
Process Flexibility

06/04/2020CS 565 - LECTURE 7

CS565 - Business Process Management Systems

BUSINESS PROCESS LIFECYCLE

06/04/2020CS 565 - LECTURE 7

Evaluation:
Process mining

Analytics/Warehousing

Enactment:
Operation

Monitoring

Maintenance

Configuration:
System selection

Implementation

Test & Deployment

Design:
Business Process
Identification &

Modelling

Analysis:
Validation

Simulation

Verification

Administration
&

Stakeholders

BUSINESS PROCESS FLEXIBILITY

 BP Flexibility is the ability of a BP to address changes in the

context or operating environment.

 Changes can be:

 Foreseen

 Unforeseen

 Addressing includes:

 Varying or adapting those BPs that are affected by changes

 Retaining those parts not affected

06/04/2020CS 565 - LECTURE 7

FLEXIBILITY TYPES

4 types or approaches:

 By design: design-time specification of strategies to address

foreseen changes

 By deviation: small deviation from “as-is” BP to handle

occasional unforeseen changes

 By underspecification: similar to 1st but the addressing is

handled at run-time (strategy not known or not generally

applicable)

 By change: actual process adaptation & evolution to handle

both occasional and permanent unforeseen changes

06/04/2020CS 565 - LECTURE 7

BP SPECIFICATION FOR FLEXIBILITY

 Imperative/procedural approach: precise definition of how BP

tasks must be executed

 Flexibility achieved by adding execution paths

 Declarative approach: focuses on what must be done and not

how

 By default, all execution paths are allowed

 The more constraints are provided, the more execution paths are filtered

 Constraints are relations between tasks

 Both mandatory & optional constraints are allowed

 Flexibility achieved by removing or weakening constraints

06/04/2020CS 565 - LECTURE 7

BP SPECIFICATION FOR FLEXIBILITY

06/04/2020CS 565 - LECTURE 7

A B A Bshould precede

Imperative approach

{[A,B]}

Declarative approach

{[A], [A,A], [A,B,A], [A,B,B], …}

FLEXIBILITY BY DESIGN

 Model alternative execution paths at design-time to anticipate

for foreseen changes at runtime

 Each foreseen change maps to selecting one alternative path

 Realisation options (most common):

 parallelism,

 choice,

 iteration,

 Interleaving (execute tasks in any order but not concurrently),

 multiple instances (of a task),

 cancellation (of a task now or in the near future)

06/04/2020CS 565 - LECTURE 7

FLEXIBILITY BY DESIGN

 Workflow patterns cover all possible options

 Realisation options thoroughly studied at imperative approach

 Equally applicable to declarative approach through the use of

less constructs/constraints

 Realisation options can be differently implemented

 E.g., deferred vs. exclusive choice

 Drawbacks:

 Model complexity increases

 Impossible to model unlimited or unknown alternative cases

06/04/2020CS 565 - LECTURE 7

A B C

FLEXIBILITY BY DEVIATION

 Temporally deviate from prescribed execution sequence to

accommodate changes in operating environment at runtime

 Swap task order between “register patient” and “perform triage” in a

clinical emergency situation

 Actual process definition is not altered or the tasks included in

it

 Just execution sequence of particular instance is modified

 Realisation options:

 Vary actual tasks to be executed (from those enabled)

 Imperative: apply deviation operations

 Declarative: just violate optional constraints

06/04/2020CS 565 - LECTURE 7

FLEXIBILITY BY DEVIATION

 Deviation operations:

 Undo task A: shift control at moment before execution of A. Does not

always imply that task actions are undone or reversed.

 Redo task A: re-execute task A without shifting control. Small example:

re-enter data that have been wrongly provided

 Skip task A: pass control to the next task from A. Skipped task is not

compensated. Quite useful in emergency situations with the skipping of

non-critical tasks

 Create additional instance of A: to run in parallel with process instances

created on the moment of task instantiation. Flexibility can be controlled

by limiting the number of concurrent task instances running in parallel.

Example: do a separate reservation for a set of people in trip

arrangement

06/04/2020CS 565 - LECTURE 7

FLEXIBILITY BY DEVIATION

 Deviation operations:

 Invoke task A: initiate task not enabled & executed in current execution. The

thread of control is not altered. Example: an additional task, not foreseen, should

be executed to check if provided data are fraudulent in a reviewing insurance

claim process instance. Then, next task in order normally takes place.

 Deviation operations can be differently implemented

 Additional requirements for each operation could be provided

 E.g., A can be undone only when A has been previously executed

 Should identify which operations have been performed in the execution

trace. Different ways can be used to perform this

 Undo operations can be logged either explicitly or by just removing affected

task from execution trace

06/04/2020CS 565 - LECTURE 7

FLEXIBILITY BY DEVIATION

06/04/2020CS 565 - LECTURE 7

A B C

Before skipping B

Trace: [A]

A B C

After skipping B

Trace: [A, “skip B”]

FLEXIBILITY BY DEVIATION

 Drawbacks:

 Who decides about performing which deviation operations

& what knowledge does he/she have available for this?

 Not all operations may have realizations

 Some tasks might be difficult to undo their effects

 Not suitable for cases where more drastic changes must

occur at process structure & process replanning is actually

needed

06/04/2020CS 565 - LECTURE 7

FLEXIBILITY BY UNDESPECIFICATION

 When all execution paths cannot be defined in advance, it is required to

dynamically add them as process fragments at runtime, thus executing

incomplete process definitions

 BP model is not modified at runtime but just missing information is filled in

for undefined parts

 More suitable for BPs where it is known beforehand which points need to

be adjusted. Content for these points is not yet known. Also suitable when

overall BP structure is fixed but different parts are designed and controlled

by different work groups.

 Incomplete process definition contains underspecified placeholders. Their

content is specified when executed.

06/04/2020CS 565 - LECTURE 7

FLEXIBILITY BY UNDERSPECIFICATION

 Two types of placeholder enactment exist:

 Late binding: select one process fragment from the candidate ones to

realize placeholder. Candidate list is fixed.

 Late modelling: An existing process fragment can be selected or a new

one can be specified. Subsumes former type.

 Process fragments are stored in a repository

 Two moments for realization can be exploited:

 Before placeholder execution: either when process instance is

commenced or before the placeholder is executed the first time

 At placeholder execution

06/04/2020CS 565 - LECTURE 7

FLEXIBILITY BY UNDERSPECIFICATION

 Placeholders can be realized once or multiple times. Two

realisation types exist:

 Static realisation: initial placeholder realization is used for all subsequent

placeholder executions

 Dynamic realisation: placeholder is realized for each execution

 Drawbacks:

 When should a new fragment must be created instead of using

available, candidate ones?

 Manual or automatic construction of new fragment?

 Cannot perform adaptation for BP points not foreseen

06/04/2020CS 565 - LECTURE 7

FLEXIBILITY BY UNDERSPECIFICATION

06/04/2020CS 565 - LECTURE 7

A C

Before realization

A X1 C

After realization

Xn

Process
fragment

FLEXIBILITY BY CHANGE

 Events cannot always be addressed by small temporal

deviations from prescribed process definition

 Process replanning must be performed

 Either some process instances are modified or even

the process model (process evolution)

 One or more currently executed process instances

must be migrated to new process definition

06/04/2020CS 565 - LECTURE 7

FLEXIBILITY BY CHANGE

 Variation points:

 Effect/Impact of change: changes are performed at the instance or

model level.

 Momentary change (instance level)

 Evolutionary change (process model level)

 Moment of allowed change at instance or model level:

 Entry time: changes performed only when instance is created. For

evolutionary changes, only new instances are affected (old stay with

previous model)

 On-the-fly: changes performed at any point in process execution.

Momentary changes map to customizing modified instance.

Evolutionary changes are propagated to both new and old instances.

Old instances must be migrated.

06/04/2020CS 565 - LECTURE 7

FLEXIBILITY BY CHANGE

 Variation points:

 Migration strategy: indicates the handling of instances impacted by evolutionary

change

 Backward recovery: instances are aborted

 Forward recovery: instances are aborted, possibly compensated and restarted

 Proceed: changes are ignored by old process instances

 Transfer: instances are transferred to respective state in new process definition

 Drawback:

 Can always old instances be migrated?

 Which migration strategy to choose from?

 When should we move to an evolutionary change?

 More time consuming than performing small deviations

06/04/2020CS 565 - LECTURE 7

FLEXIBILITY BY CHANGE

06/04/2020CS 565 - LECTURE 7

A B C

Initial Model

A B C

Extend

D

A C

Reduce

A B C

Relink

FLEXIBILITY SPECTRUM

06/04/2020CS 565 - LECTURE 7

Design

Deviation

Change

Underspecification

(Late binding)

Underspecification

(Late modelling)

B
P
 D

e
fi
n
it
io

n
 C

o
m

p
le

te
n
e
s
s

Flexibility Configuration

p
a
rt

ia
l

fu
ll

design-time runtime

FLEXIBILITY WORK COMPARISON

ADEPT YAWL FLOWer DECLARE

Parallelism + + + +

Choice + + + +

Iteration + + + +

Interleaving + +/- +

Multiple Instances + + +

Cancellation + +

Undo +

Redo +

Skip +

Create additional instance

Invoke task +

Violation of optional constraints +

06/04/2020CS 565 - LECTURE 7

FLEXIBILITY WORK COMPARISON

ADEPT YAWL FLOWer DECLARE

Late binding +

Late modelling +

Static, before placeholder

Dynamic, before placeholder

Static, at placeholder

Dynamic, at placeholder +

Momentary change + +

Evolutionary change +

Entry time + +

On-the-fly + +

Forward recovery

Backward recovery

Proceed +

Transfer +06/04/2020CS 565 - LECTURE 7

CHALLENGES

 Support for all types of flexibility

 Accommodate for additional perspectives:

 Organisational

 Information

 Application

 Use process mining to discover adaptation logic in

system supporting deviation and/or change

operations

06/04/2020CS 565 - LECTURE 7

CHANGE OPERATIONS

 Change patterns on control-flow of a BP have been proposed

 Focus on high-level BP adaptation

 Are associated to pre- & post-conditions to guarantee soundness of

resulting model

 Change support features were also proposed

 Guarantee that changes are performed in a correct and consistent way,

change traceability is enabled and process changes facilitate users

 Both can be used for evaluating approaches in BP adaptation

 Not all BP aspects have been covered (data flow, resources)

06/04/2020CS 565 - LECTURE 7

CHANGE PATTERNS

 Two main categories:

 Adaptation patterns: modify BP at model or instance level by applying high-level

operations (e.g., activity insertion); can be applied at the whole BP schema. Low-level

operations are not considered due to lack of abstraction & not guaranteeing model

soundness.

 Patterns for changes in predefined regions: allow participants to complete

information for unspecified BP parts during runtime.

06/04/2020CS 565 - LECTURE 7

Adaptation Pattern Patterns in changes to

predefined regions

Structural process change YES NO

Anticipation of change NO YES

Change restricted to specific

regions

NO YES

Application area Unanticipated exceptions,

unforeseen situations

Address uncertainty by

deferring decisions at

runtime

ADAPTATION PATTERNS

 Insert Process Fragment

 Design choice: where to embed the fragment

 serial inclusion between succeeding activities by some approaches

 others allow insertion of fragment between two activity sets that meet certain

constraints (e.g., parallel or conditional insert)

 Delete Process Fragment

 Straightforward (single design choice)

 Different realizations:

 Physically delete the fragment from the model

 Replace fragment with silent/empty activity

 Fragment embedded in conditional branch with condition equal to FALSE

06/04/2020CS 565 - LECTURE 7

EXAMPLES

06/04/2020CS 565 - LECTURE 7

A

X

B

Insert process fragment

A BX X

X
If d>0 Conditional

insert

A

B

C

D+ + A C D

Delete process fragment

ADAPTATION PATTERNS

 Move Process Fragment

 Design choice: where to embed fragment

 Can be realized as a sequence of delete & insert

 Replace Process Fragment

 Can be realized as a sequence of delete & insert

 Swap Process Fragment

 Can be realized as above patterns or with two moves

 Extract SubProcess

 Extract process fragment from one model and encapsulate in a separate sub-

schema/model

 Add hierarchy level to simplify schema or hide information from users

 Implemented through graph aggregation techniques

06/04/2020CS 565 - LECTURE 7

EXAMPLES

06/04/2020CS 565 - LECTURE 7

A B C

Extract SubProcess

D

E

A B C P

D E

M1 M1’

M2

ADAPTATION PATTERNS

 Inline SubProcess

 Opposite to Extract

 Flattens hierarchy of process (to e.g. reduce levels)

 Embed process fragment in a loop

 Could be realized through combining patterns for adding process

fragment, inserting & deleting control dependency

 Parallelize Process Fragments

 Parallelize fragments which were sequentially executed

 Realized through either inserting & deleting control dependency or

moving process fragment patterns

06/04/2020CS 565 - LECTURE 7

EXAMPLES

06/04/2020CS 565 - LECTURE 7

A B C P

D E

M2

M1

A B C

D

E

M1’

Inline SubProcess

ADAPTATION PATTERNS

 Embed process fragment in conditional branch

 Can be realized via inserting process fragment and adding &

deleting dependency control

 Add control dependency

 A control edge is added to the model

 Ensure that use of this pattern meets certain pre- & post-

conditions

 Can be associated to attributes (e.g., transition conditions)

 Additional parameters might be needed for different types of

controls (loop backs, synchronization of parallel activities)

06/04/2020CS 565 - LECTURE 7

EXAMPLES

06/04/2020CS 565 - LECTURE 7

A B C D

M1

A B C DXX

M1’

Embed process fragment
in conditional branch

ADAPTATION PATTERNS

 Remove Control Dependency

 Update Condition

 Update transition conditions

 Correctness of condition must be checked (e.g., all workflow

relevant data elements are present in the process model)

 Copy Process Fragment

06/04/2020CS 565 - LECTURE 7

EXAMPLES

06/04/2020CS 565 - LECTURE 7

A CX X

B

+

D

+ E

A CX X

B

+

D

+ E

X

Remove control
dependency

PATTERNS FOR CHANGE IN PREDEFINED REGIONS

 Late Selection of Process Fragments

 Realize a particular activity based on predefined rules or user decisions or a

combination of the first two options

 Late Modelling of Process Fragments

 Model selected parts of process model at runtime

 Design choice for selecting process fragments from repository, from specific set or by

newly defined activities or process fragments

 Design choice for applying the same modelling constructs at build-time or by further

considering more restrictions

 Design choice for performing realization: at process instantiation, placeholder activity

enablement or certain process state is reached

 Design choice for working with an empty template or adapting an existing predefined

template

06/04/2020CS 565 - LECTURE 7

PATTERNS FOR CHANGE IN PREDEFINED REGIONS

 Late Composition of Process Fragments

 On-the-fly composition of fragments from repository by also inserting

appropriate control dependencies

 Interleaved routing workflow pattern as a special case

 Exact decisions about control flow are deferred at runtime

 An activity might be executed multiple times (vs special case)

 Multi-instance Activity (also workflow pattern)

 Decision about how many instances to create can rely on design- or

run-time knowledge. Latter should be available before activity execution

or when activity is enabled

06/04/2020CS 565 - LECTURE 7

EXAMPLE – LATE MODELLING

06/04/2020CS 565 - LECTURE 7

Empty Template

A C D ?

A

C D

F

Process Model Level

Process Instance Level

F1. VERSION CONTROL & INSTANCE MIGRATION

 No Version Control:

 Manual copy of model generated to be modified

 Current model modification:

 Running instances are either withdrawn or

 Remain associated to modified model

 Can lead to inconsistent states, deadlocks or runtime errors

 Version Control:

 Running instances remain associated to old model, new instances are

mapped to new model

 Alternative: controlled migration of selected instances to new model

 Alternative: uncontrolled migration -> inconsistencies & errors

06/04/2020CS 565 - LECTURE 7

F2. SUPPORT FOR INSTANCE-SPECIFIC CHANGES

 Unplanned changes at instance level are addressed through

high-level patterns or low-level primitives

 Uncertainty handled by keeping process parts unspecified until

runtime

 Instance changes are permanent or temporary (valid for a

certain time period – e.g., current iteration of a loop)

06/04/2020CS 565 - LECTURE 7

F3. CORRECTNESS OF CHANGE

 To avoid runtime errors, different criteria are

introduced for moving instances to new model to

reassure compliance

 Additionally, formal constraints depending of the

respective formalism must be considered

06/04/2020CS 565 - LECTURE 7

F4. TRACEABILITY & ANALYSIS OF CHANGES

 Change patterns or primitives must be entered into a change

log

 Change analysis & mining become easier when high-level

information is stored -> continuous process improvement

 An execution log is enough for traceability concerning

changes in particular process regions

 Logs can be enriched with semantic information covering the

reasons & context of changes

06/04/2020CS 565 - LECTURE 7

F5. ACCESS CONTROL FOR CHANGES

 To avoid security issues wrt. the misuse of the change

capabilities, authorization should be enabled:

 Only particular users can change process model or

instances

 More coarse-grained granularity maps to authorizing single

change patterns.

 Authorizations can also depend on the object to change

(e.g., object type – model vs instance or sets of process

models attributed to particular process designers)

06/04/2020CS 565 - LECTURE 7

F6. CHANGE REUSE

 Change reuse must be exploited to avoid spending

time in finding the same solution to the same

problem

 This can be supported by annotating changes with

contextual information and storing them in logs

 Contextual information maps to matching similar situations

 User is presented only with solutions to those situations

 For predefined region changes, historical cases must be

presented to users & frequent, re-occurring pattern

realizations must be stored as templates

06/04/2020CS 565 - LECTURE 7

F7. CHANGE CONCURRENCY CONTROL

 Concurrent changes at instance level concerning process

structure & state must be dealt with

 Can lead to errors or inconsistencies (e.g. violating state constraints) if

performed in an uncontrolled manner

 Ways to address:

 Forbid concurrent changes (strict due to long-term locks required)

 Allow concurrent changes on structure or state

 Pessimistically or optimistically

 Could also need to address concurrent changes both at model

& instance level

06/04/2020CS 565 - LECTURE 7

CHANGE SUPPORT FEATURES

Change Support Features

Change Support Feature Scope Change Support Feature Scope

F1. Schema Evolution, Version

Control & Instance Migration

M F3. Correctness of Changes M+I

F4. Traceability & Analysis M+I

No version control – old model is

overwritten

1. Traceability of Changes

1. Running instances cancelled 2. Annotation of Changes

2. Running instances remain 3. Change Mining

Version control F5. Access Control for Changes M+I

3. Co-existence of old/new

instances, no instance migration

1. Changes are restricted to

authorized users

4. Uncontrolled migration of all

instances

2. Application of single change

patterns is restricted

5. Controlled migration of compliant

instances

3. Authorizations depend on object to

change

06/04/2020CS 565 - LECTURE 7

CHANGE SUPPORT FEATURES

Change Support Features

Change Support Feature Scope Change Support Feature Scope

F2. Support for Instance-Specific

Changes

I F6. Change Reuse I

F7. Change Concurrency Control M+I

1. Unplanned changes

a. Temporary

b. Permanent

2. Preplanned changes

a. Temporary

b. Permanent

1. Uncontrolled concurrent

changes

2. Concurrent changes prohibited

3. Concurrent changes of an

instance’s structure & state

4. Concurrent Changes at

instance & model level

06/04/2020CS 565 - LECTURE 7

RECOMMENDED READING

 M.H. Schonenberg, R.S. Mans, N.C. Russell, N.A. Mulyar and W.M.P. van der Aalst.

Towards a Taxonomy of Process Flexibility (Extended Version). Available at:

http://bpmcenter.org/wp-content/uploads/reports/2007/BPM-07-11.pdf

 Barbara Weber, Stefanie Rinderle-Ma and Manfred Reichert. Change Support in

Process-Aware Information Systems – A Pattern-Based Analysis. Available at:

http://eprints.eemcs.utwente.nl/11331/01/main.pdf

 http://theprocessconsultant.com/process-improvement-flexibility/

06/04/2020CS 565 - LECTURE 7

http://eprints.eemcs.utwente.nl/11331/01/main.pdf
http://theprocessconsultant.com/process-improvement-flexibility/

