thresholds from Table 1. The changed areas above the person’s right shoulder are caused by moving shadow. 
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normalized square sum $. The camera noise level 
was estimated to a; = 4. A comparison with the 
left-hand change mask from Fig. 4 makes the dis- 
tinctive improvement in detection performance of 
the adaptive approach evident: false alarms in the 
background and ‘holes’ in the region corresponding 
to the moving person are both considerably re- 
duced. A more detailed inspection reveals further- 
more that the boundaries between changed and 
unchanged regions are now much smoother than in 
Fig. 4. This behaviour agrees well with the prior 
expectations expressed through the Gibbs/Markov 
model. 

The same applies to the results depicted in Fig. 9, 
which are obtained from the traffic scene of Fig. 2. 
In this sequence, the noise level is much higher than 
in the previous one, and estimated at ai = 27. The 
change masks in the first row of Fig. 9 emerged 
from the full range of thresholds in Table 1 being 
used in connection with the absolute sum Bi (9). 
The background now exhibits no false alarms at all, 
while the region detected as changed covers nearly 
the entire car, with only a very small number of 

holes present. The change masks in the second row 
of Fig. 9 illustrate the performance of the simplified 
decision rule (17): here, only the nine threshold 
values of Table 2 were employed. The nearly identi- 
cal results confirm that in practice the simplified 
version of the adaptive change detector may indeed 
be used. 

Finally, Fig. 10 shows four change masks com- 
puted from frames nos. 82, 84, 86 and 89 of the 
sequence Miss America. When comparing these 
results to that given in Fig. 5, the performance 
improvements achieved by the adaptive algorithm 
become strikingly evident: in contrast with Fig. 5, 
the background is now virtually free from detection 
errors, while at the same time the sporadic holes in 
the moving person have diminished. Test statistic 
and parameters were the same as those for Fig. 1. 
The noise level was estimated to af = 4. 

A few words are in order here on how to treat the 
first frames of a sequence. In this case, no previous 
change mask R is available, so that we have to start 
with only a single threshold. Most reasonable 
seems using the lowest threshold value from the 

Fig. 9. First row: two change masks for the traffic scene from Fig. 2, obtained with the thresholds from Table 1. Second row: change 
masks for the same frames as above, but obtained using only the nine thresholds given in Table 2. 
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Fig. 10. Change masks for frames no. 82,84,86 and 89 of the sequence from Fig. 3. Test statistic and parameters as in Fig. 8. 

employed look-up table (Table 1 or Table 2), or the 
anchor threshold t, (i.e. t*(2,2) or t*(4)). This choice 
usually results in an increased false alarm rate in 
the beginning, which, however, due to the erratic 
behaviour of these detection errors, vanishes quick- 
ly. Note that, when each frame is for instance scan- 
ned from its upper left corner to its lower right, 
those labels termed q in Fig. 7 are available in each 
neighbourhood of already the first frame, so that the 
algorithm starts adapting to the scene with the very 
first pixel ‘seen’. The entire adaptation phase is usu- 
ally completed ‘after one or two frames only (In 
Fig. 10, for example, we started processing with frame 
no. 81. As can be seen, the adaptation is already 
nearly complete at frame no. 82). When an (undetec- 
ted) scene cut has occurred, adaptation to the new 
image content may take a frame or two more. 

5. Discussion and conclusions 

The described method of change detection 
was developed from a Bayesian point of view, 

specifically from the framework of MAP estima- 
tion. There are, however, two main reasons why the 
change masks obtained by our algorithm are not 
strictly MAP estimates given the difference images 
D: firstly, the algorithms are of deterministic nature. 
Thus, they almost certainly do not find the global 
optimum of the posterior probability, but only a 
local one. Additionally, one could at least theoret- 
ically think of scanning the image grid several times 
for each frame until convergence is reached instead 
of only once. This reasoning may hold in particular 
for the first frames of a sequence, as otherwise 
generally good initializations for the optimization 
procedure are given by the previous change mask 
R. It turned out, however, that in general a single 
scan is sufficient to obtain a stable change mask. 
This is at least partly due to the fact that change 
detection as a binary segmentation problem pos- 
sesses a much smaller solution space than other 
inverse problems of low level vision, which is why 
the optimization is comparatively less difficult. 

The second main reason why the algorithms 
do not yield strict MAP-estimates is the way the 
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anchor threshold t, is determined. As shown in (7), but produces greatly improved results. Considering 
the anchor threshold t, depends on the threshold that change masks generated by the described ap- 
t which must be equal to one in order to obtain proach almost never need to be postprocessed, 
MAP estimates. For practical reasons, however, the computational costs necessary to perform our 
t, is determined depending on a prespecified level ~1. algorithm may even be less than those required for 
The resulting value for t, is generally not consistent conventional non-adaptive thresholding followed 
with t = 1. This inconsistency, however, does not by morphological postprocessing. Even when, in 
affect the Bayesian reasoning underlying our con- case of excessively noisy images, postprocessing is 
siderations, as it only modifies the form of the necessary, it will consume less computation time 
Bayes risk subject to which the estimation is carried and produce better results for change masks ob- 
out. (For MAP estimation, the Bayes risk is based tained by the proposed algorithm due to the lower 
on a zero-one loss function [28,24,1]. ) number of errors in these masks. 

An earlier context-adaptive technique of change 
detection for image coding is ‘thresholding with 
hysteresis’ described in [lo], where decision logic 
favours change once previous changes have occur- 
red. Compared to that method, our approach puts 
adaptive change detection on a more mathematical 
basis. Also, for each pixel the dependence of the 
outcome of the decision process on the grey level 
differences d(k) is simpler and more direct in our 
approach, since the method in [lo] first determines 
a set of preliminary binary decisions, which are 
then combined to find the final decision. Another 
point where ourmethod differs from that of [lo] is 
that its method, unlike the one being described 
here, requires the computation of two test functions 
from the grey level difference samples, one of 
which emphasizes the effects of edges moving 
horizontally, while the other one enhances the sig- 
nal-to-noise ratio of flat, moving areas. 
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Another Bayesian approach to change detection 
has been published in [27]. The resulting tech- 
nique, however, consists of three processing stages 
(grey level difference thresholding, ML classifica- 
tion and MAP estimation). Of these stages, the last 
one is solved iteratively by the ICM algorithm, 
requiring several raster scans instead of only one as 
in our method. 

Appendix A 

A final important point is that, unlike mor- 
phological postprocessing operations such as 
median filtering or small region elimination, the 
approach described here does not force the solu- 
tions to comply with the prior knowledge at any 
price, but only encourages the emergence of change 
masks with the mentioned properties. In compari- 
son with non-adaptive methods, our algorithm in- 
creases computational requirements only slightly, 

Assuming the grey level differences as being stat- 
istically independent given the alternative hypo- 
thesis H1, as done in Section 2, is clearly a strong 
simplification of the situation actually encountered 
in changed areas, which neglects the correlations 
definitely present in these areas (cf. [ll]). Hence, 
test functions like local square sum or absolute sum 
lead to only suboptimal evaluation of each local 
sample di [S, p. 1681. In accordance with [ 151, how- 
ever, we argue here that significant improvements 
can be achieved by taking into account context 
rather than by trying to further optimize methods 
of sample evaluation. To support this view experi- 
mentally, this section examines what can be gained, 
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Fig. 11. Change masks obtained using the test statistic (A.2) evaluating correlations in connection with a fixed threshold value of 

t = 7, 5. 

if anything, by a modified test function, which esti- 
mates and evaluates the correlation function of the 
grey level difference process. The correlation func- 
tion between two differences separated by the dis- 
placement T is estimated by 

i&(T) = $ c d(k)d(k + T), 
w kcw, 

(A.11 

with N, being the size of the window wi in pixels. 
Note that z = (0, 0) leads to the local square sum, 

i.e. $i(O, 0) = o$/N,,,z. Our modified test function 
is formed by summing the magnitudes of estimated 
correlations according to 

64.2) 

with the sum covering the set of displacements 

given by N, = {(O,O), (O,l), (LO), (1,1), (- Ll)}. 
The idea behind this approach is to exploit the 
correlations in changed areas for better separation 
from unchanged areas, where the differences d(k) 
may well be assumed as independent. Change 

masks obtained by comparing &i with a non-adap- 
tive threshold are depicted in Fig. 11. Both these 
results were computed with the same threshold, 
with its value adjusted such that the background is 
nearly free of false alarms. A comparison with the 

results produced using the test statistic $ (Fig. 4) 

shows that there are at best minor improvements. 
In particular, performance in critical areas like the 
speaker’s forehead in Fig. 4 has remained un- 
changed. Although no proof in the strict mathemat- 
ical sense, these experiments strongly support the 
assumption that (carefully) neglecting certain prop- 
erties of the difference data is only a minor ‘offence’ 
compared to ignoring global properties of the 
expected solutions. Further evidence corroborating 
this reasoning can be found in [l]. 
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