
IbmIbmIbmIbm

Web Services
Conceptual Architecture
(WSCA 1.0)

May 2001

 By Heather Kreger
IBM Software Group

IBM Software Group Front Matter

Web Services Conceptual Architecture ii

NoticeNoticeNoticeNotice
The authors have utilized their professional expertise in preparing this report. However, neither
International Business Machines Corporation nor the authors make any representation or
warranties with respect to the contents of this report. Rather, this report is provided on an AS IS
basis, without warranty, express or implied, INCLUDING A FULL DISCLAIMER OF THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Software Group Front Matter

Web Services Conceptual Architecture iii

ContentsContentsContentsContents
Notice..ii
Contents...iii
Figures ...iv
Preface... v

Abstract ... v
Target Audience.. v
Comments ... v

Web Services Overview... 6
Web Services: The Next Horizon for e-business... 6
Definition of Web Services .. 6

The Web Services Model... 7
Roles in a Web Services Architecture... 7
Operations in a Web Service Architecture.. 8
Artifacts of a Web Service... 8
Web Services Development Lifecycle .. 8

Architecture Overview ... 10
The Web Services Stack ... 10
The Network... 12
XML Messaging-Based Distributed Computing ... 13
Service Description: From XML Messaging to Web Services... 15

The Basic Service Description.. 15
The Complete Web Service Description... 17

Publication and Discovery of Service Descriptions .. 19
Service Publication.. 19
Service Discovery ... 21

Web Services for Real e-business .. 22
Security.. 22
Quality of Service and Reliable Messaging .. 25
Systems and Application Management .. 27
Service Context ... 28
Conversations and Activities... 29
Intermediaries ... 30
Portals and Portlets ... 31

Business Processes, Workflows and Web Services.. 33
A Simple Web Services Workflow ... 34
e-business Services and Enabling Services... 34
Composed Workflows, and Public and Private Workflows ... 36
Business Process Hierarchy of Workflows.. 37
Hierarchical Workflows and Peer-to-Peer Workflows.. 39
Web Services Workflows Today and Tomorrow.. 39

Related Information.. 40
Web Sites... 40
Other Papers ... 40

IBM Software Group Front Matter

Web Services Conceptual Architecture iv

FiguresFiguresFiguresFigures
Figure 1. Web Services roles, operations and artifacts... 7
Figure 2. Web Services conceptual stack... 10
Figure 3. Interoperable base Web Services stack .. 11
Figure 4. XML messaging using SOAP ... 14
Figure 5. Basic service description ... 16
Figure 6. Complete Web Services description stack .. 17
Figure 7. Basic UDDI data structures.. 18
Figure 8. Service discovery continuum ... 21
Figure 9. Intermediaries... 30
Figure 10. Portals and portlets... 32
Figure 11. Simple workflow.. 34
Figure 12. More complex workflow.. 35
Figure 13. Composed workflow... 36
Figure 14. Further composition of workflows... 37
Figure 15. Business process hierarchy ... 38

IBM Software Group Front Matter

Web Services Conceptual Architecture v

PrefacePrefacePrefacePreface
AbstractAbstractAbstractAbstract
This paper describes the architecture for Web Services from the point of view of components,
interactions and application development patterns. This architecture is the blueprint for an IBM
instantiation of the Web Services approach. It is a framework for the building and deployment of
Web Services applications.

The architecture presented in this paper includes high-level descriptions of the components and
functions required for Web Services, and requirements on the tools and middleware to
implement these components and functions. Some functionality exists today in products such as
the IBM XML and Web Services Development Environment, the IBM Web Services Toolkit and
IBM WebSphere Application Server. These and other products will implement additional
functions in the future. However, the presence of a component, function or requirement in this
paper does not guarantee that it will be implemented in future IBM products.

Target AudienceTarget AudienceTarget AudienceTarget Audience

• Early adopters and implementers of Web Services.

• External technical reviewers evaluating the IBM Web Services approach. Reviewers
should read the Introducing Dynamic e-business: Concepts and Value paper that
explains the value of Web Services.

CommentsCommentsCommentsComments
Please send any feedback, technical or editorial, to Web Services at wbservcs@us.ibm.com or
webservices/Raleigh/IBM@IBMUS.

mailto:wbservcs@us.ibm.com

IBM Software Group Web Services Overview

Web Services Conceptual Architecture 6

Web Services OverviewWeb Services OverviewWeb Services OverviewWeb Services Overview
This section briefly reviews Web Services as an application integration technology, defines the
term web service and describes the Web Services model.

Web Services: The Next Horizon for e-businessWeb Services: The Next Horizon for e-businessWeb Services: The Next Horizon for e-businessWeb Services: The Next Horizon for e-business
What the Web did for program-to-user interactions, Web Services are poised to do for program-
to-program interactions. Web Services allow companies to reduce the cost of doing e-business,
to deploy solutions faster and to open up new opportunities. The key to reaching this new
horizon is a common program-to-program communications model, built on existing and
emerging standards such as HTTP, Extensible Markup Language (XML), Simple Object Access
Protocol (SOAP), Web Services Description Language (WSDL) and Universal Description,
Discovery and Integration (UDDI).

Web Services allow applications to be integrated more rapidly, easily and less expensively than
ever before. Integration occurs at a higher level in the protocol stack, based on messages
centered more on service semantics and less on network protocol semantics, thus enabling
loose integration of business functions. These characteristics are ideal for connecting business
functions across the Web both between enterprises and within enterprises. They provide a
unifying programming model so that application integration inside and outside the enterprise
can be done with a common approach, leveraging a common infrastructure. The integration and
application of Web Services can be done in an incremental manner, using existing languages
and platforms and by adopting existing legacy applications. Moreover, Web Services
compliment Java 2 Platform, Enterprise Edition (J2EE), Common Object Request Broker
Architecture (CORBA) and other standards for integration with more tightly coupled distributed
and nondistributed applications. Web Services are a technology for deploying and providing
access to business functions over the Web; J2EE, CORBA and other standards are technologies
for implementing Web Services.

Although early use of Web Services is peer-wise and ad hoc, it still addresses the complete
problem of program-to-program communications including describing, publishing and finding
interfaces. And, as the use of Web Services grows and the industry matures, more dynamic
models of application integration will develop. Eventually systems integration through Web
Services will happen dynamically at runtime. Just-in-time integration will herald a new era of
business-to-business integration over the Internet.

Definition of Web ServicesDefinition of Web ServicesDefinition of Web ServicesDefinition of Web Services
A Web service is an interface that describes a collection of operations that are network-
accessible through standardized XML messaging. A Web service is described using a
standard, formal XML notion, called its service description. It covers all the details necessary to
interact with the service, including message formats (that detail the operations), transport
protocols and location. The interface hides the implementation details of the service, allowing it
to be used independently of the hardware or software platform on which it is implemented and
also independently of the programming language in which it is written. This allows and
encourages Web Services-based applications to be loosely coupled, component-oriented,
cross-technology implementations. Web Services fulfill a specific task or a set of tasks. They can
be used alone or with other Web Services to carry out a complex aggregation or a business
transaction.

IBM Software Group Web Services Overview

Web Services Conceptual Architecture 7

The Web Services ModelThe Web Services ModelThe Web Services ModelThe Web Services Model
The Web Services architecture is based upon the interactions between three roles: service
provider, service registry and service requestor. The interactions involve the publish, find and
bind operations. Together, these roles and operations act upon the Web Services artifacts: the
Web service software module and its description. In a typical scenario, a service provider hosts
a network-accessible software module (an implementation of a Web service). The service
provider defines a service description for the Web service and publishes it to a service
requestor or service registry. The service requestor uses a find operation to retrieve the service
description locally or from the service registry and uses the service description to bind with the
service provider and invoke or interact with the Web service implementation. Service provider
and service requestor roles are logical constructs and a service can exhibit characteristics of
both. Figure 1 illustrates these operations, the components providing them and their interactions.

Service
Requestor

Service
Registry

Service
ProviderBind

PublishFind

Service

WSDL, UDDIWSDL, UDDI

Service
Description

Service
Description

Figure 1. Web Services roles, operations and artifacts

Roles in a Web Services ArchitectureRoles in a Web Services ArchitectureRoles in a Web Services ArchitectureRoles in a Web Services Architecture

• Service provider. Service provider. Service provider. Service provider. From a business perspective, this is the owner of the service. From an
architectural perspective, this is the platform that hosts access to the service.

• Service requestor. Service requestor. Service requestor. Service requestor. From a business perspective, this is the business that requires
certain functions to be satisfied. From an architectural perspective, this is the application
that is looking for and invoking or initiating an interaction with a service. The service
requestor role can be played by a browser driven by a person or a program without a
user interface, for example another Web service.

IBM Software Group Web Services Overview

Web Services Conceptual Architecture 8

• Service registry. Service registry. Service registry. Service registry. This is a searchable registry of service descriptions where service
providers publish their service descriptions. Service requestors find services and obtain
binding information (in the service descriptions) for services during development for
static binding or during execution for dynamic binding. For statically bound service
requestors, the service registry is an optional role in the architecture, because a service
provider can send the description directly to service requestors. Likewise, service
requestors can obtain a service description from other sources besides a service
registry, such as a local file, FTP site, Web site, Advertisement and Discovery of
Services (ADS) or Discovery of Web Services (DISCO).

Operations in a Web Service ArchitectureOperations in a Web Service ArchitectureOperations in a Web Service ArchitectureOperations in a Web Service Architecture
For an application to take advantage of Web Services, three behaviors must take place:
publication of service descriptions, lookup or finding of service descriptions, and binding or
invoking of services based on the service description. These behaviors can occur singly or
iteratively. In detail, these operations are:

• Publish. Publish. Publish. Publish. To be accessible, a service description needs to be published so that the
service requestor can find it. Where it is published can vary depending upon the
requirements of the application (see “Service Publication” for more details).

• Find. Find. Find. Find. In the find operation, the service requestor retrieves a service description directly
or queries the service registry for the type of service required (see “Service Discovery”
for more details). The find operation can be involved in two different lifecycle phases for
the service requestor: at design time to retrieve the service’s interface description for
program development, and at runtime to retrieve the service’s binding and location
description for invocation.

• Bind. Bind. Bind. Bind. Eventually, a service needs to be invoked. In the bind operation the service
requestor invokes or initiates an interaction with the service at runtime using the binding
details in the service description to locate, contact and invoke the service.

Artifacts of a Web ServiceArtifacts of a Web ServiceArtifacts of a Web ServiceArtifacts of a Web Service

• Service. Service. Service. Service. Where a Web service is an interface described by a service description, its
implementation is the service. A service is a software module deployed on network-
accessible platforms provided by the service provider. It exists to be invoked by or to
interact with a service requestor. It can also function as a requestor, using other Web
Services in its implementation.

• Service Description.Service Description.Service Description.Service Description. The service description contains the details of the interface and
implementation of the service. This includes its data types, operations, binding
information and network location. It could also include categorization and other meta-
data to facilitate discovery and utilization by service requestors. The service description
might be published to a service requestor or to a service registry.

The Web Services architecture explains how to instantiate the elements and implement the
operations in an interoperable manner.

Web Services Development LifecycleWeb Services Development LifecycleWeb Services Development LifecycleWeb Services Development Lifecycle
The Web Services development lifecycle includes the design, deployment, and runtime
requirements for each of the roles: service registry, service provider and service requestor. Each
role has specific requirements for each element of the development lifecycle. The development
and deployment of a service registry is outside the scope of this paper.

IBM Software Group Web Services Overview

Web Services Conceptual Architecture 9

The development lifecycle can have four phases:

1.1.1.1. BuildBuildBuildBuild

The build phase of the lifecycle includes development and testing of the Web service
implementation, the definition of the service interface description and the definition of the
service implementation description. Web service implementations can be provided by
creating new Web Services, transforming existing applications into Web Services, and
composing new Web Services from other Web Services and applications.

2.2.2.2. DeployDeployDeployDeploy

The deploy phase includes the publication of the service interface and service
implementation definition to a service requestor or service registry and deployment of the
executables for the Web service into an execution environment (typically, a Web application
server).

3.3.3.3. RunRunRunRun

During the run phase, the Web service is available for invocation. At this point, the Web
service is fully deployed, operational and network-accessible from the service provider. Now
the service requestor can perform the find and bind operations.

4.4.4.4. ManageManageManageManage

The manage phase covers ongoing management and administration of the Web service
application. Security, availability, performance, quality of service and business processes
must all be addressed.

The details of each of these lifecycle phases are discussed in the Web Services Development
Concepts paper.

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 10

Architecture OverviewArchitecture OverviewArchitecture OverviewArchitecture Overview
We can examine the IBM Web Services architecture in several layers. First, we will look at a
conceptual stack for Web Services and the stack details. Then we will discuss the criteria for
choosing the network protocol. We will also review basic XML-based messaging distributed
computing. We extend basic XML messaging with service description, which is explained in
terms of a service description stack. Following this, we discuss the role of service description in
the Web Services architecture, illustrating the range of service publication techniques
supporting static and dynamic Web Services applications. Related to service publication, we
discuss the role of service discovery. Finally, we describe extensions of the basic Web Services
architecture required to make Web Services viable for e-business.

The Web Services StackThe Web Services StackThe Web Services StackThe Web Services Stack
To perform the three operations of publish, find and bind in an interoperable manner, there must
be a Web Services stack that embraces standards at each level. Figure 2 shows a conceptual
Web Services stack. The upper layers build upon the capabilities provided by the lower layers.
The vertical towers represent requirements that must be addressed at every level of the stack.
The text on the left represents standard technologies that apply at that layer of the stack.

HTTP, FTP, email,
MQ, IIOP, etc.

SOAP

WSDL

Direct UDDI

Static UDDI

WSFL

Q
uality O

f Service

Service Flow

M
anagem

ent

Security

Service Publication

Service Discovery

Network

Service Description

XML-Based Messaging

The Conceptual Web Services Stack

Figure 2. Web Services conceptual stack

The foundation of the Web Services stack is the network. Web Services must be network-
accessible to be invoked by a service requestor. Web Services that are publicly available on the
Internet use commonly deployed network protocols. Because of its ubiquity, HTTP is the de
facto standard network protocol for Internet-available Web Services. Other Internet protocols
can be supported, including SMTP and FTP. Intranet domains can use reliable messaging and

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 11

call infrastructures like MQSeries , CORBA, and so on. The section “The Network” describes
this layer in more detail.

The next layer, XML-based messaging, represents the use of XML as the basis for the
messaging protocol. SOAP is the chosen XML messaging protocol for many reasons:

• It is the standardized enveloping mechanism for communicating document-centric
messages and remote procedure calls using XML.

• It is simple; it is basically an HTTP POST with an XML envelope as payload.

• It is preferred over simple HTTP POST of XML because it defines a standard mechanism
to incorporate orthogonal extensions to the message using SOAP headers and a
standard encoding of operation or function.

• SOAP messages support the publish, find and bind operations in the Web Services
architecture. The section “XML Messaging-Based Distributed Computing” describes this
layer in more detail.

The service description layer is actually a stack of description documents. First, WSDL is the de
facto standard for XML-based service description. This is the minimum standard service
description necessary to support interoperable Web Services. WSDL defines the interface and
mechanics of service interaction. Additional description is necessary to specify the business
context, qualities of service and service-to-service relationships. The WSDL document can be
complemented by other service description documents to describe these higher level aspects of
the Web service. For example, business context is described using UDDI data structures in
addition to the WSDL document. Service composition and flow are described in a Web Services
Flow Language (WSFL) document. The section “Service Description: From XML Messaging to
Web Services” describes this layer in more detail.

Because a Web service is defined as being network-accessible via SOAP and represented by a
service description, the first three layers of this stack are required to provide or use any Web
service. The simplest stack would consist of HTTP for the network layer, the SOAP protocol for
the XML messaging layer and WSDL for the service description layer. This is the interoperable
base stack that all inter-enterprise, or public, Web Services should support. Web Services,
especially intra-enterprise, or private, Web Services, can support other network protocols and
distributed computing technologies. Figure 3 depicts the interoperable base stack.

HTTP

SOAP

WSDL

Network

Service Description

XML-Based Messaging

Figure 3. Interoperable base Web Services stack

The stack depicted in Figure 3 provides for interoperability and enables Web Services to
leverage the existing Internet infrastructure. This creates a low cost of entry to a ubiquitous

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 12

environment. Flexibility is not compromised by the interoperability requirement, because
additional support can be provided for alternative and value-add technologies. For example,
SOAP over HTTP must be supported, but SOAP over MQ can be supported as well.

While the bottom three layers of the stack identify technologies for compliance and
interoperability, the next two layers service publication and service discovery can be
implemented with a range of solutions.

Any action that makes a WSDL document available to a service requestor, at any stage of the
service requestor’s lifecycle, qualifies as service publication. The simplest, most static example
at this layer is the service provider sending a WSDL document directly to a service requestor.
This is called direct publication. E-mail is one vehicle for direct publication. Direct publication is
useful for statically bound applications. Alternatively, the service provider can publish the WSDL
document describing the service to a host local WSDL registry, private UDDI registry or the
UDDI operator node. The variety of service publication mechanisms is discussed in more detail
in the section “Service Publication.”

Because a Web service cannot be discovered if it has not been published, service discovery
depends upon service publication. The variety of discovery mechanisms at this layer parallels
the set of publication mechanisms. Any mechanism that allows the service requestor to gain
access to the service description and make it available to the application at runtime qualifies as
service discovery. The simplest, most static example of discovery is static discovery wherein the
service requestor retrieves a WSDL document from a local file. This is usually the WSDL
document obtained through a direct publish or the results of a previous find operation.
Alternatively, the service can be discovered at design time or runtime using a local WSDL
registry, a private UDDI registry or the UDDI operator node. The variety of service discovery
mechanisms is discussed in more detail in the section “Service Discovery.”

Because a Web service’s implementation is a software module, it is natural to produce Web
Services by composing Web Services. A composition of Web Services could play one of several
roles. Intra-enterprise Web Services might collaborate to present a single Web service interface
to the public, or the Web Services from different enterprises might collaborate to perform
machine-to-machine, business-to-business transactions. Alternatively, a workflow manager
might call each Web service as it participates in a business process. The topmost layer, service
flow, describes how service-to-service communications, collaborations, and flows are
performed. WSFL is used to describe these interactions. The topic of Web Services flows is
covered in its own section “Business Processes, Workflows and Web Services.”

For a Web Services application to meet the stringent demands of today’s e-businesses,
enterprise-class infrastructure must be supplied, including security, management and quality of
service. These vertical towers must be addressed at each layer of the stack. The solutions at
each layer can be independent of each other. More of these vertical towers will emerge as the
Web Services paradigm is adopted and evolved. We discuss these vertical towers in more detail
in the section “Web Services for Real e-business.”

The bottom layers of this stack, representing the base Web Services stack, are relatively mature
and more standardized than the layers higher in the stack. The maturation and adoption of Web
Services will drive the development and standardization of the higher levels of the stack and the
vertical towers.

The NetworkThe NetworkThe NetworkThe Network
At the base of the Web Services stack is the network. This layer can represent any number of
network protocols: HTTP, FTP, SMTP, Message Queuing (MQ), Remote Method Invocation (RMI)

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 13

over Internet Inter ORB Protocol (IIOP), e-mail, and so on. The network protocol used in any
given situation depends on application requirements.

For Web Services accessible from the Internet, the network technology choices will favor
ubiquitously deployed protocols such as HTTP. For Web Services being provided and
consumed within an Intranet, there is the opportunity to agree upon the use of alternative
network technologies. The network technology can be chosen based on other requirements,
including security, availability, performance and reliability. This allows Web Services to capitalize
on existing higher-function networking infrastructures and message-oriented middleware, such
as MQSeries. Within an enterprise with multiple types of network infrastructures, HTTP can be
used to bridge between them.

One of the benefits of Web Services is that it provides a unified programming model for the
development and usage of private Intranet and public Internet services. As a result, the choice
of network technology will be transparent to the developer of the service.

XML Messaging-Based Distributed ComputingXML Messaging-Based Distributed ComputingXML Messaging-Based Distributed ComputingXML Messaging-Based Distributed Computing
The most fundamental underpinnings of the IBM Web Services architecture is XML messaging.
The current industry standard for XML messaging is SOAP. IBM, Microsoft and others
submitted SOAP to the W3C as the basis of the XML Protocol Working Group. The XML protocol
will replace SOAP as the industry-standard XML messaging protocol. When the W3C has
released a draft standard for the XML protocol, the IBM Web Services architecture will migrate
from SOAP to the XML protocol.

SOAP is a simple and lightweight XML-based mechanism for exchanging structured data
between network applications. SOAP consists of three parts: an envelope that defines a
framework for describing what is in a message, a set of encoding rules for expressing instances
of application-defined data types, and a convention for representing remote procedure calls
(RPCs) and responses. SOAP can be used in combination with or re-enveloped by a variety of
network protocols such as HTTP, SMTP, FTP, RMI over IIOP or MQ.

While it is important to understand this foundation, most Web service developers will not have to
deal with this infrastructure directly. Most Web Services will use optimized programming
language-specific bindings generated from WSDL. This optimization can be especially valuable
when a service provider and requestor are both executing in similar environments.

Figure 4 shows how XML messaging (that is, SOAP) and network protocols forms the basis of
the IBM Web Services architecture.

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 14

Request
(service invocation)

Response

Application

Service Requestor

SOAP

Network Protocol

Application
web service

Service Provider

SOAP

Network Protocol

1 234

Figure 4. XML messaging using SOAP

The basic requirements for a network node to play the role of requestor or provider in XML
messaging-based distributed computing are the ability to build, parse a SOAP message, or
both, and the ability to communicate over a network (receive, send messages, or both).

Typically, a SOAP server running in a Web application server performs these functions.
Alternatively, a programming language-specific runtime library can be used that encapsulates
these functions within an API. Application integration with SOAP can be achieved by using four
basic steps:

1. In Figure 4, at (1) a service requestor’s application creates a SOAP message. This
SOAP message is the request that invokes the Web service operation provided by the
service provider. The XML document in the body of the message can be a SOAP RPC
request or a document-centric message as indicated in the service description. The
service requestor presents this message together with the network address of the
service provider to the SOAP infrastructure (for example, a SOAP client runtime). The
SOAP client runtime interacts with an underlying network protocol (for example HTTP) to
send the SOAP message out over the network.

2. At (2) the network infrastructure delivers the message to the service provider’s SOAP
runtime (for example a SOAP server). The SOAP server routes the request message to
the service provider's Web service. The SOAP runtime is responsible for converting the
XML message into programming language-specific objects if required by the
application. This conversion is governed by the encoding schemes found within the
message.

3. The Web service is responsible for processing the request message and formulating a
response. The response is also a SOAP message. At (3) the response SOAP message is

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 15

presented to the SOAP runtime with the service requestor as the destination. In the case
of synchronous request/response over HTTP, the underlying request/response nature of
the networking protocol is used to implement the request/response nature of the
messaging. The SOAP runtime sends the SOAP message response to the service
requestor over the network.

4. At (4) the response message is received by the networking infrastructure on the service
requestor’s node. The message is routed through the SOAP infrastructure; potentially
converting the XML message into objects in a target programming language. The
response message is then presented to the application.

This example uses the request/response transmission primitive that is quite common in most
distributed computing environments. The request/response exchange can be synchronous or
asynchronous. Other transmission primitives such as one-way messaging (no response),
notification (push-style response), publish/subscribe are possible using SOAP.

Now, how does the service requestor know what format the request message should use? This
question is addressed this in the next section.

Service Description: From XML Messaging to WebService Description: From XML Messaging to WebService Description: From XML Messaging to WebService Description: From XML Messaging to Web
ServicesServicesServicesServices
It is through the service description that the service provider communicates all the specifications
for invoking the Web service to the service requestor. The service description is key to making
the Web Services architecture loosely coupled and reducing the amount of required shared
understanding and custom programming and integration between the service provider and the
service requestor. For example, neither the requestor nor the provider must be aware of the
other's underlying platform, programming language, or distributed object model (if any). The
service description combined with the underlying SOAP infrastructure sufficiently encapsulates
this detail away from the service requestor's application and the service provider’s Web service.

The Basic Service DescriptionThe Basic Service DescriptionThe Basic Service DescriptionThe Basic Service Description
The IBM Web Services architecture uses WSDL for base-level service description. WSDL has
been submitted to the W3C for standardization. WSDL is an XML document for describing Web
Services as a set of endpoints operating on messages containing either document-oriented or
procedure-oriented (RPC) messages. The operations and messages are described abstractly,
and then bound to a concrete network protocol and message format to define an endpoint.
Related concrete endpoints are combined into abstract endpoints or services. WSDL is
extensible to allow description of endpoints and their messages, regardless of what message
formats or network protocols are used to communicate. However, the only currently described
bindings are for SOAP 1.1, HTTP POST, and Multipurpose Internet Mail Extensions (MIME).

The use of WSDL in the IBM Web Services architecture conventionally divides the basic service
description into two parts: the service interface and the service implementation. This enables
each part to be defined separately and independently, and reused by other parts.

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 16

Service

Interface
Definition

Service
Implementation

Definition

Service

Port

Binding

Message

Type

PortType

Figure 5. Basic service description

A service interface definition is an abstract or reusable service definition that can be instantiated
and referenced by multiple service implementation definitions. Think of a service interface
definition as an Interface Definition Language (IDL), Java interface or Web service type. This
allows common industry-standard service types to be defined and implemented by multiple
service implementers. This is analogous to defining an abstract interface in a programming
language and having multiple concrete implementations. Service interfaces can be defined by
industry standards organizations such as RosettaNet, or HL7 for the health industry.

The service interface contains WSDL elements that comprise the reusable portion of the service
description: WSDL:binding, WSDL:portType, WSDL:message and WSDL:type elements as
depicted in Figure 5. In the WSDL:portType element, the operations of the Web service are
defined. The operations define what XML messages can appear in the input and output data
flows. Think of an operation as a method signature in a programming language. The
WSDL:message element specifies which XML data types constitute various parts of a message.
WSDL:message element is used to define the input and output parameters of an operation. The
use of complex data types within the message is described in the WSDL:types element. The
WSDL:binding element describes the protocol, data format, security and other attributes for a
particular service interface (WSDL:portType).

The service implementation definition is a WSDL document that describes how a particular
service interface is implemented by a given service provider. A Web service is modeled as a
WSDL:service element. A service element contains a collection (usually one) of WSDL:port
elements. A port associates an endpoint (for example, a network address location or URL) with a
WSDL:binding element from a service interface definition.

To illustrate the allocation of responsibility, the Open Applications Group (OAG) might define a
service interface definition for the Open Applications Group Integration Specification (OAGIS)
purchase-order standard. This service interface definition would define WSDL:type,
WSDL:message, WSDL:portType and WSDL:binding. This specification would be published at
some well-known site (for example http://www.openapplications.org/).

A service provider can choose to develop a Web service that implements the OAGIS purchase
order service interface. The service provider would develop a service implementation definition

http://www.openapplications.org/serviceInterfaces/

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 17

document that describes the WSDL service, port and address location elements that describe
the network address of the provider’s Web service and other implementation-specific details.

The service interface definition together with the service implementation definition makes up a
complete WSDL definition of the service. This pair contains sufficient information to describe to
the service requestor how to invoke and interact with the Web service. The service requestor
can require other information about the service provider’s endpoint. This information is provided
by the complete Web service description of the service.

The Complete Web Service DescriptionThe Complete Web Service DescriptionThe Complete Web Service DescriptionThe Complete Web Service Description
The complete Web service description builds on the basic WSDL definition of the service. The
complete Web service description addresses questions such as: What business is hosting this
service and what kind of business is it? What products are associated with this service? With
what categories in various company and product taxonomies is this business or its Web service
associated? Are there other aspects of the service (such as Quality of Service) that can
influence whether a requestor would choose to invoke the service? What keywords can be
provided so that it is easier to find this service?

A complete Web service description is depicted in Figure 6.

Service Interface
Definition

Service Implementation
Definition

End point Description

Agreement Description

WSDL

WSDL

UDDI +
WSEL

work in progress

Figure 6. Complete Web Services description stack

UDDI provides a mechanism for holding descriptions of Web Services. Although UDDI is often
thought of as a directory mechanism, it also defines a data structure standard for representing
service description information in XML. There are four fundamental data structures in a UDDI
entry, as depicted in Figure 7.

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 18

Figure 7. Basic UDDI data structures

A UDDI entry starts with a businessEntity. A businessEntity element models information about a
business, including basic business information (for example, What is the business name and
contact information?), categorization information (for example, What kind of business is this?),
and identifier information (that is, What is the Dunn and Bradstreet number?). A businessEntity
contains a collection of businessService elements, one for each Web service the business
wishes to publish. Each businessService element contains technical and descriptive information
about a businessEntity element’s Web service. A businessService contains a collection of
bindingTemplate elements. A bindingTemplate describes the access information (for example,
the endpoint address) and describes how the businessService uses various technical
specifications. A technical specification is modeled as a tModel. A tModel can model many
different concepts such as: a type of service, a platform technology such as HTTPS or a
taxonomy. The collection of bindingTemplate elements associated with a businessService
represents a fingerprint of the technologies used by the businessService.

In the IBM Web Services architecture, the complete Web service description includes a layer for
an endpoint description that uses the UDDI entry to add business and implementation context to
the service description. The endpoint description follows the convention proposed by IBM for
using UDDI in combination with WSDL. The endpoint description uses UDDI to provide standard
representation of business information and taxonomies. The UDDI-WSDL convention outlines
how the WSDL description of the service interface definition and the service implementation
definition can be derived from the UDDI entries associated with the Web service. This
convention is critical to using UDDI as a service registry for WSDL-based services in the IBM
Web Services architecture.

The endpoint description adds additional semantics to the service description that apply to a
particular implementation of the service. Security attributes can define the policy governing
access to the Web service. Quality of Service attributes will specify performance-oriented
capabilities, for example, the service’s ability to respond within a certain period of time or the
level of reliable messaging supported. Cost of Service attributes will describe the service’s
resource requirements. What conversation semantics are supported could also be defined.

The final layer in the service description stack is the agreement description. An agreement
description reflects a simple choreography of Web service invocations between two business

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 19

partners to complete a multistep business interaction. For example, an agreement definition
defines roles such as buyer and seller within a purchasing protocol. The agreement definition
outlines the requirements that each role must fulfill. For example, the seller must have Web
Services that receive request for quote (RFQ) messages, purchase order (PO) messages and
payment messages. The buyer role must have Web Services that receive quotes (RFQ response
messages), invoice messages and account summary messages. This simple choreography of
Web Services into business roles is critical for establishing multistep, service-oriented
interactions between business partners. A given service requestor or service provider might be
able to play the buyer or seller role in a number of different business agreement standards. By
explicitly modeling business agreements and each node’s ability to play roles in the business
agreement, the requestor can choose which business agreement to engage in with various
provider business partners.

This area is rich with innovation. Currently there is no single standard for business protocol
definition. The ebXML Collaboration-Protocol Profile and Agreement Specification describes
these concepts, but is not based on the Web Services techniques described as part of this
architecture. The Web Services flow description and Web Services endpoint description layers
are being developed to provide this level of service description.

Publication and Discovery of Service DescriptionsPublication and Discovery of Service DescriptionsPublication and Discovery of Service DescriptionsPublication and Discovery of Service Descriptions

Service PublicationService PublicationService PublicationService Publication
The publication of Web Services includes the production of the service descriptions and the
subsequent publishing. Publishing can use a variety of mechanisms.

Producing Service DescriptionsProducing Service DescriptionsProducing Service DescriptionsProducing Service Descriptions

The service description can be generated, hand-coded, or pieced together based on existing
service interface definitions. Developers can hand-code the entire service description, including
the UDDI entry. Tools exist to generate parts of the WSDL and potentially parts of the UDDI entry
from meta-data artifacts from the programming model and the deployment of the Web service
executable. Parts of the service description can already exist (for example the Web service can
be based on an industry-standard service interface definition) such that very little needs to be
further generated.

Publishing Service DescriptionsPublishing Service DescriptionsPublishing Service DescriptionsPublishing Service Descriptions

A service description can be published using a variety of mechanisms. These various
mechanisms provide different capabilities depending on how dynamic the application using the
service is intended to be. The service description can be published to multiple service registries
using several different mechanisms.

The simplest case is a direct publish. A direct publish means the service provider sends the
service description directly to the service requestor. This can be accomplished using an e-mail
attachment, an FTP site or even a CD-ROM distribution. Direct publish can occur after two
business partners have agreed on terms of doing e-business over the Web, or after fees have
been paid by the service requestor for access to the service. In this case, the service requestor
can maintain a local copy of the service description.

Slightly more dynamic publication uses DISCO or ADS. Both DISCO and ADS define a simple
HTTP GET mechanism to retrieve Web Services descriptions from a given URL. An enhanced
service description repository would provide a local cache of service descriptions, but with
additional search capabilities.

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 20

For service description repositories that span hosts within an enterprise, a service provider
would publish to a private UDDI node. There are several types of private UDDI nodes that can
be used depending on the scope of the domain of Web Services published to it.

• Internal Enterprise ApplicationInternal Enterprise ApplicationInternal Enterprise ApplicationInternal Enterprise Application UDDI nodeUDDI nodeUDDI nodeUDDI node: Web Services for use within a company for
internal enterprise applications integration should be published to a UDDI node of this
kind. The scope of this UDDI node can be single application, departmental or corporate.
These UDDI nodes sit behind the firewall and allow the service publishers more control
over their service registry and its accessibility, availability and publication requirements.

• PortalPortalPortalPortal UDDI nodeUDDI nodeUDDI nodeUDDI node: Web Services published by a company for external partners to find
and use can use a portal UDDI node. A portal UDDI node runs outside the service
provider’s firewall or between firewalls. This kind of private UDDI node contains only
those service descriptions that a company wishes to provide to service requestors from
external partners. This allows companies to retain control of their service descriptions,
access to the UDDI node and quality of service for the UDDI nodes. Moreover, by using
the role-based visibility inherent in portals, the enterprise limits visibility of service
descriptions to the partners authorized to see their existence.

• Partner CatalogPartner CatalogPartner CatalogPartner Catalog UDDI nodeUDDI nodeUDDI nodeUDDI node: Web Services to be used by a particular company can be
published to a partner catalog UDDI node. A partner catalog UDDI node sits behind the
firewall. This kind of private UDDI node contains only approved, tested and valid Web
service descriptions from legitimate business partners. The business context and meta-
data for these Web Services can be targeted to the specific requestor.

• E-MarketplaceE-MarketplaceE-MarketplaceE-Marketplace UDDI nodeUDDI nodeUDDI nodeUDDI node: For Web Services that the service provider intends to
compete for requestors' business with other Web Services, the service description
should be published to an e-marketplace UDDI node or the UDDI operator node. E-
marketplace UDDI nodes are hosted by an industry standards organization or
consortium and contain service descriptions from businesses in a particular industry.
These services can be required to support specific standards, searchable meta-data,
interfaces, or data types. E-marketplace UDDI nodes will generally provide some
filtering of illegitimate entries and some guaranteed qualities of service.

UDDI Operator node: Web Services might also wish to publish to the UDDI Operator node in
hopes of being discovered by new potential business partners or service users. The UDDI
operator node is supported, replicated and hosted by IBM, Microsoft and Ariba. When
publishing the UDDI operator node, complete business context and well-thought-out taxonomies
are essential if the service is to be found by potential service requestors.

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 21

simple

High
function

static
find

dynamic
find

e-mail, FTP, HTTP GET

DISCO/ADS

WSDL-respository

UDDI
(private or
operator)

Figure 8. Service discovery continuum

Figure 8 shows the continuum from the most static, easiest technologies for publish and
discovery to the most dynamic, more complex technologies. Users or implementers of Web
Services might not follow this progression in strict sequence.

Service DiscoveryService DiscoveryService DiscoveryService Discovery
The discovery of Web Services includes the acquiring of the service descriptions and the
consuming of the descriptions. Acquiring can use a variety of mechanisms

Acquiring Service DescriptionsAcquiring Service DescriptionsAcquiring Service DescriptionsAcquiring Service Descriptions

Like publishing Web service descriptions, acquiring Web service descriptions will vary
depending on how the service description is published and how dynamic the Web service
application is meant to be. Service requestors will find Web Services during two different phases
of an application lifecycle design time and runtime. At design time, service requestors search
for Web service descriptions by the type of interface they support. At runtime, service requestors
search for a Web service based on how they communicate or qualities of service advertised.

With the direct publish approach, the service requestor caches the service description at design
time for use at runtime. The service description can be statically represented in the program
logic, stored in a file or in a simple, local service description repository.

Service requestors can retrieve a service description at design time or runtime from a service
description repository, a simple service registry or a UDDI node. The look-up mechanism needs
to support a query mechanism that provides find by type of interface (based on a WSDL
template), the binding information (that is, protocols), properties (such as QOS parameters), the
types of intermediaries required, the taxonomy of the service, business information, and so on.

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 22

The various types of UDDI nodes have implications on the number of runtime binding Web
Services to choose from, the policy for choosing one among many, or the amount of
prescreening that must be done by the requestor before invoking the service.

Internal enterprise application UDDI nodes and partner catalog UDDI nodes will require no
prescreening to establish trust of the service. Service selection can be based on binding
support, historical performance, quality of service classification, proximity, or load balancing.

E-marketplace UDDI nodes will have more runtime services to choose from. Some prescreening
must be done to verify that the Web service provider is a worthy partner. A service can be
chosen based on price promises, cost, presence on approved partners list, as well as binding
support, historical performance, quality of service classifications and proximity.

If service requestors query the UDDI operator node for Web service providers, they will have to
exercise the most caution and diligence when prescreening potential service providers. An
efficient and accurate mechanism should be in place to filter out garbage service descriptions
and unworthy service providers.

Consuming Service DescriptionsConsuming Service DescriptionsConsuming Service DescriptionsConsuming Service Descriptions

After a service description is acquired, the service requestor needs to process it to invoke the
service. The service requestor uses the service description to generate SOAP requests or
programming language-specific proxies to the Web service. This generation can be done at
design time or at runtime to format an invocation to the Web service. Various tools can be used
at design time or runtime to generate programming language bindings from WSDL documents.
These bindings present an API to the application program and encapsulate the details of the
XML messaging from the application.

Web Services for Real e-businessWeb Services for Real e-businessWeb Services for Real e-businessWeb Services for Real e-business
While SOAP and HTTP are sufficient for interoperable XML messaging, and WSDL is sufficient to
communicate what messages are required between service requestor and service provider,
more is needed to cover the full range of requirements for e-business. To fully support e-
business, extensions are needed for security, reliable messaging, quality of service, and
management for each layer of the Web Services stack. Additional requirements for a Web
Services infrastructure include support for service context, conversations and activities,
intermediaries, portal integration and service flow management.

The interdependence of these mechanisms to provide reliability and security makes it clear that
the two concerns should be part of an integrated strategy.

SecuritySecuritySecuritySecurity
Is a Web Services security layer really required? The industry already has a set of existing and
widely accepted transport-layer security mechanisms for message-based architectures such as
Secure Sockets Layer (SSL) and Internet Protocol Security (IPSec), why add another? To
answer that question we will examine the requirements and explore several scenarios in which
the security provided by the various existing transport layer security mechanisms alone does not
provide adequate security in a Web Services model.

In general, there are four basic security requirements that the Web Services security layer must
provide:

• ConfidentialityConfidentialityConfidentialityConfidentiality is the property that information is not made available or disclosed to
unauthorized individuals, entities, or processes, and guarantees that the contents of the
message are not disclosed to unauthorized individuals.

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 23

• AuthorizationAuthorizationAuthorizationAuthorization is the granting of authority, which includes the granting of access based
on access rights and guarantees that the sender is authorized to send a message.

• Data integrityData integrityData integrityData integrity is the property that data has not been undetectably altered or destroyed in
an unauthorized manner or by unauthorized users thereby insuring that the message
was not modified accidentally or deliberately in transit.

• Proof of originProof of originProof of originProof of origin is evidence identifying the originator of a message or data. It asserts that
the message was transmitted by a properly identified sender and is not a replay of a
previously transmitted message. This requirement implies data integrity.

The need to manage different styles of resource access in a dynamic world of Web Services
based on XML messaging and workflow necessitates a reevaluation of the relationship between
policy, trust and risk assessment. Existing access control models based on an individual identity
are evolving into a role-based trust domain relationship in which an individual is acting under the
authority granted to it by a trusted authority to perform a particular task. The IBM Web Services
architecture defines agents that want information (service requestors) and agents that provide
information (service providers), and sometimes agents that provide information about
information (service brokers, meta information providers or service registries). The service
broker gets a lot of requests for its information and it needs to be able to decide who wants what
and whether or not they are granted access. Infrastructures and relationships change quickly
and the policies governing them need to be flexible in allowing or denying access.

And, while XML holds the promise of providing a common interface to such services, it does not
provide the entire infrastructure needed to implement such a vision. Further, XML might not be
appropriate for building the entire Web Services security layer. The goal is to identify where it is
important to provide information in an XML format to allow for common data exchange, and
where it is important to utilize the existing security mechanism that exist on platforms today.

The SOAP envelope is defined in XML and enables you to add a large variety of meta-
information to the message, such as transaction IDs, message routing information and message
security. The SOAP envelope consists of two parts: header and body. The header is a generic
mechanism for adding features to a SOAP message. All immediate child elements of the SOAP
header element are called header entries. The body is a container for application data such as
RPC intended for the ultimate recipient of the message. Thus, SOAP can be considered to
introduce another layer between the transport layer (for example, HTTP) and the application
layer (for example, business data), which is a convenient place for conveying message meta-
information.

The SOAP header provides an extensible mechanism for extending a SOAP message for many
uses. The SOAP header is the most rational place to add security features to messages, but the
SOAP specification itself does not specify such header elements.

Let’s take a closer look at why the various existent transport layer security mechanisms are not
sufficient in a Web Services model, why there is a requirement for a Web Services security layer
and what that layer looks like initially.

End-to-EndEnd-to-EndEnd-to-EndEnd-to-End. Secure transport protocols such as SSL and IPSec can provide the integrity and
confidentiality of the message during transmission, but they do so only for point-to-point.
However, because SOAP messages are received and processed by intermediaries, secure end-
to-end communication is not possible if there is no trust association among all the
intermediaries, even though the communication links between them are trusted. End-to-end
security is also compromised if one of the communication links is not secured. In looking at the

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 24

Web Services topologies, secure transports are not sufficient for end-to-end security of the
SOAP message.

Middleware IndependenceMiddleware IndependenceMiddleware IndependenceMiddleware Independence. Ultimately, the only way to provide end-to-end security is at the
application or middleware level. If there is any point between the communicating parties at
which messages are in plain text, it can be a potential point of attack. However, it is not an easy
or desirable task to integrate cryptographic functionality into a new or existing application
without introducing additional security vulnerabilities and increasing risk. It is thus desirable, in
most cases, to have security functionality as close to the application as possible but not built in
the application itself.

Transport Independence.Transport Independence.Transport Independence.Transport Independence. One of the intended uses of SOAP intermediaries is to forward
messages to different networks, often using different transport protocols. Even if all the
communication links are secured and the intermediaries can be trusted, security information
such as the authenticity of the originator of the message needs to be translated to the next
security domain of the transport protocol along the message path, which could be tedious and
complex, and could lead to integrity flaws.

Asynchronous Multihop Messages.Asynchronous Multihop Messages.Asynchronous Multihop Messages.Asynchronous Multihop Messages. Transport layer security secures the data when traveling on
communication links. It has nothing to do with data stored on any intermediaries. After a
transmission is received and decrypted, transport layer security does not help much in
protecting the data from unauthorized accesses and potential alterations. In situations where
messages are stored and then forwarded (persistent message queues), message layer
protection is necessary.

Because we have seen that secure transport mechanisms are not sufficient to meet the
requirements of a Web Services development approach and usage scenarios, the task is to
create a conceptual Web Security layer that consists of the following components:

1. For network security:

a. Support for secure transport mechanisms such as SSL and HTTPS that provide
confidentiality and integrity.

2. For XML messages:

a. If communication does not have intermediate hops, the sender can rely on SSL
or HTTPS for user ID and password confidentiality.

b. Support for the XML Digital Signature work is being standardized by the W3C. It
defines a standard SOAP header and algorithms for producing a message
digest and signing the message with the sender’s private key. Thus a recipient
can verify the identity of the originator of the message.

c. Support for in-network, trusted third party authentication services (for example
Kerberos).

The conceptual XML messaging model must also support end-to-end protection of the message
and its subelements. To do this comprehensively, the process and flow capability needs to be
extended to include security characteristics of message exchanges. There should be a way to
define a multisegment message and to protect the segments with the public keys of the
intended recipients. Some of the topics that need to be explored are:

• The endpoint is responsible for implementing authentication and authorization. There
should be support in any description of agreements for exchanging information between
enterprises to define which employees can use which services. Intermediaries are

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 25

responsible for audit and proof of origin. Intermediaries might also need to perform
authentication, authorization, and digital signature verification and validation

• Security-oriented meta-data to support the security issues documented above needs to
be defined in the service description layers for a service endpoint. These security
descriptions will define Web service-level access control, by principal or by role. The
service description will describe if and how digital signing, encryption, authentication
and authorization have been supported.

• Requestors will use the security elements of a service description to find service
endpoints that meet their policy requirements and match their security methodologies.

Standards groups are investigating the following topics and technologies. As these standards
solidify, they will be incorporated into the Web Services security architecture.

• The W3C has a working group for XML Encryption, which will help provide confidentiality
of data elements, so that an authentication exchange can be possible.

• The W3C has published a note on XML Key Management Services (XKMS) which will
help distribute and manage the keys necessary for endpoints to communicate securely.

• OASIS has established a technical committee to define Authorization and Authentication
assertions (SAML). This will help endpoints accept and assert access control rights.

• OASIS has established a technical committee to standardize on the expression of
access control rights (XACML). This will help endpoints be able to parse the SAML
assertions in a consistent manner.

Web Services security architecture is evolving as we continually examine all the threats and
countermeasures that are encountered in the Web Services model.

Quality of ServiceQuality of ServiceQuality of ServiceQuality of Service and Reliable Messaging and Reliable Messaging and Reliable Messaging and Reliable Messaging
The Quality of Service vertical tower provides for the specification of information relevant to each
of the layers of the Web Services conceptual stack. For the network layer, this would imply being
able to use networks of various levels of quality of service.

The need for reliable messaging over the network will drive the choice of network technologies
based on their ability to deliver a high quality of service in this area. Reliable messaging refers to
the ability of an infrastructure to deliver a message once, and only once, to its intended target or
to provide a definite event, possibly to the source, if the delivery cannot be accomplished. The
combination of the network layer and XML messaging will need to support four levels of
messaging qualities of service:

1. Best-Effort:Best-Effort:Best-Effort:Best-Effort: The service requestor sends the message, and the service requestor and
infrastructure do not attempt retransmissions.

2. At-Least-Once:At-Least-Once:At-Least-Once:At-Least-Once: The service requestor makes a request and retries the request until it receives
an acknowledgement. Duplicate message processing by the service provider is not a
problem, for example, simple query processing. In implementation this might mean that each
message contains a unique ID. The service requestor retransmits unacknowledged
messages at an interval that it decides. A service provider sends an acknowledge message,
response messages for an RPC and a cannot process message exception if it cannot
process the request.

3. At-Most-Once:At-Most-Once:At-Most-Once:At-Most-Once: This builds on the at-least-once scenario. The service requestor tries the
request until it gets a reply. A mechanism like existing universal unique identifiers (UUIDs)

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 26

allows the service provider to suppress any duplicate requests, insuring the request is not
executed multiple times. For example, a request to take an item from a number in an
inventory.

4. Exactly-Once:Exactly-Once:Exactly-Once:Exactly-Once: The service requestor makes a request and is guaranteed by the reply that the
request has been executed. The exactly-once mode of interchange eliminates the need to
retransmit requests and accommodates failure scenarios.

Reliable messaging is usually delivered through a standard design pattern in which a piece of
infrastructure, sometimes called an endpoint manager, is employed at each end of the
communication to coordinate the message delivery. In this pattern, the sender delivers the
message to the endpoint manager via a synchronous request. Once delivered to the endpoint
manager, the sender can be assured that the message will be delivered or a definite event will
be raised (for example, a time out). The endpoint manager participates in local transactions with
other resource managers so that queuing the message with the endpoint manager and possibly
recording the business process step in a database can be done in one transaction. The
application should delegate the responsibility for delivering messages, or detecting the failure to
do so, to the endpoint manager, which can function at the network transport level or at the XML
messaging level.

The technology and goals of reliable, one-time message delivery are not in debate. However, an
important question has been raised as to how to support it in the context of SOAP and XML. The
key question is: Should the necessary protocols and message formats be defined at the XML
message level, thus allowing the reliable message delivery to be the responsibility of the two
end applications, or can the protocols and message formats be defined at a lower, transport,
level?

Where a transport that supports reliable messaging is not available, that is, the Internet, the XML
messaging layer will need to support these qualities of service over the nonreliable
infrastructures. The endpoint managers will need to modify the message, rather than just its
transport envelope, to fulfill their role. The applications and business process definitions would
have to be concerned with all possible outcomes, such as the rejection of a message, or the
inability to deliver it in an acceptable amount of time. However, they would also need to be
concerned with the intermediate states that can occur in the delivery process. To expose these
states to the business process would greatly complicate its definition in ways that would not be
meaningful to the business analysts defining the process. To use XML messaging to deliver
reliable messaging formats would make the use of these existing transports very inefficient in
some cases. It would be preferable for a reliable HTTP standard to be developed for use in the
Internet.

Where a transport that supports reliable messaging is available, that is, within an enterprise, it
could be used to deliver reliable messaging instead of the XML messaging layer (which could
default to a null implementation). The endpoint managers would not modify the XML message,
only the transport envelope. Using a reliable transport isolates the applications and business
process definitions from needing to be aware of or handle intermediate states of message
delivery.

In the future, several enhancements will be necessary:

• HTTP for the Internet will need to be improved to provide simple reliable messaging for
use between enterprises. This will provide the added benefit that reliable messaging will
be available to many message types and not just SOAP. This will reduce the need for
the XML messaging layer to handle reliable messaging and promote application
development independently of network choices.

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 27

• The XML messaging layer over HTTP will also need to address publish and subscribe,
message ordering, delivery time constraints, priorities, multicast, and so on.

What quality and implementation of reliable messaging a service provider supports will be
defined in the binding information of the service description.

Quality of Service information is also relevant in the service descriptions at the service
implementation level (for example, bind via transactional or secure SOAP) and others at the
interface level (for example, maximum duration after the requestor expects the provider to
respond.). It is anticipated that WSDL extensions or new service description layers will be
developed to allow specification of other qualities of service and capabilities.

Quality of Service at the Web service level would be used in service composition and service
flow. Expected execution time, timeout values and historical execution averages could all be
input in service selection for a flow or signaling a flow manager that it is time to initiate recovery
or alternative flows. The endpoint description and workflow description layers of the service
description stack will need to provide this information.

The Quality of Service issues and solutions for Web Services are still emerging.

Systems and Application ManagementSystems and Application ManagementSystems and Application ManagementSystems and Application Management
As Web Services become critical to business operations, management of them will be required.
Management in this case means that a management application, either custom built for the
application or purchased from a vendor, can discover the existence, availability and health of
the Web Services infrastructure, Web Services, service registries and Web service applications.
Optimally, the management system should also be able to control and configure the
infrastructure and components.

It must be possible to manage Web Services at all levels of the conceptual Web Services stack
and the Web Services model components. The need for management can be broken down into
two focused areas. The first is the manageability of the infrastructure used to implement Web
Services. The major concerns are to ensure availability and the performance of key elements
that supply the service description, the messaging and the network. The infrastructure providers
of Web Services should provide this level of systems management.

Enterprises will have full autonomy over their own infrastructure and management. However,
when enterprises interact with each other on a peer basis, they should provide basic reporting
and recovery for the network layer, XML messaging layer, service registries, and Web service
implementations. Furthermore, the management interfaces that an enterprise provides to its
partners should operate at the service level, and not at the relatively low level of the
infrastructure. Partners should have access to an interface that reports on the status and health
of operation and request processing, without having to understand the details of how an
enterprise manages its requests.

For the network layer, existing network management products support nearly all current network
infrastructures. These products should be used to manage the network infrastructure for Web
Services within the enterprise. When enterprises interact with each other, they should provide
basic reporting of Web Services infrastructure availability to their partners. Network availability
that impacts the Web Services infrastructure availability should be factored into this reporting.

At the XML messaging layer, the protocol should be managed within the enterprise by existing
infrastructure management tools. Where enterprises interact with each other, it will be necessary
for each site to provide basic reporting and recovery for the protocol. For example, if site A
supports conversations, it should provide an interface that site B can use to query for active

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 28

conversations and force rollback. A normal channel and protocol, and a peer-wise control
interface will be necessary for the protocol level.

The second aspect of management is the manageability of the Web Services themselves. Some
of the major concerns are performance, availability, events, and usage metrics that provide the
service provider market with the necessary information to charge for the use of the services they
offer.

Service descriptions can be used to advertise manageability characteristics and management
requirements. Conventions for this are under development.

Any implementation of a service registry, be it for private or public consumption requires that the
infrastructure be available, deliver the promised quality of service and be able to report on
usage. These elements of systems management are fundamental to the successful adoption of
UDDI.

For the components of a Web service application, supporting a management environment can
add significant complexity to an application. Because Web Services must be easy to develop,
this complexity must be hidden, as much as possible, from the developer. The Web Services
approach to management is to supply infrastructure to provide metrics automatically, audit logs,
start and stop processing, event notification, and other management functions as part of a Web
Services runtime (that is, at least the SOAP Server). Because not all information can be gleaned
by the infrastructure through observing the behavior of the components it hosts, a Web service
implementation might need to provide basic health and monitoring information to its hosting
server.

The Web Services infrastructure should provide an easy way for services to participate in
management and to leverage management infrastructure. A manageable service WSDL
document will be defined that a Web service can implement to provide access to a Web
service’s management information by management systems. This interface would include the
ability to get configuration and metric data, update configurations, and receive events from a
manageable Web service.

The platform independence of the Web Services architecture makes it inappropriate to impose
any single Web Services management standard. Therefore a Web service-based approach for
allowing Web Services to communicate with a management system is needed. To this end, a
management service described by a WSDL document that can receive events and metric
updates from manageable Web Services should also be defined and available. The
implementation technology for the management service would be irrelevant to the Web service.
However, for Java technology-based environments, Java Management Extensions (JMX) would
be a logical, vendor agnostic choice. By using an open standard such as JMX, it should be easy
for existing systems management providers to extend their current offerings to include the
management of Web Services key elements.

The management architecture for Web Services is still evolving.

Service ContextService ContextService ContextService Context
Intelligent Web Services are generally Web Services whose behavior is consistent with their
environment’s current state. Optimally, this behavior should be self-configuring. While it is the
responsibility of the Web service provider to code an intelligent application, it is difficult to do so
without information about the runtime environment’s current state and context. The XML
messaging layer needs to define support for propagating context information on calls to Web
Services. Some examples of context information are

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 29

• The type of wireless device on which the application executes and its Global Positioning
System (GPS) coordinates.

• A reference to one or more user profiles that define the user’s preferences.

• Current time and condition information from the service requestor’s perspective.

The XML messaging layer per se is not responsible for defining the details or schema of
preferences and contexts. Rather, the model requires an approach for flowing and propagating
contexts in an extensible way, which allows specific industries, coalitions and so on to define
their context schema and semantics.

Conversations and ActivitiesConversations and ActivitiesConversations and ActivitiesConversations and Activities
In the loose sense, transactions are one of the most fundamental concepts in application
processing. For many reasons, the Web Services model requires a more flexible mechanism for
controlling requests and outcomes than typically offered by traditional distributed and database
transaction models. Some specific differences between the Web Services model and transaction
processing monitor programming models are:

• Multienterprise Web service collaborations that often rely on asynchronous messaging.
While this model also occurs in traditional, intra-enterprise applications, distributed
transactions do not occur between messaging systems. Instead, these applications
assume a chained, multiple-transaction model.

• Cross-business applications inherently have multiple spans of control. During the
processing of a traditional transaction, the infrastructure dedicates resources to the
executing transaction (database lock, threads, and so on). Enterprises rely on
sophisticated monitoring and management tools to ensure that transaction processing
does not introduce stall and service-denial failures into their infrastructure. Providing
similar support to a multiple enterprise, dynamic binding environment is theoretically
possible, but impractical.

• Online transaction processing and database systems optimize execution of high-
volume, short-duration transactions and conversations. Multiple-enterprise Web service
collaborations will typically have far longer duration than transaction and database
applications.

Instead of simply extending existing transaction models to the Web, an incremental approach to
transactional quality of service is required:

1. A core Activity ServiceActivity ServiceActivity ServiceActivity Service, which includes a generalized capability for specifying the operational
context of a request (or series of requests), controlling the duration of the activity and defining
the participants engaged in an outcome decision, is needed. An example of such a service is
typified in the OMG Extended Structuring Mechanism, which is also being adopted within
Java under the Activity Service JSR.

2. A Conversation ServiceConversation ServiceConversation ServiceConversation Service that provides the fundamental conversation styles or behaviors that
need to be constructed for Web Services using the activity service is needed. These
fundamental styles are:

• Under RequestUnder RequestUnder RequestUnder Request AtomicityAtomicityAtomicityAtomicity is a single operation on a Web service occurs either completely
or not at all. This is a capability that the endpoint manager publishes to users. The
endpoint manager can implement this by an internal transaction on its infrastructure or by
some other mechanism.

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 30

• ConversationsConversationsConversationsConversations allow a pair of collaborating services to correlate sequences of requests
within a loose unit of work. The pair of services uses architected conversation messages
and headers to begin the conversation and end the conversation. They determine if the
conversation ended successfully or if one or both participants want the conversation to
rollback. The semantics of rollback is that each participant will undo the operations it has
performed within the conversation.

These styles or behavior mechanisms are by no means complete. However, they allow sites
participating in Web Services to supplement their existing implementations to support more
complex processing and compensation models. The sites can build on their internal transaction
and business logic environments to provide the increased flexibility. Additionally the activity
service would allow for additional operational patterns beyond the traditional transactional
model.

The sole requirement currently placed on Web Services is the ability for two endpoints to agree
on the outcome. Multiparty transaction processing occurs within enterprises that use their own
internal transaction and workflow models to manage operations and conversations with multiple
participants.

IntermediariesIntermediariesIntermediariesIntermediaries
One enhancement that Web Services will provide is support for intermediaries. An intermediary
is a component (potentially itself a Web service) that insinuates itself between a service
requestor and service provider during an invocation. Literally the intermediary intermediates the
Web service invocation. An example of an intermediary is a third-party notary site that
timestamps and logs a service invocation. This intermediary can be used to support
nonrepudiation.

Request
(service invocation)

Response

Application

Service Requestor

SOAP

Network Protocol

Application
web service

Service Provider

SOAP

Network Protocol

1 234

I1

I2

I3

Figure 9. Intermediaries

Intermediaries can be placed in the execution path of the request and the response message
flow. The intermediary, as in the case of I1 in Figure 9, can be invoked during both the request
and the response. I1 can be a third-party Quality of Service (QOS) monitor or audit-trail
intermediary. Certain intermediaries will only be invoked on either the request or the response

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 31

message flow, as in I2 and I3 above. I2 can be a nonrepudiation intermediary and I3 can be a
response-time logging intermediary. The specifications for defining the set of intermediaries on
the message path are still being defined.

Intermediaries will be supported by the AXIS implementation of SOAP available from Apache. A
service provider that publishes a service could specify which intermediaries it supports, the
service they provide and their identity. The ability to search for and inspect service descriptions
by interface type and by implementation type provides the meta-data necessary for site A to
examine the intermediary chain that site B supports for a service. Some examples in the
intermediary chain might be a nonrepudiation service and a billing and payment service.
Intermediaries will provide qualities of service that the endpoints agree to, for example exactly-
once semantics. In the billing and payment scenario, if an endpoint is ensured to be invoked
exactly once, you would like to see exactly one payment position on your bill for that invocation.

Site B can specify a workflow graph that defines the ordering of required intermediaries. When
site A resolves a service to site B, the workflow graph states that invoking the service on B
occurs by invoking the service on an entry node in the flow, which will result in the service
eventually occurring at B after the intermediaries process the message. The flow definition also
specifies which data must by sealed for delivery to which intermediaries in the chain.

The actual representation of intermediaries with the XML messaging layer is not well defined in
SOAP and is currently a topic of debate within the XML Protocol Working Group.

Portals and PortletsPortals and PortletsPortals and PortletsPortals and Portlets
Portals are commonly used to provide people with access to information and applications in a
condensed form. Typically, portals display personalized information from various sources in a
single page, thus allowing the user to efficiently access this information instead of visiting
various Web sites one after the other. Depending on customizable user settings, various
portlets usually rectangular areas that display information are included in the page.

As Web Services become the predominant method for making information and applications
programmatically available on the Internet, portals and portal development tools need to allow
for integration of Web Services as data sources. Figure 10 illustrates some common data flows
between portals, portlet services and Web services.

There are initially two integration points for Web Services and portlets: portlets that use Web
Services as a backend and portlets that are described, wrapped and published as Web
Services. An example of the first, which will be the predominant scenario, is a news portlet that
allows the user to configure the news categories to track and then gets the news for these
categories live from a Web service whenever it is displayed. In this case, the portlet code runs
locally on the portal and uses the Web service to access information. The rendering of the
content is done by the portlet itself.

IBM Software Group Architecture Overview

Web Services Conceptual Architecture 32

Banking

Portal

Portlet
Proxy

Search
Portlet

News
Portlet

Search

Web
Services

SearchSearch

News
Content

Stock
Content

SOAP/RPI

SOAP/SearchML

SOAP/NewsML

Portals

Portlet
Wrapper

Portlet
Proxy

Portlet
Wrapper

SOAP/RPI

Portlet
Services

Figure 10. Portals and portlets

An example of the second use of Web Services by portals is enabling sharing of portlets with
other portals. In this scenario, a remote server that is another portal publishes portlets as remote
portlet Web Services in a Web Services directory. The portal can thus find the remote portlet
services in the directory and bind to them. As a result, the remote portlets become available for
the portal users without requiring local installation of the portlet code on the portal itself.

Other opportunities for integration of Web Services and portal technologies will emerge as these
technologies mature.

IBM Software Group Business Processes, Workflows and
Web Services.

Web Services Conceptual Architecture 33

Business Processes, Workflows and WebBusiness Processes, Workflows and WebBusiness Processes, Workflows and WebBusiness Processes, Workflows and Web
ServicesServicesServicesServices
Web Services are composable; this is an important characteristic of Web Services identified
previously in this paper. Workflow, as a primary mechanism to compose Web Services in a
nontrivial fashion, is critical for the rapid creation of new, higher-function Web Services. Workflow
will provide choreography for interactions between component Web Services.

Business processes are graphs of activities that carry out some meaningful business operation.
Examples are purchasing an airline ticket, managing inventory in a warehouse, and ordering
furniture for a home or office. Long-running transactions, such as tracking an order to fulfillment
or supporting collaborative planning, forecasting and replenishment (CPFR) are also business
processes. Business processes vary in level of granularity, and the details of a business process
will vary from enterprise to enterprise.

Workflows are business processes that are run in an IT environment using a tool such as IBM
MQSeries Workflow. Workflow tools allow businesses to define each of their business processes
as a series of activities carried out by individuals or applications, and vary the sequence through
the activity series depending on the output data from each individual activity. For more
information on business processes and workflows, see Web Services and Business Process
Management Technology.

As described above, Web Services are attractive components of workflows, because they can
be composed dynamically or orchestrated into workflows, and because they are widely
available across the network. This section describes the fundamental architecture of workflows
in the context of Web Services and in particular:

1. Illustrates the ways in which workflows can be combined and transformed into Web Services.

2. Illustrates the fractal nature of Web-service workflows how each Web-service-based activity
participating in a workflow can in turn be composed of a lower-level workflow.

3. Introduces the concept of enabling services to support e-business Web Services, and
illustrates how such enabling services can be combined with e-business Web Services into
workflows to support customer processes.

4. Introduces the concept of a business process hierarchy with activities in public workflows
being implemented by private workflows, whose activities are implemented in turn by
workflows implemented as Java components bound together by scripts.

This section deals primarily with workflows as a means of composing and choreographing Web
Services across enterprises. However, workflow is not the only technique for composing or
choreographing Web Services within an enterprise. Scripting in JavaScript and microflows can
also be used for this purpose. For a good discussion of these alternative techniques, see IBM
Web Services Roadmap.

IBM Software Group Business Processes, Workflows and
Web Services.

Web Services Conceptual Architecture 34

A Simple Web Services WorkflowA Simple Web Services WorkflowA Simple Web Services WorkflowA Simple Web Services Workflow
Figure 11 illustrates a simple workflow involving Web Services.

Buyer
Service

Seller
Service

Order

Goods

in

IN

OUT

out

Figure 11. Simple workflow

In Figure 11, a buyer service (which might be a simple client) is ordering goods from a seller
service. The seller service is a Web service whose interface is defined using WSDL. The buyer
service is invoking the order method on the seller service using SOAP and the WSDL definition
for the seller service. The buyer service knows what to expect in the SOAP reply message
because this is defined in the WSDL definition for the seller service.

Figure 11 shows in and out boxes for each Web service involved in a workflow. In general, the in
and out boxes are defined using WSDL, as described previously in this paper. The tool that
encapsulates code to create the buyer service derives the format of the outbox or API for the
seller service by analyzing and transforming the WSDL description of the seller service, and also
knows what to expect from the seller service by analyzing the WSDL description. The in and out
boxes in Figure 11 are symbolic representations of this analysis activity.

e-business Services and Enabling Servicese-business Services and Enabling Servicese-business Services and Enabling Servicese-business Services and Enabling Services
Figure 11 illustrates a simple workflow involving two Web Services (or a Web service and a
service requestor application, depending on the nature of the buyer). Now consider a slightly
more complex workflow, as illustrated in Figure 12.

IBM Software Group Business Processes, Workflows and
Web Services.

Web Services Conceptual Architecture 35

Buyer
Service

Seller
Service

1
Order

3
Goods

in

IN

OUT

out

Credit
Validation

Service

2
Validate

Figure 12. More complex workflow

In Figure 12, the seller service uses a credit validation service to ensure that the buyer can pay
for the goods, before shipping the goods to the buyer. The credit validation service is a third-
party Web service that is available to e-business services in general.

In this example, the buyer service and the seller service are e-business services that do
activities directly associated with an enterprise’s business. The credit validation service, on the
other hand, is an enabling service that can be used by many e-business services to help them
perform their business processes. Other examples of enabling services are a satisfaction
tracking service, a security service, and a workflow service to host private workflows for
companies without their own infrastructure for doing this.

IBM Software Group Business Processes, Workflows and
Web Services.

Web Services Conceptual Architecture 36

Composed Workflows, and Public and PrivateComposed Workflows, and Public and PrivateComposed Workflows, and Public and PrivateComposed Workflows, and Public and Private
WorkflowsWorkflowsWorkflowsWorkflows
A Web service that serves as an activity in one workflow can itself consist of a series of
sequenced activities (or a workflow) as illustrated in Figure 13.

Buyer
Service

Seller
Service

Credit
Validation

Service

Inventory
Management

Service

Customer
Accounting

Service
in out

Public Flow

Private Flow

Figure 13. Composed workflow

The seller service in Figure 13 is actually a complete workflow that is encapsulated as a single
Web service. The seller service consists of a credit validation activity, an inventory management
activity and a customer accounting activity. The seller service presents a single interface to the
buyer service using a single WSDL definition, thereby hiding the details of the lower-level
workflow that it encapsulates. In Figure 13, the enterprise providing the workflow for the seller
service does not expose the details of this service to public applications and services that seek
to use the seller service. That is to say that the seller service participates in a public flow,,,,
whereas the workflow that makes up the seller service is a private flow....

This idea of composing an activity or Web service out of a workflow is very powerful, and can be
applied at multiple levels of granularity. Figure 13 illustrates three levels of workflow granularity.

IBM Software Group Business Processes, Workflows and
Web Services.

Web Services Conceptual Architecture 37

Buyer
Service

Seller
Service

Credit
Validation

Service

Inventory
Management

Service

Customer
Accounting

Service
in out

Public Flow

Private Flow

Step1 Step2 Step3

EJB

Public
Credit
Service

Figure 14. Further composition of workflows

In Figure 14 the inventory management service itself is shown to consist of a workflow including
several steps. Note also that in Figure 14 the credit validation service that is part of the workflow
for the seller service actually goes out on the public Internet and utilizes a public credit service,
which it might find and bind to using information retrieved from a registry such as UDDI.

Finally, Figure 14 illustrates that underneath all Web Services are coded applications. In Figure
14, the customer accounting service is actually an encapsulated Enterprise JavaBean (EJB),
which in turn is part of a customer application.

Business Process Hierarchy of WorkflowsBusiness Process Hierarchy of WorkflowsBusiness Process Hierarchy of WorkflowsBusiness Process Hierarchy of Workflows
Figure 14 illustrates how workflows might exist at different levels. Figure 15 is an elaboration of
Figure 14 that shows how workflow might exist even at the code level. Figure 15 also illustrates
how workflows might map to actual middleware products.

IBM Software Group Business Processes, Workflows and
Web Services.

Web Services Conceptual Architecture 38

Buyer
Service

Seller
Service

Credit
Validation

Service

Inventory
Management

Service

Customer
Accounting

Service
in out

Public Flow

Private Flow

EJB

Public
Credit
Service

Step 1 Step 2 Step 3EJB

IBM Products

MQ Series
W orkflow

MQ Series
W orkflow

Gateway

W ebSphere

Figure 15. Business process hierarchy

In Figure 15, the activities in the inventory management service have been replaced with (EJBs)
and access to the public credit service is via an EJB encapsulated to serve as a Web Services
client application. Figure 15 also calls out some of the IBM middleware products that will support
the different layers in the business process hierarchy.

MQSeries Workflow is a middleware product from IBM that might in the future support the WSFL
that defines workflows composed of Web Services, and includes Web Services from lower-level
workflows. IBM will work with its partners to standardize a language that serves these needs.
WSFL is the IBM input to this standardization process. After a workflow definition language such
as WSFL is standardized, IBM and other companies will likely support it. For more information on
WSFL, see Web Services Flow Language (WSFL 1.0)

At the lowest level illustrated in Figure 15, EJBs carry out the actual services associated with
workflows either directly or by accessing existing customer applications via connectors. These
EJBs run in containers provided by IBM WebSphere Application Server and can be created
using IBM VisualAge for Java and encapsulated into Web Services using IBM WebSphere
Studio Technology Preview for Web Services (or other appropriate tools).

The private flow illustrated in Figure 15 might be initiated over SOAP and HTTP, or it might run
over MQSeries, which also supports SOAP and provides additional security and guaranteed
delivery. In general, a gateway will handle impedance mismatches between the external public
flow using SOAP over HTTP and intra-enterprise internal flows that can take advantage of
information buses such as MQSeries and the RMI over IIOP support provided by IBM
WebSphere Application Server. For more detail, see IBM Web Services Roadmap.

Finally, note that in Figure 15 the three EJBs implementing the steps of the inventory
management services are actually doing a workflow. In principle, this workflow can be
described using WSFL, and the sequence could be carried out as a microflow. This type of
workflow involves actual code components and is obviously related to the other levels of flow

IBM Software Group Business Processes, Workflows and
Web Services.

Web Services Conceptual Architecture 39

illustrated in Figure 15. IBM plans to coordinate its VisualAge and Studio tools to facilitate the
visual creation of workflows at all of the different levels illustrated in Figure 15, going from public
workflows to private workflows to microflows. For a discussion of this topic see IBM Web
Services Roadmap.

Hierarchical Workflows and Peer-to-Peer WorkflowsHierarchical Workflows and Peer-to-Peer WorkflowsHierarchical Workflows and Peer-to-Peer WorkflowsHierarchical Workflows and Peer-to-Peer Workflows
The workflows we have shown thus far in this paper have been hierarchical, in that they are self-
contained, with all business process activities being part of the same workflow, though in some
cases the Web service representing an activity was itself a workflow. Peer-to-peer workflows
involve two or more independently executing workflows having conversations to complete the
overall workflow. For example, to accomplish what it needs to do, a Web service that is an
activity in one workflow might send a message to a Web service that is an activity in another
workflow at the same level and wait for a reply before continuing. For an example of a peer-to-
peer workflow, see the ticket-order example in the companion paper Web Services Flow
Language (WSFL 1.0)....

Web Services Workflows Today and TomorrowWeb Services Workflows Today and TomorrowWeb Services Workflows Today and TomorrowWeb Services Workflows Today and Tomorrow
The standards efforts for Web Services workflows are not as far along as some of the other Web
Services standards initiatives such as SOAP (XML Protocol) and WSDL. However, IBM and other
companies are working on standards for Web service flow definition and Web Services workflow
endpoint definition. These standards should be agreed upon and approved quickly, as were the
standards for SOAP and WSDL. The IBM candidate for Web-service flow definition is the Web
Services Flow Language.

After the standards have been approved, IBM and other middleware vendors should quickly
provide tools and runtime support for Web service-oriented workflows as described in this
paper. In the meantime, a great deal can be done to begin implementing workflows using
existing Web Services technology such as WebSphere Technology for Developers, MQSeries
Workflow, MQSeries Integrator, and WebSphere Business Integrator. To read more about
creating Web service workflows now, see Web Services and Business Process Management
Technology.

IBM Software Group Related Information

Web Services Conceptual Architecture 40

Related InformationRelated InformationRelated InformationRelated Information
Web SitesWeb SitesWeb SitesWeb Sites
AXIS http://xml.apache.org/axis
DISCO http://msdn.microsoft.com/xml/general/disco.asp
EbXML http://www.ebxml.org/
OAG http://www.openapplications.org/
SOAP http://www.w3.org/TR/SOAP/
UDDI http://www.uddi.org/
XMLP http://www.w3.org/2000/xp/
WSDL http://www.uddi.org/submissions.html
XML Schema Part 1 http://www.w3.org/TR/xmlschema-1/
XML Schema Part 2 http://www.w3.org/TR/xmlschema-2/

Other PapersOther PapersOther PapersOther Papers
Web Services Flow Language (WSFL 1.0)

Web Services Conceptual Architecture (WSCA 1.0)

IBM Web Services Roadmap

Web Services and Business Process Management Technology

http://xml.apache.org/axis
http://msdn.microsoft.com/xml/general/disco.asp
http://www.ebxml.org/
http://www.openapplications.org/
http://www.w3.org/TR/SOAP/
http://www.uddi.org/
http://www.w3.org/2000/xp/
http://www.uddi.org/submissions.html
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/

IBM®

© Copyright IBM Corporation 2001

International Business Machines Corporation
Software Communications Department
Route 100, Building 1
Somers, NY 10589
U.S.A.

05-01
All Rights Reserved

IBM, the IBM logo, VisualAge, WebSphere, and
MQSeries are trademarks or registered
trademarks of International Business Machines
Corporation in the United States, other countries,
or both.

Java and all Java-based trademarks and logos are
trademarks of Sun Microsystems, Inc in the United
States, other countries, or both.

Microsoft, Windows, Windows NT and the
Windows logo are trademarks or Microsoft
Corporation in the United States, other countries,
or both.

Other company, product and service names may
be trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make
them available in all countries in which IBM
operates.

	Web Services
	Conceptual Architecture
	(WSCA 1.0)
	May 2001

	Notice
	Contents
	Figures
	Preface
	Abstract
	Target Audience
	Comments

	Web Services Overview
	Web Services: The Next Horizon for e-business
	Definition of Web Services

	The Web Services Model
	
	Roles in a Web Services Architecture
	Operations in a Web Service Architecture
	Artifacts of a Web Service
	Web Services Development Lifecycle

	Architecture Overview
	The Web Services Stack
	The Network
	XML Messaging-Based Distributed Computing
	Service Description: From XML Messaging to Web Services
	The Basic Service Description
	The Complete Web Service Description

	Publication and Discovery of Service Descriptions
	Service Publication
	Producing Service Descriptions
	Publishing Service Descriptions

	Service Discovery
	Acquiring Service Descriptions
	Consuming Service Descriptions

	Web Services for Real e-business
	Security
	Quality of Service and Reliable Messaging
	Systems and Application Management
	Service Context
	Conversations and Activities
	Intermediaries
	Portals and Portlets

	Business Processes, Workflows and Web Services
	A Simple Web Services Workflow
	e-business Services and Enabling Services
	Composed Workflows, and Public and Private Workflows
	Business Process Hierarchy of Workflows
	Hierarchical Workflows and Peer-to-Peer Workflows
	Web Services Workflows Today and Tomorrow

	R
	Related Information
	Web Sites
	Other Papers
	
	
	
	
	
	
	Web Services and Business Process Management Technology

