
Workflow Analysis

04/03/2020CS 565 - LECTURE 4

CS565 - Business Process Management Systems

WORKFLOW ANALYSIS

¡ Workflow specifications may be analyzed with respect to their
qualitative or quantitative aspects

¡ Qualitative aspects mainly concern the logical correctness of the
workflow specification (i.e., absence of anomalies such as deadlocks
or livelocks)

¡ Quantitative aspects concern performance (completion times, level of
service, resource utilization)

¡ In order to analyze workflows, a framework is needed to express the
behavior of the workflow

04/03/2020CS 565 - LECTURE 4

REACHABILITY ANALYSIS

¡ A workflow is described via a Petri net (PN)

¡ Transform workflow to reachability graph

¡ Reachability graph:

¡ Direct graph comprising nodes & directed edges

¡ Each node corresponds to workflow state

¡ Edge denote state transitions

¡ Each state denoted by number of tokens in each place

¡ Reachability graph embodies the behaviour of a workflow

¡ Exploited to gain insight into the operation of a PN

04/03/2020CS 565 - LECTURE 4

FIRST EXAMPLE

04/03/2020CS 565 - LECTURE 4

claim record

under
consideration

ready

pay

send letter

(3,0,0) (2,1,0) (1,2,0) (0,3,0)

(2,0,1) (1,1,1) (0,2,1)

(1,0,2) (0,1,2)

(0,0,3)

Ten possible states

WORKFLOW ANALYSIS

¡ The out-degree of each node in the reachability graph indicates the
number of possible subsequent states

¡ If the out-degree is greater than 1, the next state is not predetermined
(non-determinisitic choice)

¡ If a node has out-degree 0, then it is an end state (no transition is
enabled)

¡ Given a Petri Net and an initial state, we can systematically construct
its reachability graph

04/03/2020CS 565 - LECTURE 4

WORKFLOW ANALYSIS

¡ Example: traffic lights at the junction of two 1-way streets

04/03/2020CS 565 - LECTURE 4

yr1red1

yellow1

green1

rg1

gy1

yr2

rg2

gy2

red2

yellow2

green2

X

(0,0,1,0,0,0,1)

(0,1,0,0,0,0,1)

(1,0,0,1,0,0,1)

(1,0,0,0,1,0,0)

(1,0,0,0,0,1,0)5 possible states

WORKFLOW ANALYSIS

¡ In the previous example, inspection of the reachability graph shows
that the traffic lights operate safely: in every possible state at least one
of the set of lights is red

¡ However, it also shows that it is possible that one set of lights always
changes to green, while the other remains constantly red

¡ If we want to avoid this, we must change the Petri Net so as to ensure
that each set changes to green in turn

¡ Need to construct the reachability graph of the new net and verify that
it exhibits the expected behavior

04/03/2020CS 565 - LECTURE 4

WORKFLOW ANALYSIS

¡ Example (continued)

04/03/2020CS 565 - LECTURE 4

yr1red1

yellow1

green1

rg1

gy1

yr2

rg2

gy2

red2

yellow2

green2

X1

X2

Reachability graph will contain 6 states

STRUCTURAL ANALYSIS

¡ Workflows can be structurally analyzed to discover potential
problems in their execution

¡ The combination of sequential, parallel, selective and iterative routing
often make the assessment of correctness hard.

¡ Notation:

04/03/2020CS 565 - LECTURE 4

AND-split

AND-join

OR-split

OR-join

WORKFLOW ANALYSIS

04/03/2020CS 565 - LECTURE 4

c3n Example: claim
processing Petri net
(payment or rejection letter
sent)

! if a token is placed in c5 by transition check_policy, and a token is
placed in c6 by check_claim, pay will fire (correct!)
! if a token is placed in c3 by check_policy and a token is placed in c4
by check_claim, send_letter will fire twice
! if a token is placed in c3 by check_policy and a token is placed in c6
by check_claim, send_letter will fire once, but token remains in c6

start accept end

pay

send lettercheck_policy

check_claim

c1

c2

c4

c5

c6

WORKFLOW ANALYSIS

¡ Problematic Petri net structures:

¡ tasks without input and/or output conditions: when a task has no
output conditions, it does not contribute to the successful
completion of the task and can be dropped

¡ dead tasks: tasks that can never be carried out

¡ deadlocks

¡ livelocks

¡ activities taking place after “end” is reached

¡ tokens remaining in the process after a case has been completed

¡ Such cases can be identified without knowing the exact content of
the process being defined

04/03/2020CS 565 - LECTURE 4

TASK WITHOUT I/O CONDITIONS

04/03/2020CS 565 - LECTURE 4

! No input conditions -> not known if task will be
performed (task 4)
! No output conditions -> does not contribute to a
successful completion of a case, can be dropped (task 5)

DEAD TASKS & DEADLOCK

¡ Dead Task: A PN might contain a task that will never be performed

¡ Example below: Task 2 is a dead task

¡ A case is frozen before the end state

¡ Example below: Task1 places a token in two upper places and then case will wait forever
as task2 will never be executed

04/03/2020CS 565 - LECTURE 4

LIVELOCK

¡ A case is trapped in an endless cycle

¡ Example below:
¡ Every case will pass in the non-ending cycle involving tasks 2 and 3.

04/03/2020CS 565 - LECTURE 4

TOKENS REMAIN AFTER PROCESS COMPLETION

¡ Once a token reaches the end state, all other references to the case must disappear

¡ Example below:

¡ If token reaches end state via task 2, then a token will still remain in one of the places
before task 3

04/03/2020CS 565 - LECTURE 4

WORKFLOW ANALYSIS

¡ A precise notion of workflow correctness must be specified to computerize the
error checking

¡ Requirement: a process contains no unnecessary tasks and every case submitted
must be completed in full with no tokens remaining in the process after its
completion

¡ A process that fulfills this requirement is called sound

¡ A workflow process defined by a Petri Net has a single place start and a single
output place end

¡ Each transition or place should lie on a directed path from start to end (there
should be no loose tasks or conditions)

¡ Each task is reachable from start and end is always reachable

¡ A transition not on a path from start to end does not contribute to the successful
completion of the process

¡ A Petri Net fulfilling this requirement is called a workflow net
04/03/2020CS 565 - LECTURE 4

WORKFLOW NETS

¡ A workflow net, based on previous requirements, can still suffer from
deadlocks & livelocks. A more precise definition is needed

¡ Workflow Nets – Syntactical Requirements

¡ A WF net is called sound if it fulfills the following:

1. For each token put in place start, one (and only one) token
eventually appears in place end

2. When the token appears in place end, all other places are empty

3. For each transition, it is possible to move from the initial state to a
state in which this transition is enabled

04/03/2020CS 565 - LECTURE 4

WORKFLOW NETS

¡ Requirement 1: every case should be successfully terminated in the
course of time

¡ Requirement 2: When a case completes, no references still remain

¡ Requirements 1 & 2 -> only one state is reached, final one, with one
token

¡ Requirement 3: exclusion of dead tasks

¡ This definition of soundness assumes a notion of fairness: if a task
can potentially be executed, then it is not possible to postpone its
execution indefinitely

04/03/2020CS 565 - LECTURE 4

WORKFLOW SOUNDNESS CHECKING

¡ Fairness means that although it is possible to repeat part of a process
infinitely often, this iteration will not violate the soundness
requirement

¡ Also, two tasks cannot cause a third task to “starve”

¡ To check whether a given process corresponds to a sound workflow
net, we must first check if the Petri net for the process is a workflow
net

¡ this can be done by examining its structure

04/03/2020CS 565 - LECTURE 4

WORKFLOW SOUNDNESS CHECKING

¡ Checking soundness involves examining the reachability
graph:
¡ Start with the initial state and a token in it

¡ Check last requirement by observing whether there is a path/state transition
reaching each task

¡ First two requirements are checked by confirming that reachability graph has
one final state & exists one token only in the ending state

¡ 2 main drawbacks:
¡ Constructing the reachability graph is expensive

¡ Reachability graph does not help in repairing problematic processes

04/03/2020CS 565 - LECTURE 4

SOUNDNESS CHECKING – COMPUTER SUPPORT METHOD

¡ Determining soundness:

¡ add a transition t* to the net with end as input and start as output

¡ the net with the new transition is called the short-circuited net

¡ with this addition, soundness of the net corresponds to the
properties of liveness and boundedness of the short-circuited net

¡ a Petri net is live if, for every transition t, it is possible to reach a
state in which t is enabled from every state reachable from the initial
one

¡ a Petri net is bounded when there is an upper limit to the number
of tokens in each place
¡ Net for traffic lights is live and bounded

04/03/2020CS 565 - LECTURE 4

SOUNDNESS CHECKING – COMPUTER SUPPORT
METHOD

¡ There exist efficient algorithms and tools for verifying liveness and
boundedness for certain classes of PNs

¡ When a process is not sound, some diagnostics indicating why it is not
sound, can be produced

¡ Other analytical techniques that don’t require computer support also
exist.

04/03/2020CS 565 - LECTURE 4

SOUNDNESS CHECKING – MANUAL METHOD

¡ The translation of soundness requirements to liveness and
boundedness is not very intuitive and requires computer support.

¡ Alternative methods can be applied without need for computer
support

¡ Additional requirement:

¡ workflow nets must be safe, i.e., the number of tokens in each
place is never larger than one

¡ safety is boundedness with an upper bound of 1

¡ Safety can be determined by inspection of the workflow structure

04/03/2020CS 565 - LECTURE 4

SOUNDNESS CHECKING – MANUAL METHOD

¡ The analysis method is based on the following property:

¡ if we have two sound and safe workflow nets V and W and a task t in
V which has exactly one input and one output place, then we can
replace task t in V by W and the resulting net is still sound and safe

¡ Justification:

¡ a sound workflow net behaves like a transition: consumes one token
from its input place and produces one token at its output place

¡ environment does not realize the replacement of t by W

¡ Safety required to avoid situation that in W two or more tokens will be
active at the same time

04/03/2020CS 565 - LECTURE 4

SOUNDNESS CHECKING – MANUAL METHOD

¡ Applying the property to workflow analysis:

¡ some basic workflow nets can be easily shown to be sound and safe;
these correspond to typical constructs

¡ these nets can be used as building blocks for more complex
workflow nets

¡ if the workflow net under consideration can be shown to be
derivable by a sequence of substitutions of nets from these building
blocks, then it can be proved that the workflow net is sound and
safe as well

04/03/2020CS 565 - LECTURE 4

BASIC & SOUND WF-NET CONSTRUCTS

¡ Basic safe and sound constructs:

04/03/2020CS 565 - LECTURE 4

basic building block

sequence construct

implicit OR-split construct

explicit OR-split construct

BASIC & SOUND WF-NET CONSTRUCTS

¡ Basic safe and sound constructs:

04/03/2020CS 565 - LECTURE 4

explicit OR-join construct

iteration construct

AND construct

WORKFLOW ANALYSIS

04/03/2020CS 565 - LECTURE 4

n Example: determine whether the following workflow net can be
derived using the basic nets

start b

f

end

a

e

c

g

d

h

Start with the basic building block:

start end
a

WORKFLOW ANALYSIS

04/03/2020CS 565 - LECTURE 4

Apply the AND-construct to put b in parallel with a

Apply the explicit OR-split:

start b end

a

endstart b

a

c

WORKFLOW ANALYSIS

04/03/2020CS 565 - LECTURE 4

Apply the sequence construct a followed by d :

Apply the sequence construct b followed by e :

start b

a

c

d

start b

a

c

d

e

WORKFLOW ANALYSIS

04/03/2020CS 565 - LECTURE 4

Apply an implicit OR split to b for adding task f :

Apply the iteration construct to e :

start b

a

c

d

e

f

start b

a

c

d

e

f g

WORKFLOW ANALYSIS

04/03/2020CS 565 - LECTURE 4

Apply the sequence construct to e :

start b

a

c

d

e

f g

h

!The workflow net results from applying the patterns of the basic
building blocks, hence it is safe and sound.
!The derivation is not unique (3rd and 4th steps can be inter-
changed)

WORKFLOW ANALYSIS

¡ Not all safe and sound nets have a derivation

¡ Example:

04/03/2020CS 565 - LECTURE 4

start end

The two paths that originate at one AND-split should meet in the
same AND-join.

PERFORMANCE ANALYSIS

¡ Need to examine quantitative aspects such as:

¡ completion times of cases

¡ number of cases that can be completed per time unit (throughput)

¡ resource utilization

¡ The following techniques are mainly used:

¡ Markovian analysis: a Markov chain can be generated by a workflow;

¡ a Markov chain contains the possible states of a case and the
probability of transitions between them

¡ a Markov chain is a reachability graph along with the probability
information derived from measured or expected properties of a
case type

04/03/2020CS 565 - LECTURE 4

MARKOVIAN ANALYSIS

¡ Various properties can be
proven
¡ Chances that a particular route for a case is

chosen

¡ Can be extended with time and cost
information

¡ A range of performance indicators can be
produced

¡ Disadvantages

¡ Markov chain analysis is in general c

¡ Not every aspect can be incorporated in
the analysis

04/03/2020CS 565 - LECTURE 4

QUEUING THEORY

¡ Used for system analysis

¡ Places emphasis on waiting times, completion times, capacity
utilization

¡ Need to consider a network of queues in order to extract
performance measures for a workflow

¡ Some solutions come in turns of mathematical methods

¡ Disadvantage:

¡ Many of the assumptions used in queueing theory are not valid
for workflows (e.g., parallel routing of tasks not supported in
analysis)

04/03/2020CS 565 - LECTURE 4

SIMULATION

¡ Flexible analysis technique

¡ Always possible to analyze any workflow

¡ Amounts to following paths in a reachability graph

¡ choices are made based on probability distributions

¡ accessible to people with no mathematical background

¡ offers better insight into the workflow operation

¡ often workflows can be tracked graphically as well

¡ easily extended with new aspects (e.g., faults)

¡ Disadvantages:

¡ time-consuming process to establish the simulation

¡ thorough statistical processing may be required for extracting conclusions from
repeated executions

04/03/2020CS 565 - LECTURE 4

SIMULATION EXAMPLE

04/03/2020CS 565 - LECTURE 4

• task1 task2

Average of 24
cases arrive per

hour

2 resources,
average

processing time
of 4 min

2 resources,
average

processing time
of 4 min

SIMULATION EXAMPLE

¡ Average time between consecutive arrivals: 2.5 min

¡ Average time to complete a task: 4 min

¡ Each resource works on one task

¡ Based on above, average resource utilization (# arrivals/time div # served/time
24/30) level is:

¡ 80% -> for 20% of time, a resource is idle

¡ Average completion time per case can be computed:

¡ Need to assume that interarrival times are distributed in a negative exponential way

¡ Completion time is 22.2 mins

¡ Actual serving time is just 8 mins, waiting time is 14.2

¡ Need to reduce waiting time

04/03/2020CS 565 - LECTURE 4

SIMULATION EXAMPLE

¡ If each resource can work on any task, then:
¡ Average completion time becomes 14 mins

¡ Average waiting time becomes 6 mins

04/03/2020CS 565 - LECTURE 4

SIMULATION EXAMPLE

04/03/2020CS 565 - LECTURE 4

•

task1

task2

Average of 24
cases arrive per

hour

2 resources,
average

processing time
of 4 min

2 resources,
average

processing time
of 4 min

SIMULATION EXAMPLE

¡ Another solution: parallelize tasks

¡ Average completion time becomes 15 minutes

¡ Still exists space for further improvement

04/03/2020CS 565 - LECTURE 4

SIMULATION EXAMPLE

04/03/2020CS 565 - LECTURE 4

• task12

Average of 24
cases arrive per

hour

4 resources,
average

processing time
of 7 min

SIMULATION EXAMPLE

¡ Best possible solution:
¡ Create composite task to be performed by each resource

¡ Increased resource flexibility
¡ 1 minute less to complete the composite task

¡ Resource capacity utilization falls into 70%

¡ Completion time drops to 9.5 mins
¡ Waiting time drops to 2.5 mins

04/03/2020CS 565 - LECTURE 4

SIMULATION EXAMPLE

04/03/2020CS 565 - LECTURE 4

•
task1b

task1a

task2

Average of 6
hard cases arrive

per hour

1 resource, average
processing time: 8

mins

1 resource, average
processing time:

2.66 mins

2 resources,
average

processing time
of 4 min

SIMULATION EXAMPLE

¡ More insight if we distinguish between cases

¡ 25% cases hard, 75% case easy

¡ Main idea: reduce completion time by separating flow (triage)

¡ Result: even worse than initial structure (31.1 mins)

¡ Reduction of resource flexibility

¡ Triage can be useful when:

¡ Allocation of specialized resources reduces average processing time

¡ Small-scale client do not have to wait for large-scale ones for processing -> reduction
of waiting time

¡ In example, consider initial workflow structure & prioritization of easy cases over hard
ones

¡ Completion times goes around 14 mins

04/03/2020CS 565 - LECTURE 4

SIMULATION ANALYSIS – SUMMARY

¡ Simulation analysis can assist workflow design
¡ Evaluation of alternative design choices

¡ Each design choice can be best in different circumstances

¡ 3 design guidelines apply in most situations:
¡ Perform tasks in parallel as much as possible

¡ Aim at increased resource flexibility (each resource should perform as many
tasks as possible to increase resource utilization)

¡ Handle cases in order of processing time as much as possible

¡ Give priority to shorter in processing time cases over longer ones through triage or
prioritization rules

04/03/2020CS 565 - LECTURE 4

RECOMMENDED READING

¡ “Workflow Management: Models, methods and systems” by van der
Aalst and van Hee

¡ K. Vergidis, A. Tiwari and B. Majeed. Business Process Analysis and
Optimization: Beyond Rengineering. IEEE Transactions on Systems,
Man, and Cybernetics – Part C: Applications & Reviews, 2008.

¡ https://www.youtube.com/watch?v=04hnuyZWhAA

04/03/2020CS 565 - LECTURE 4

