
OWL-S: Semantic Markup for Web

Services

Tesseris George
(Postgraduate)

Baryannis George
(Postgraduate)

Computer Science Department

 University of Crete

CS566 Internet Knowledge Management Page 2

Table of Contents

Table of Contents ... 2

Introduction .. 3

1. Syntactic Description Limitations .. 4

2. Motivation behind ontology languages .. 5

3. OWL-S ... 6

3.1 Service Profile .. 7

3.2 Service Model... 18

3.3 Service Grounding.. 27

4. Why OWL instead of RDFS... 36

5. Summary .. 37

6. Bibliography ... 37

CS566 Internet Knowledge Management Page 3

Introduction

Web Services have enhanced the current Web by providing a new level of

functionality. Nowadays, Web can be viewed not only as a distributed source of information,

but also as a distributed source of services.

According to W3C, a Web service is a software system designed to support

interoperable machine-to-machine interaction over a network and it has an interface

described in a machine-processable format (specifically WSDL). Web Services Description

Language (WSDL) specifies a protocol and encoding independent mechanism for Web

Service providers. It is an XML vocabulary which describes network-reachable services and

maps these to a messaging-capable collection of communication endpoints. Although it is

capable to describe the means of interacting with offered services, it does not contain the

expressiveness needed to describe the web service capabilities and requirements in an

unambiguous and machine understandable fashion. Current research efforts aim to provide

semantic descriptions of web services by using conceptualized knowledge, called ontology.

An ontology is a vocabulary for describing a set of concepts within a domain (a domain is

defined as a specific subject area or area of knowledge) and the relationships that exist

between those concepts. It is used to reason about the properties of that domain, and may be

used to define the domain. In the context of Web Services, ontologies figure prominently as a

way of providing semantic descriptions for Web Services which can be used by web

applications and intelligent agents.

The augmentation of Web service descriptions leads to what it is called Semantic

Web Services. The semantic description of Web Services in an unambiguous and machine-

understandable manner will have a great impact in areas such as e-Business, and Enterprise

Application Integration, as it can enable dynamic, scalable and cost effective collaboration

between different systems and organizations. These great potentials have made Semantic

Web Services nowadays one of the most relevant research topics.

The outline of this report is as follows. Section 1 presents the limitations in the

current standard models used to describe Web Services. The motivation behind Semantic

Web Services is described in Section 2. Section 3 is a complete and thorough analysis of the

CS566 Internet Knowledge Management Page 4

OWL-S ontologies while the following Section depicts the advanced features of OWL (in

comparison with RDFS) that make it a suitable ontology language for semantic Web Service

description. Finally, Section 5 concludes.

1. Syntactic Description Limitations

WSDL describe web service capabilities by defining parameters and operations that

the service supports and associating parameters with abstract data types. Consider a currency

converter service from US dollars to Euros named ConvertDollarsToEuros. The service

specifies one input parameter named dollars of type float and one output parameter named

euros of the same type (Table 1-1). To invoke the service the amount on money in dollars

given and the converted amount of money is returned.

ConvertDollarsToEuros

 Type Parameter Name

Input Float Dollars

Output Float Euros

Table 1-1 Currency Converter Example

The problem with this description is that agents, which are programs that act on the

behalf of their owner (human or other program), can not deduct what the service does.

Agents see only parameter names and cannot, deduct their meaning by reading the names, as

humans can. The only thing that agents can infer is that the parameters are of type float. But

what does a service do if it requests a float and outputs a float? Two services can have the

same syntactic description but perform completely different functions. Similarly, two

syntactically different services can compute the same function. For example, one service can

expose the individual parameters separately, while another one packages them in an XML

document. Syntactically these two services are very different but it is possible to compute the

same function. WSDL describes only the functional and syntactic aspects of a service. It does

CS566 Internet Knowledge Management Page 5

not provide behavioral or non-functional information of services. This has as result tasks

such as discovery, invocation, composition and interoperation of web services not to be

automated because a computer-interpretable description of the service is needed.

In order to address the above issue, research community has proposed Semantic

markup of Web Services using ontologies. The following section describes in detail the tasks,

which ontologies aim to enable.

2. Motivation behind ontology languages

Ontologies, such as OWL-S, in order to lead web services to their full potential, aim

to enable primarily three tasks, automatic web service discovery, automatic web service

invocation, automatic web service composition and interoperation.

Automatic web service discovery is an automated process for locating web services

that provide a particular functionality and that adhere to requested properties. To provide

such an automatic location, the discovery process needs not only a matching algorithm to

match the respective descriptions, but also a language to declarative expresses the

capabilities of services. For example, if a user wants to find a service that sells air tickets

(service capability) between two given cities and accepts a specific credit card (both

constrains) the task must be performed manually using a search engine and then determine if

the service found satisfies the constrains.

Automatic web service invocation is the autonomous execution of a web service,

given that a corresponding web service has been found, without any human interaction. For

example, if the execution of the service includes multiple steps, the agent needs to know how

to interact with the service in order to complete the required sequence. Invocation

information presented by a given service must be agnostic in principle with respect to the

specific technologies which will ground it. Nevertheless, details must be available at run-time

for the service requester in order to perform a real invocation.

Automatic web service composition and interoperation is the combination and

interoperation of several web services to fulfill a certain objective. For example, a travel

agency wants to provide a full travel package to its customers. This Service might be

composed of several individual Web Services, such as Book a Hotel, Book a Flight, Book a

Car etc. In the following sections OWL-S is presented.

3. OWL-S

OWL-S (previously called DAML-S) stands for Web Ontology Language for

Services and it is an OWL ontology/language to formally describe Web services. It comprise

three main subontologies as illustrated in figure 3-1, known as the service profile, service

process model, and service grounding.

Figure 3-1 OWL-S Subontologies

This structuring of the ontology aims to provide three essential types of knowledge

about a service. The service profile subontology is used to describe what the service provides

for the prospective clients. This information is used to advertise the service, construct service

requests and perform matchmaking. The service process model describes how a service

works in order to enable invocation, enactment, composition, monitoring and recovery.

Finally, the service grounding specifies how to access the service by providing the needed

CS566 Internet Knowledge Management Page 6

CS566 Internet Knowledge Management Page 7

details about transport protocols. Service Profile, Service Grounding and Service model are

described in detail in the following three subsections.

3.1 Service Profile

The first step in an interaction involving web services is to discover those relevant

web services that match perfectly or partially to the needs and requirements of the

interaction. To that end, service providers need to advertise the services they offer, in such a

way that the service requesters can easily find what they are looking for. Furthermore, in the

Semantic web, these advertisements must be semantically annotated with machine-

interpretable metadata so that agents can automatically reason about this metadata and find

matching web services. The Service Profile class in the OWL-S ontology aims to do exactly

that.

The OWL-S ontologies allow for a service provider to describe the web services it

offers by creating a customized subclass of the main Service Profile class. This subclass can

contain an arbitrary amount of information while domain ontologies can be created to

describe related web services. The OWL-S specification provides the Profile class which is

one possible representation of a web service, but is neither mandatory nor restrictive and

service providers are free to adapt the Profile class as necessary or create completely

different profile classes.

The Profile class

The Profile subclass describes three dimensions of a web service: the service

provider, the service functionality and a set of service characteristics. The first dimension

deals with the entity that provides the service and contains contact information to anyone that

may be associated with the service, such as the people responsible for running and

maintaining the service instances or people responsible for informing the service requesters

in detail.

CS566 Internet Knowledge Management Page 8

The second dimension is essentially the functional description of the web service. It

contains the inputs that are necessary for the service to be executed, the preconditions that

must be met to ensure a valid execution, the information that is generated as the output of the

service as well as any effects to the state of the world that result from the execution of the

service. This set of information is referred to as IOPEs (Inputs, Outputs, Preconditions and

Effects). In some cases, it is interesting to couple an output and an effect as they are directly

related and as a result the functional description is also referred to as IOPRs (Inputs, Outputs,

Preconditions and Result, where a Result is a coupled output and effect). In the description of

the Service Model class in the next section, IOPRs will be revisited as the functional

description is part of that class as well. The relation between a service profile and a service

model with regard to the functional description will be further explored in that section.

The third dimension of the information contained in the Profile class essentially

covers all other features that one can see fit to include in a service description. OWL-S

version 1.1 goes into some level of detail on what features may be included but version 1.2

which is still in prerelease essentially leaves this part of the Profile class for the user to

specify, as explained in a later subsection. According to version 1.1 specification, a Profile

may contain information about the category of the service using an existing classification

system such as the United Nations Standard Products and Services Code (UNSPSC). Also, a

very important feature that should be part of a service description is the Quality of Service

(QoS). QoS is a major factor in service discovery and selection, as searching only based on

the functional description will yield services that may advertise the required operations, but

may also be unreliable, slow or even malicious. Finally, it is at the liberty of the service

providers to include any other parameter to describe their services, from an estimate of the

max response time to the geographic availability of the service, to cost-related parameters

etc.

The Service Profile superclass

All profile ontologies that one can create to describe a service using OWL-S are

subclasses of the Service Profile class, including the Profile class described above. The

Service Profile superclass and thus all profile subclasses instances are linked with a service

instance as shown in the following figure:

The relation “presents” links an instance of a web service with an instance of an associated

profile, stating the equivalent of the natural language phrase “this service is described by this

profile”. To describe the opposite relation, “this profile describes this service”, the inverse

relation of “presents”, “presentedBy” is used. Thus, a two-way relation between a service and

a profile is established, relating a service to a profile and a profile to a service. It should be

noted that no cardinality constraints are declared for these relations, meaning that a service

may be linked to an arbitrary number of profiles (or even none) and a profile may describe

more than one services or even no service. This allows for multiple profiles which may be

useful when providing a service that may be addressed to different groups of consumers. It

also enables partial characterization of a service, i.e. describing services using only a service

model and a service grounding instance.

Following is part of the Service.owl ontology file that declares the above relations

CS566 Internet Knowledge Management Page 9

Basic Description and Contact Information

The first batch of profile properties gives basic information for the service and its provider.

CS566 Internet Knowledge Management Page 10

The serviceName property refers to the name of the service that is described. This name may

be used as an identifier for the service, provided that it is unique. The textDescription

provides a brief textual description of the service, including its functionality, requirements

and any other information the provider wants to include. These first two properties contain

human-readable and agents are most likely unable to automatically interpret and process

them. Also, a profile can have at most one serviceName and textDescription. The

corresponding code is shown below:

CS566 Internet Knowledge Management Page 11

As far as describing contact information is concerned, the contactInformation

property is provided. Its range is not limited, as OWL-S allows for any ontology to be used

such as FOAF or VCard and also provides a simple Actor class as an alternative. This class is

declared in a separate file and its basic properties are shown in the figure above. These

CS566 Internet Knowledge Management Page 12

include the name and title of the entity, the phone, fax, email and physical address as well as

a URL address. The range of all these properties is xsd:string. Finally, the has_process

property links the Profile class with an instance of the Process class, as declared in the

Service Model ontology which will be described in a following section.

Functional Description

The functional description of a web service is an essential part of its profile, since it

deals with its functionality, i.e. what operations it provides to the requester. The functional

description has two aspects: the first involves the information transformation performed by

the service and is represented by inputs and outputs while the second deals with the change to

the state of the world caused by the execution of the service and is represented by the

preconditions and effects. For example, if we want to describe a book-selling service, we

need to describe its inputs (book ID, credit card number, credit card expiration date etc.) and

its preconditions (validity of credit card, balance higher than zero). Also, the output of the

service needs to be described (a transaction receipt) and an effect (money moved from

buyer’s account to seller’s and book sent to the buyer from the seller warehouse).

In the following figure, the functional properties of a service profile are illustrated:

The hasParameter property groups inputs and outputs together, by providing a

superclass which they inherit. This property is not instantiated as all inputs and outputs are

instances of the subclasses of hasParameter, hasInput and hasOutput. This grouping signifies

the conceptual similarity between inputs and outputs as they are both involved in information

transformation in contrast with preconditions and effects that deal with state change.

The hasInput and hasOutput properties are used to describe inputs and outputs of the

service respectively. The hasPrecondition property describes service preconditions. Finally,

the hasResult describes a coupled effect and output. It specifies both the conditions under

which the outputs are generated and the domain changes that are caused by the service

execution.

CS566 Internet Knowledge Management Page 13

It should be noted that no schema for these parameters is provided by the Profile

ontology. Such a schema exists only in the Process ontology, a subclass of the Service Model

class which is described in the next section. This is due to the close relation between a

service profile and a service model with regard to the functional description and will be

further explored in that section. As a result, for each IOPR, a single instance is created in the

Process ontology of the Service Model while the instance placed in the Profile is simply a

pointer to that single instance. This, however, doesn’t disallow the Profile from creating its

own IOPR instances using the schema provided by the Process ontology. The code

corresponding to the functional description is shown below:

Other Profile Parameters

The parameters in this subsection are declared in OWL-S version 1.1 but will be

deprecated from version 1.2 onwards. The serviceCategory property links a Profile with a

class that describes the category to which a service belongs. The category classification may

be outside OWL-S or even outside OWL. The ServiceCategory contains a series of properties

that identify the category instance. These properties are:

categoryName: the name of the service category. It can be a literal or a URI.

CS566 Internet Knowledge Management Page 14

taxonomy: a reference to the taxonomy scheme of the category, that can be either a

URI of the taxonomy, the URL where the taxonomy can be found or the name of the

taxonomy or anything else.

value: the value in the above taxonomy. More than one value properties can be linked

with a single ServiceCategory instance.

code: the code associated to the taxonomy for each service type.

Part of the code related to the ServiceCategory properties is shown below:

CS566 Internet Knowledge Management Page 15

The OWL-S specification also declares two other grouping-related properties for the

Profile class, serviceClassification and serviceProduct. The serviceClasification property

defines a mapping from a Profile instance to an OWL ontology of service classification such

as an OWL specification of NAICS (North American Industry Classification System). On the

other hand, the serviceProduct property defines a mapping from a Profile instance to an

OWL ontology of products, such as an OWL specification of UNSPSC (United Nations

Products and Services Code). The difference between these properties and the

serviceCategory class is that while both aim to place the service in an existing classification

system, the serviceClassification and serviceProduct have values that are OWL instances

which is not the case for serviceCategory instances which are simple strings referring to any

taxonomy OWL or not. The code related to these properties is shown below:

Finally, OWL-S offers a construct to declare any other property that may be included

in a service profile. A ServiceParameter class is linked to the Profile class using the

serviceParameter property. Furthermore, the ServiceParameter has two properties,

serviceParameterName and sParameter. The serviceParameterName is the name of the

parameter, either a literal or the URI of the parameter while SParameter points to the value of

the parameter within some OWL ontology. The code related to these properties is shown

below:

CS566 Internet Knowledge Management Page 16

The parameters presented in this subsection are illustrated in the following figure:

CS566 Internet Knowledge Management Page 17

3.2 Service Model

The Process model in OWL-S describes the service functionality and specifies the

ways a client may interact with the service in order to achieve its functionality. This is done

by expressing the data transformation with the inputs and the outputs and the state

transformation with the preconditions and effects. Although the Profile and the Process

Model play different roles during Web Service lifecycle they are two different

representations of the same service, so it is natural to expect that the input, output,

precondition, and effects (IOPEs) of one are reflected in the IOPEs of the other. There are no

constraints between Profiles and Process Models descriptions, so they may be inconsistent

without affecting the validity of the OWL expression. Still, if the Profile represents a service

that is not consistent with the service represented in the Process Model, the interaction will

break at some point. Although the Profile of a service provides a concise description of the

service to a registry, once the service has been selected the Profile is useless and the client

will use the Process Model to control the interaction with the service. It is important to

understand that a process is not a program to be executed, but a specification of the ways a

client may interact with a service.

Inputs and outputs are subclasses of a general class called Parameter. It's convenient

to identify parameters with what are called variables in Semantic Web Rule Language

(SWRL), the language for expressing OWL Rules. So, every parameter is subclass of swrl

Variable.

Obviously &swrl; has to be declared previously.

After this ENTITY declaration, we could write the value "&swrl;#Variable" and it would

expand to "http://www.w3.org/2003/11/swrl#Variable".

CS566 Internet Knowledge Management Page 18

Every parameter has a type (parameterType), specified using a URI. This is not the

OWL class the parameter belongs to, but a specification of the class (or datatype) that values

of the parameter belong to. rdfs:domain is used to state that any resource that has a given

property is an instance of one or more classes and rdfs:range is used to state that the values of

a property are instances of one or more classes.

The owl:restriction element from the above code defines an unnamed class (which is called

anonymous class) that represents the set of things with at least one parameterType property.

Including this restriction in the Parameter class definition body we state that parameters are

also members of this anonymous class. Thus, every individual parameter must participate in

at least one parameterType relation.

As mentioned before, inputs and outputs specify the data transformation produced by the

process. They are subclasses of parameter:

CS566 Internet Knowledge Management Page 19

hasParameter property has the subproperties hasInput, hasOutput, and hasLocal. It ranges

over a Parameter instance of the Process ontology:

Local variables are an advanced feature of OWL-S (added in version 1.1).They are variables

to be bound in preconditions and then used to specify result conditions, outputs and effects.

Preconditions determine if a process can be performed successfully. Unless the precondition

is true the process cannot be performed successfully.

CS566 Internet Knowledge Management Page 20

A process may change the state of the world (effects) and lead to different information

transformation (outputs), depending on the context of execution. The Result class is used to

couple outputs and effects and is related to Process by hasResult. Thus, multiple couples of

outputs and effects (results) may be associated with a process.

The process model then can describe the result as follows:

CS566 Internet Knowledge Management Page 21

Four properties are used, inCondition, hasResultVar, withOutput and hasEffect. If there is no

inCondition property then the result condition is TRUE and always occurs when the process

is executed. If multiple inCondition properties exist then they are conjoined, so they must all

be true for the result to occur (that is, for the outputs and effects to be realized). Outputs and

effects are associated with a result using the withOutput and hasEffect properties

correspondingly. Finally, ResultVar is used to declare an (implicitly universally quantified)

variable that is referenced in the result condition but is not a process parameter.

OWL-S differentiates between three types of processes atomic processes, composite

processes and simple processes:

An atomic process is a description of a service that expects one (possibly complex)

message and returns one (possibly complex) message in response. It is the basic unit of

implementation and directly invokable by passing the appropriate parameters and execute in

a single step. An atomic process is a "black box" representation; that is, no description is

given of how the process works (apart from inputs, outputs, preconditions, and effects).

CS566 Internet Knowledge Management Page 22

A simple process is not directly invokable and is executed in a single step. It

provides, through an abstraction mechanism, different views of atomic processes (specialized

ways of using) or simplifed representations of composite processes (using the "realizedBy"

and expandsTo" properties correspondingly) for purposes of planning and reasoning.

disjointWith guarantees that a SimpleProcess that is a member of Process cannot

simultaneously be an instance of an AtomicProcess.

In the following code, inverseOf states that realizedBy property is the inverse of

realizes property and vice versa. Therefore, a reasoner knowing that a Simple Process is

realized by an Atomic Process can deduce that the Atomic Process realizes the Simple

Process and vice versa.

There are two fundamental relations that can hold between simple processes and composite

processes. The first refers to "expanding" a process to its underlying CompositeProcess

(zoom-in) while the other corresponds to "collapsing" a composite process into a simple

process (zoom-out). Same logic with realizedBy property is applied here:

CS566 Internet Knowledge Management Page 23

A composite process is one that maintains some state; each message the client sends,

advances through the process. The composite process can consist of sub-processes. As

mentined before, process can have two sorts of purpose. First, it can generate and return

some new information based on information it is given and the world state. Information

production is described by the inputs and outputs of the process. Second, after a successful

execution it can produce a change in the world. This transition is described by the

preconditions and effects of the process. A process can have any number of inputs (including

zero), representing the information that is, under some conditions, required for the

performance of the process. It can have any number of outputs, the information that the

process provides to the requester. There can be any number of preconditions, which must all

hold in order for the process to be successfully invoked. Finally, the process can have any

number of effects. Outputs and effects can depend on conditions that hold true of the world

state at the time the process is performed.

CS566 Internet Knowledge Management Page 24

disjointWith guarantees that a CompositeProcess that is a member of Process cannot

simultaneously be an instance of an AtomicProcess or SimpleProcess. A composite process

is composed of subprocesses, and specifies constraints on the ordering and conditional

execution of these subprocesses. These constraints are captured by the composeOf property,

thus is a required property for every CompositeProcess.

composeOf property uses an additional Property, called components. This property

represents the building elements of composeOf property which are nested control constructs,

and, in some cases, defines their ordering.

CS566 Internet Knowledge Management Page 25

Composite processes references to processes (Atomic or Composite) called

PERFORMs. Perform is a control construct specifying where the client should invoke a

process provided by some server. control constructs can be Sequence, Split, Split + Join,

Any-Order, Condition, If-Then-Else,Iterate, Repeat-While and Repeat-Until. For example,

sequence is defined as having a list of component processes that specify the body:

CS566 Internet Knowledge Management Page 26

CS566 Internet Knowledge Management Page 27

3.3 Service Grounding

While the service profile and service model, presented in the previous sections,

describe what a service provide and its inner design and how it works, the grounding of a

service specifies the details of how to access the service. Many different kinds of information

are involved: protocol and message formats, serialization, transport, and addressing. The role

of grounding is mainly to bridge the gap between semantic description of web services and

the existing service description models which are mainly syntactic. In other words, service

grounding maps from the more abstract semantic notions to the concrete elements that are

necessary for interacting with the service.

The service profile and service model present the abstract side of a service

description. However, this abstract description doesn’t deal with the messages exchanged

during service execution. The only part of a message that is abstractly described is the

content, through the description of the input and output properties of the Process class in the

Service Model ontology. The service grounding ontology is based on and expands these

primitive communication parameters. The main role of a service grounding in OWL-S is to

realize process inputs and outputs as messages that are sent and received.

The main objective of the work behind the service grounding is to make use of the

existing body of work in the area of concrete message specification which is significant and

already standardized in the industry. To that effect, OWL-S makes use of the Web Services

Description Language (WSDL) to set an example of an initial grounding mechanism. The

purpose here is not to prescribe the only possible grounding approach to be used with all

services, but rather to provide a general, canonical and broadly applicable approach that will

be useful for the great majority of cases.

A similar concept to that of OWL-S grounding is WSDL’s concept of binding. Based

on that similarity and the existing WSDL extensibility elements OWL-S grounding using

WSDL is realized. For version 1.1 of OWL-S, the version 1.1 WSDL specification is used.

CS566 Internet Knowledge Management Page 28

Mapping from WSDL to OWL-S

The work behind service grounding aims to benefit from the advantages of both

WSDL and OWL-S. As described in previous sections, the OWL-S process model is an

expressive way of describing the inner workings of a service and OWL’s typing mechanisms

which are based on XML Schema provide the developer with a set of design advantages. On

the other hand, the existing description mechanism of WSDL and message declaration and

software support of SOAP have been standardized and used extensively, thus they constitute

the best available option for declaration of message exchanges. In this subsection, a mapping

between OWL-S and WSDL is presented.

The example of a grounding mechanism that involves OWL-S and WSDL that is

presented in the OWL-S specification, explicitly states that both languages are required for

the full specification of that mechanism. OWL-S alone or WSDL by itself cannot form a

complete grounding specification. In the figure shown below, the overlap between the two

languages is illustrated. While WSDL defines abstract types specified using XML Schema in

order to characterize the inputs and outputs of services, OWL-S allows for the definition of

abstract types as OWL classes, based on description logic. Both languages however lack

something. On the one hand, WSDL is unable to express the semantics of an OWL class as it

is not a semantic language and lacks many required features. On the other hand, OWL-S has

no means, as currently defined, to express the binding information that WSDL captures. As a

result, both languages are indispensable in a grounding declaration and this enforces the

notion of an OWL-S/WSDL grounding that uses OWL classes as the abstract types of

message parts declared in WSDL, and then relies on WSDL binding constructs to specify the

formatting of the messages.

An OWL-S/WSDL grounding is based upon a series of correspondences between the

two languages, as illustrated in the figure above. The rest of this section deals with these

correspondences.

An OWL-S atomic process generally corresponds to a WSDL operation. There are

four different types of WSDL operations and each one of them can be linked with an atomic

process type. Different types of operations are related to OWL-S processes according to the

following:

• An atomic process with both inputs and outputs corresponds to a WSDL request-

response operation.

• An atomic process with inputs, but no outputs, corresponds to a WSDL one-way

operation.

CS566 Internet Knowledge Management Page 29

• An atomic process with outputs, but no inputs, corresponds to a WSDL notification

operation.

CS566 Internet Knowledge Management Page 30

• A composite process with both outputs and inputs, and with the sending of outputs

specified as coming before the reception of inputs, corresponds to a WSDL solicit-

response operation.

While the most common case is for an atomic process to correspond to a single WSDL

operation, there are exceptions. WSDL supports providing multiple definitions with different

port types for the same operation. To support this, OWL-S allows for a one-to-many

correspondence between an atomic process and multiple WSDL operations. It is also

possible, in these situations, to maintain a one-to-one correspondence, by using multiple

(differently named) atomic processes.

A second correspondence between OWL-S and WSDL involves inputs and outputs.

The set of inputs and the set of outputs of an OWL-S atomic process each correspond to

WSDL's concept of message. More precisely, OWL-S inputs correspond to the parts of an

input message of a WSDL operation, and OWL-S outputs correspond to the parts of an

output message of a WSDL operation.

Finally, a third correspondence between OWL-S and WSDL involves typing. The

types of the inputs and outputs of an OWL-S atomic process, which are OWL classes,

correspond to the notion of abstract type in WSDL. This means that the WSDL message

declaration uses abstract types for typing. These three correspondences between OWL-S and

WSDL are what need to be defined when creating a service grounding. It should be noted

however that correspondences do not need to be direct. Transformation languages such as

XSLT can be used as mediator between WSDL message parts and OWL-S parameters.

The Grounding class

Having described how the relation between OWL-S and WSDL is explored to define

a service grounding, our attention is turned to the mechanism by which the relevant WSDL

constructs may be referenced in OWL-S. The Grounding class which is a subclass of the

ServiceGrounding class deals with that part of the ontology.

The design of OWL-S allows for multiple types of grounding to be declared. Each of

these grounding declarations must be a subclass of the Grounding class (and a subclass of the

ServiceGrounding class due to transitivity). For the WSDL grounding, the OWL-S

WsdlGrounding class is declared. Each WsdlGrounding instance should contain a list of

instances of the WsdlAtomicProcessGrounding class. The OWL-S code in Grounding.owl is

shown below:

CS566 Internet Knowledge Management Page 31

A WsdlAtomicProcessGrounding instance refers to specific elements within the

WSDL specification using a list of properties. wsdlVersion refers to the version of WSDL in

use ans is a URI. wsdlDocument points to a URI of the WSDL document to which this

grounding instance refers.

Apart from these two properties, the rest deals directly with the core of a WSDL

document which involves operations, ports and messages. wsdlOperation is the URI of the

WSDL operation corresponding to the given atomic process. wsdlService is an optional

property containing the URI of the WSDL Service that offers the given operation. If we are

aware of the port that offers the service and not the service itself, the equivalent wsdlPort

property can be used. Both wsdlService and wsdlPort are optional since a wsdlOperation

property sometimes is enough to uniquely identify a specified operation. If, however,

multiple ports and/or multiple services are offering the specified operation, then the wsdlPort

and wsdlService properties are used respectively to uniquely identify the operation. This set

of properties is shown in the following code snippet:

CS566 Internet Knowledge Management Page 32

CS566 Internet Knowledge Management Page 33

The rest of the properties of the WsdlAtomicProcessGrounding class deal with

messages. wsdlInputMessage contains the URI of the WSDL message definition that carries

the inputs of the given atomic process. wsdlOutputMessage contains the URI of the WSDL

message definition that carries the outputs of the given atomic process. For each message

part of a WSDL message a wsdlInput property is created, containing mapping pairs,

instances of the WsdlInputMessageMap class. This mapping is between WSDL message part

URIs (expressed with the wsdlMessagePart property) and elements that show how to derive

that message part from one or more inputs of the OWL-S atomic process. In the simplest

cases -- in which the message part corresponds directly to a single OWL-S input, and the

type of the input is directly used by the WSDL specification -- this is done just by

mentioning the URI of a particular input object (using the owlsParameter property). In all

other cases, the xsltTransformation property gives an XSLT script that generates the message

part from an instance of the atomic process. (The script may be given as a string embedded

within the grounding instance, or as a URI.) For outputs, the equivalent wsdlOutput property

is used. The mappings here are instances of the WsdlOutputMessageMap class. The final set

of properties for the WsdlGrounding is shown in the following figures.

CS566 Internet Knowledge Management Page 34

CS566 Internet Knowledge Management Page 35

CS566 Internet Knowledge Management Page 36

4. Why OWL instead of RDFS

The authors chose to use OWL to formally define the ontologies. The choice of a

language like OWL is directly linked to the goals the authors set while designing OWL-S.

OWL-S is meant to support automatic Web service discovery, invocation, composition and

interoperation. The common consensus behind these goals is that the OWL-S ontologies

must be machine-interpretable so that agents can reason based on them. OWL provides

ontology structuring mechanisms provide an appropriate, Web-compatible representation

language framework within which to do this. OWL offers a series of features that are

essential for ontologies such as OWL-S and are not supported by other languages such as

RDFS.

One important feature that RDFS does not support is expressing cardinality

constraints. RDFS cannot express limitations between relationships of subjects and

predicates. However, as it should be obvious by now, the service description framework

proposed by OWL-S uses cardinality constraints in many properties. For example, in a

service profile many properties need to be unique, thus allowing only one property instance

per profile instance. This is achieved using the owl:Restriction, owl:onProperty and

owl:cardinality elements.

Moreover, OWL allows class expressions such as unionOf, disjointUnionOf,

intersectionOf and complementOf. For example, the class declaration of processVar in

Process.owl of the OWL-S Service Model uses owl:unionOf to state that it is a collection of

instances of the classes Parameter, Existential, Participant, ResultVar and Local. This allows

for declarations based on existing declarations, thus facilitating a modular design scheme for

the ontologies. In relation to that feature of OWL is the ability to define classes based on

property values or other restrictions of an existing class.

Another very useful feature of OWL is inference support. In OWL-S, the authors

need to express construct such as inverseOf and disjointWith to model properties that are

inverse to each other and disjoint, respectively. For example, the presentedBy property that

links a service profile instance to a service instance is the inverse of the presents property that

CS566 Internet Knowledge Management Page 37

links a service instance to a service profile instance and this is expressed with the

owl:inverseOf element.

As a result, OWL supports features that are essential to the OWL-S ontology design

and other ones that could be used in further extensions of OWL-S, such as enumerations,

equivalence, local restrictions etc.

5. Summary

OWL-S is an exceptional example of how the OWL-based framework of the

Semantic Web and the unique features it includes can be used to create rich and complete

ontologies, in this case for a semantic description of Web services. Augmenting existing

description models for web services with semantic annotations is essential to the Semantic

Web and should contribute in the realization of automatic discovery, invocation, composition

and monitoring of Web services.

The current version for OWL-S is 1.1, released in November 2004. A prerelease

version 1.2 is available as of March 2006 but has not been released fully yet. OWL-S is an

ongoing work and should be enhanced in further releases to provide a complete framework

for semantic description for Web services.

.

6. Bibliography

1. Ethan Cerami, Web Services Essentials, O'Reilly & Associates, February, 2002, Pages

119-154

2. Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana. Web

Services Description Language (WSDL) 1.1, 2001, Available from

http://www.w3.org/TR/2001/NOTE-wsdl-20010315

http://www.w3.org/TR/2001/NOTE-wsdl-20010315

CS566 Internet Knowledge Management Page 38

3. Thomi Pilioura, Aphrodite Tsalgatidou, Alexandros Batsakis, Using WSDL/UDDI

and DAML-S in Web Service Discovery, Proceedings of WWW 2003 Workshop on E-

Services and the Semantic Web (ESSW' 03), Budapest, Hungary, 2003

4. Liliana Cabral, John Domingue, Enrico Motta, Terry Payne and Farshad Hakimpour,

Approaches to Semantic Web Services: An Overview and Comparisons, In

proceedings of the First European Semantic Web Symposium (ESWS2004),

Heraklion, Crete, Greece, May, 2004.

5. Naveen Balani, The future of the Web is Semantic, Available from

http://www.ibm.com/developerworks/web/library/wa-semweb/#2

6. Stefan Tang, Matching Of Web Service Specifications Using Daml-S Descriptions, PHD

Thesis, Technische Universität Berlin, March, 2004

7. Grigoris Antoniou, Enrico Franconi, and Frank van Harmelen, Introduction to

Semantic Web Ontology Languages, Reasoning Web, LNCS 3564, Springer 2005: 1-21,

2005

8. David Martin, Massimo Paolucci, Sheila McIlraith, Mark Burstein, Drew McDermott,

Deborah McGuinness, Bijan Parsia, Terry Payne, Marta Sabou, Monika Solanki,

Naveen Srinivasan, and Katia Sycara, OWL-S: Semantic Markup for Web Service,

Available from http://www.w3.org/Submission/OWL-S/

9. Natenapa Sriharee and Twittie Senivongse, Discovering Web Services Using

Behavioural Constraints and Ontology, Proceedings of Distributed Applications and

Interoperable Systems, 2003

10. Anupriya Ankolekar, David Martin, Deborah McGuinness, Sheila McIlraith,

Massimo Paolucci, Bijan Parsia, OWL-S' Relationship to Selected Other Technologies,

Available from http://www.daml.org/services/owl-s/1.1/related.html

11. Michael Stollberg, Cristina Feier, Dumitru Roman, and Dieter Fensel

Semantic Web Services - Concepts and Technologies, 7th Edition of the EUROLAN Summer

School "The Multilingual Web: Resources, Technologies, and Prospects", Cluj-Napoca,

Romania, August 2, 2005.

http://www.ibm.com/developerworks/web/library/wa-semweb/#author
http://www.ibm.com/developerworks/web/library/wa-semweb/#2
http://www.deri.at/about/team/details/?no_cache=1&uid=27
http://www.deri.at/about/team/details/?no_cache=1&uid=24

	Table of Contents
	Introduction
	1. Syntactic Description Limitations
	2. Motivation behind ontology languages
	3. OWL-S
	3.1 Service Profile
	3.2 Service Model
	3.3 Service Grounding

	4. Why OWL instead of RDFS
	5. Summary
	6. Bibliography

